期刊文献+
共找到103,096篇文章
< 1 2 250 >
每页显示 20 50 100
Efficient C-N coupling in electrocatalytic urea generation on copper carbonate hydroxide electrocatalysts
1
作者 Yinuo Wang Yian Wang +11 位作者 Qinglan Zhao Hongming Xu Shangqian Zhu Fei Yang Ernest P.Delmo Xiaoyi Qiu Chi Song Juhee Jang Tiehuai Li Ping Gao MDanny Gu Minhua Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期289-298,I0008,共11页
Urea generation through electrochemical CO_(2) and NO_(3)~-co-reduction reaction(CO_(2)NO_(3)RR)is still limited by either the low selectivity or yield rate of urea.Herein,we report copper carbonate hydroxide(Cu_2(OH)... Urea generation through electrochemical CO_(2) and NO_(3)~-co-reduction reaction(CO_(2)NO_(3)RR)is still limited by either the low selectivity or yield rate of urea.Herein,we report copper carbonate hydroxide(Cu_2(OH)_2CO_(3))as an efficient CO_(2)NO_(3)RR electrocatalyst with an impressive urea Faradaic efficiency of45.2%±2.1%and a high yield rate of 1564.5±145.2μg h~(-1)mg_(cat)~(-1).More importantly,H_(2) evolution is fully inhibited on this electrocatalyst over a wide potential range between-0.3 and-0.8 V versus reversible hydrogen electrode.Our thermodynamic simulation reveals that the first C-N coupling follows a unique pathway on Cu_2(OH)_2CO_(3) by combining the two intermediates,~*COOH and~*NHO.This work demonstrates that high selectivity and yield rate of urea can be simultaneously achieved on simple Cu-based electrocatalysts in CO_(2)NO_(3)RR,and provide guidance for rational design of more advanced catalysts. 展开更多
关键词 copper carbonate hydroxide Co-reduction Urea generation C-N coupling DFT calculation
下载PDF
Molecular engineering binuclear copper catalysts for selective CO_(2) reduction to C_(2) products
2
作者 Qi Zhao Kai Lei +2 位作者 Bao Yu Xia Rachel Crespo-Otero Devis Di Tommaso 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期166-173,I0005,共9页
Molecular copper catalysts serve as exemplary models for correlating the structure-reaction-mechanism relationship in the electrochemical CO_(2) reduction(eCO_(2)R),owing to their adaptable environments surrounding th... Molecular copper catalysts serve as exemplary models for correlating the structure-reaction-mechanism relationship in the electrochemical CO_(2) reduction(eCO_(2)R),owing to their adaptable environments surrounding the copper metal centres.This investigation,employing density functional theory calculations,focuses on a novel family of binuclear Cu molecular catalysts.The modulation of their coordination configuration through the introduction of organic groups aims to assess their efficacy in converting CO_(2) to C_(2)products.Our findings highlight the crucial role of chemical valence state in shaping the characteristics of binuclear Cu catalysts,consequently influencing the eCO_(2)R behaviour,Notably,the Cu(Ⅱ)Cu(Ⅱ)macrocycle catalyst exhibits enhanced suppression of the hydrogen evolution reaction(HER),facilitating proton trans fer and the eCO_(2)R process.Fu rthermore,we explo re the impact of diverse electro n-withdrawing and electron-donating groups coordinated to the macrocycle(R=-F,-H,and-OCH_3)on the electron distribution in the molecular catalysts.Strategic placement of-OCH_3 groups in the macrocycles leads to a favourable oxidation state of the Cu centres and subsequent C-C coupling to form C_(2) products.This research provides fundamental insights into the design and optimization of binuclear Cu molecular catalysts for the electrochemical conversion of CO_(2) to value-added C_(2) products. 展开更多
关键词 Molecular catalyst design Selective CO_(2)reduction C_(2)products Density functional theory calculations
下载PDF
Copper Metabolism and Cuproptosis:Molecular Mechanisms and Therapeutic Perspectives in Neurodegenerative Diseases 被引量:1
3
作者 Xiao-xia BAN Hao WAN +7 位作者 Xin-xing WAN Ya-ting TAN Xi-min HU Hong-xia BAN Xin-yu CHEN Kun HUANG Qi ZHANG Kun XIONG 《Current Medical Science》 SCIE CAS 2024年第1期28-50,共23页
Copper is an essential trace element,and plays a vital role in numerous physiological processes within the human body.During normal metabolism,the human body maintains copper homeostasis.Copper deficiency or excess ca... Copper is an essential trace element,and plays a vital role in numerous physiological processes within the human body.During normal metabolism,the human body maintains copper homeostasis.Copper deficiency or excess can adversely affect cellular function.Therefore,copper homeostasis is stringently regulated.Recent studies suggest that copper can trigger a specific form of cell death,namely,cuproptosis,which is triggered by excessive levels of intracellular copper.Cuproptosis induces the aggregation of mitochondrial lipoylated proteins,and the loss of iron-sulfur cluster proteins.In neurodegenerative diseases,the pathogenesis and progression of neurological disorders are linked to copper homeostasis.This review summarizes the advances in copper homeostasis and cuproptosis in the nervous system and neurodegenerative diseases.This offers research perspectives that provide new insights into the targeted treatment of neurodegenerative diseases based on cuproptosis. 展开更多
关键词 cuproptosis copper metabolism copper homeostasis NEURODEGENERATiON neurodegenerativedisease
下载PDF
An effective catalyst carrier SiO_(2):Enhancing catalytic and combustion properties of CuFe_(2)O_(4)on energetic components
4
作者 Li Ding Chong Wan +2 位作者 Suhang Chen Zhao Qin Kangzhen Xu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期383-392,共10页
To enhance the catalytic activity of copper ferrite(CuFe_(2)O_(4))nanoparticle and promote its application as combustion catalyst,a low-cost silicon dioxide(SiO_(2))carrier was employed to construct a novel CuFe_(2)O_... To enhance the catalytic activity of copper ferrite(CuFe_(2)O_(4))nanoparticle and promote its application as combustion catalyst,a low-cost silicon dioxide(SiO_(2))carrier was employed to construct a novel CuFe_(2)O_(4)/SiO_(2)binary composites via solvothermal method.The phase structure,morphology and catalytic activity of CuFe_(2)O_(4)/SiO_(2)composites were studied firstly,and thermal decomposition,combustion and safety performance of ammonium perchlorate(AP)and 1,3,5-trinitroperhydro-1,3,5-triazine(RDX)with it affecting were then systematically analyzed.The results show that CuFe_(2)O_(4)/SiO_(2)composite can remarkably either advance the decomposition peak temperature of AP and RDX,or reduce the apparent activation energy at their main decomposition zone.Moreover,the flame propagation rate of RDX was promoted by about 2.73 times with SiO_(2)content of 3 wt%,and safety property of energetic component was also improved greatly,in which depressing the electrostatic discharge sensitivity of pure RDX by about 1.89 times.In addition,the effective range of SiO_(2)carrier content in the binary catalyst is found to be 3 to 5 wt%.Therefore,SiO_(2)opens a new insight on the design of combustion catalyst carrier and will promote the application of CuFe_(2)O_(4)catalyst in solid propellant. 展开更多
关键词 copper ferrite Silicon dioxide Combustion catalyst Thermal decomposition Laser ignition
下载PDF
Editorial Commentary:Copper Homeostasis in Neurodegenerative Diseases
5
作者 Ying-hui LI Kun WANG 《Current Medical Science》 SCIE CAS 2024年第1期244-245,共2页
Copper,as an essential trace nutrient,plays a crucial role in biological processes such as mitochondrial respiration,antioxidant stress response,and the synthesis of biomolecules.Typically,cellular copper concentratio... Copper,as an essential trace nutrient,plays a crucial role in biological processes such as mitochondrial respiration,antioxidant stress response,and the synthesis of biomolecules.Typically,cellular copper concentrations are maintained at very low levels,a pattern also observed in cancer cells to prevent adverse consequences of copper overload,such as cuproptosis.This involves copper dependency,accumulation of lipidated proteins,and a reduction in Fe-S cluster proteins[1].Various neurodegenerative diseases are associated with imbalances in copper homeostasis. 展开更多
关键词 copper copper consequences
下载PDF
Detection of Al, Mg, Ca, and Zn in copper slag by LIBS combined with calibration curve and PLSR methods
6
作者 贾军伟 刘志峰 +1 位作者 潘从元 薛骅骎 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期132-138,共7页
The precise measurement of Al, Mg, Ca, and Zn composition in copper slag is crucial for effective process control of copper pyrometallurgy. In this study, a remote laser-induced breakdown spectroscopy(LIBS) system was... The precise measurement of Al, Mg, Ca, and Zn composition in copper slag is crucial for effective process control of copper pyrometallurgy. In this study, a remote laser-induced breakdown spectroscopy(LIBS) system was utilized for the spectral analysis of copper slag samples at a distance of 2.5 m. The composition of copper slag was then analyzed using both the calibration curve(CC) method and the partial least squares regression(PLSR) analysis method based on the characteristic spectral intensity ratio. The performance of the two analysis methods was gauged through the determination coefficient(R^(2)), average relative error(ARE), root mean square error of calibration(RMSEC), and root mean square error of prediction(RMSEP). The results demonstrate that the PLSR method significantly improved both R^(2) for the calibration and test sets while reducing ARE, RMSEC, and RMSEP by 50% compared to the CC method. The results suggest that the combination of LIBS and PLSR is a viable approach for effectively detecting the elemental concentration in copper slag and holds potential for online detection of the elemental composition of high-temperature molten copper slag. 展开更多
关键词 copper slag ELEMENT REMOTE LiBS PLSR
下载PDF
Catalytic effect in lithium metal batteries: From heterogeneous catalyst to homogenous catalyst
7
作者 Haining Fan Xuan-Wen Gao +3 位作者 Hailong Xu Yichun Ding Shi-Xue Dou Wen-Bin Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期305-326,I0008,共23页
Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-elec... Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy. 展开更多
关键词 Energy storage and conversion Metal battery Sulfur battery Air battery Catalytic effect Heterogeneous catalyst Homogeneous catalyst
下载PDF
Cu/TiO_(2) Photocatalysts for CO_(2) Reduction: Structure and Evolution of the Cocatalyst Active Form
8
作者 Andrey A.Saraev Anna Yu.Kurenkova +3 位作者 Denis D.Mishchenko Alexandr L.Trigub Evgeniy Yu.Gerasimov Ekaterina A.Kozlova 《Transactions of Tianjin University》 EI CAS 2024年第2期140-151,共12页
Extensive work on a Cu-modified TiO_(2) photocatalyst for CO_(2) reduction under visible light irradiation was conducted. The structure of the copper cocatalyst was established using UV-vis diff use refl ectance spect... Extensive work on a Cu-modified TiO_(2) photocatalyst for CO_(2) reduction under visible light irradiation was conducted. The structure of the copper cocatalyst was established using UV-vis diff use refl ectance spectroscopy, high-resolution transmis- sion electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. It was found that copper exists in different states (Cu 0 , Cu^(+) , and Cu^(2+) ), the content of which depends on the TiO_(2) calcination temperature and copper loading. The optimum composition of the cocatalyst has a photocatalyst based on TiO_(2) calcined at 700℃ and modified with 5 wt% copper, the activity of which is 22 μmol/(h·g cat ) (409 nm). Analysis of the photocatalysts after the photocatalytic reaction disclosed that the copper metal on the surface of the calcined TiO_(2) was gradually converted into Cu_(2) O during the photocatalytic reaction. Meanwhile, the metallic copper on the surface of the noncalcined TiO_(2) did not undergo any trans- formation during the reaction. 展开更多
关键词 PHOTOCATALYSiS Photocatalytic CO_(2)conversion Visible light Titanium dioxide copper copper oxides Methane formation Photocatalyst transformation
下载PDF
Purification of copper foils driven by single crystallization
9
作者 寇金宗 赵孟泽 +10 位作者 李兴光 何梦林 杨方友 刘科海 成庆秋 任云龙 刘灿 付莹 吴慕鸿 刘开辉 王恩哥 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期506-511,共6页
High-purity copper(Cu) with excellent thermal and electrical conductivity, is crucial in modern technological applications, including heat exchangers, integrated circuits, and superconducting magnets. The current puri... High-purity copper(Cu) with excellent thermal and electrical conductivity, is crucial in modern technological applications, including heat exchangers, integrated circuits, and superconducting magnets. The current purification process is mainly based on the zone/electrolytic refining or anion exchange, however, which excessively relies on specific integrated equipment with ultra-high vacuum or chemical solution environment, and is also bothered by external contaminants and energy consumption. Here we report a simple approach to purify the Cu foils from 99.9%(3N) to 99.99%(4N) by a temperature-gradient thermal annealing technique, accompanied by the kinetic evolution of single crystallization of Cu.The success of purification mainly relies on(i) the segregation of elements with low effective distribution coefficient driven by grain-boundary movements and(ii) the high-temperature evaporation of elements with high saturated vapor pressure.The purified Cu foils display higher flexibility(elongation of 70%) and electrical conductivity(104% IACS) than that of the original commercial rolled Cu foils(elongation of 10%, electrical conductivity of ~ 100% IACS). Our results provide an effective strategy to optimize the as-produced metal medium, and therefore will facilitate the potential applications of Cu foils in precision electronic products and high-frequency printed circuit boards. 展开更多
关键词 PURiFiCATiON copper foil thermal annealing technique single crystallization
下载PDF
OsMYB84,a transcriptional regulator of OsCOPT2 and OsHMA5,modulates copper uptake and transport and yield production in rice
10
作者 Jingli Ding Chenchen Ji +6 位作者 Lu Yu Chuang Wang Guangda Ding Sheliang Wang Lei Shi Fangsen Xu Hongmei Cai 《The Crop Journal》 SCIE CSCD 2024年第2期456-469,共14页
Transcription factors regulating crop uptake and translocation of the micronutrient Cu have not been identified.We isolated a novel R2R3-MYB transcription factor,OsMYB84,and showed that it was a positive regulator inv... Transcription factors regulating crop uptake and translocation of the micronutrient Cu have not been identified.We isolated a novel R2R3-MYB transcription factor,OsMYB84,and showed that it was a positive regulator involved in uptake and transport of Cu via activation of OsCOPT2 and OsHMA expression.OsMYB84 was highly expressed in roots and anthers and induced by Cu.Overexpression of OsMYB84 promoted uptake and root-to-shoot translocation of Cu in rice,facilitated Cu distribution into grain and increased grain yield.In contrast,mutation of OsMYB84 reduced Cu concentration in xylem sap.OsMYB84 bound to the promoter region of OsCOPT2 and OsHMA5 and upregulated their expression.OsCOPT2 mutants showed reduced uptake of Cu and OsHMA5 overexpression lines showed increased root-to-shoot translocation of Cu. 展开更多
关键词 OsMYB84 OsCOPT2 OsHMA5 copper RiCE
下载PDF
Role of copper chelating agents: between old applications and new perspectives in neuroscience
11
作者 Rosalba Leuci Leonardo Brunetti +4 位作者 Vincenzo Tufarelli Marco Cerini Marco Paparella Nikola Puvača Luca Piemontese 《Neural Regeneration Research》 SCIE CAS 2025年第3期751-762,共12页
The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays a... The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays an important role in the central nervous system, where it is associated with glutamatergic signaling, and it is widely involved in inflammatory processes. Thus, diseases involving copper(Ⅱ) dyshomeostasis often have neurological symptoms, as exemplified by Alzheimer's and other diseases(such as Parkinson's and Wilson's diseases). Moreover, imbalanced copper ion concentrations have also been associated with diabetes and certain types of cancer, including glioma. In this paper, we propose a comprehensive overview of recent results that show the importance of these metal ions in several pathologies, mainly Alzheimer's disease, through the lens of the development and use of copper chelators as research compounds and potential therapeutics if included in multi-target hybrid drugs. Seeing how copper homeostasis is important for the well-being of animals as well as humans, we shortly describe the state of the art regarding the effects of copper and its chelators in agriculture, livestock rearing, and aquaculture, as ingredients for the formulation of feed supplements as well as to prevent the effects of pollution on animal productions. 展开更多
关键词 agriculture Alzheimer's disease CHELATORS copper feed supplements MULTi-TARGET
下载PDF
Copper slag assisted coke reduction of phosphogypsum for sulphur dioxide preparation
12
作者 Dong Ma Qinhui Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期43-53,共11页
The reduction of phosphogypsum(PG)to lime slag and SO_(2)using coke can effectively alleviate the environmental problems caused by PG.However,the PG decomposition temperature remains high and the product yield remains... The reduction of phosphogypsum(PG)to lime slag and SO_(2)using coke can effectively alleviate the environmental problems caused by PG.However,the PG decomposition temperature remains high and the product yield remains poor.By adding additives,the decomposition temperature can be further reduced and PG decomposition rate and product yield can be improved.However,the use of current additives such as Fe_(2)O_(3)and SiO_(2)brings the problem of increasing economic cost.Therefore,it is proposed to use solid waste copper slag(CS)as a new additive to reduce PG to prepare SO2,which can reduce the cost and meet the environmental benefits at the same time.The effects of proportion,temperature and thermostatic time on PG decomposition are investigated by experimental and kinetic analysis combined with FactSage thermodynamic calculations to optimize the roasting conditions.Finally,the reaction mechanism is proposed.It is found that adding CS to the coke and PG system can increase the rate of PG decomposition and SO_(2)yield while lowering the PG decomposition temperature.For example,when the CS/PG mass ratio increases from 0 to 1,PG decomposition rate increases from 83.38%to 99.35%,SO_(2)yield increases from 78.62%to 96.81%,and PG decomposition temperature decreases from 992.4℃to 949.6℃.The optimal reaction parameters are CS/PG mass ratio of 1,Coke/PG mass ratio of 0.06 at 1100℃for 20 min with 99.35%PG decomposition rate and 96.81%SO_(2) yield.The process proceeds according to the following reactions:2CaSO_(4)+ 0.7C + 0.8Fe_(2)SiO_(4)→0.8Ca_(2)SiO_(4)+ 0.2Ca_(2)Fe_(2)O_(5)+ 0.4Fe_(3)O_(4)+2SO_(2)+ 0.7CO_(2)Finally,a process for decomposing PG with coke and CS is proposed. 展开更多
关键词 PHOSPHOGYPSUM Sulfur dioxide copper slag FLUiDiZED-BED REDUCTiON Waste treatment
下载PDF
Fullerenes and derivatives as electrocatalysts: Promises and challenges
13
作者 Kun Guo Ning Li +1 位作者 Lipiao Bao Xing Lu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期7-27,共21页
Carbon-based metal-free nanomaterials are promising alternatives to precious metals as electrocatalysts of key energy storage and conversion technologies.Of paramount significance are the establishment of design princi... Carbon-based metal-free nanomaterials are promising alternatives to precious metals as electrocatalysts of key energy storage and conversion technologies.Of paramount significance are the establishment of design principles by understanding the catalytic mechanisms and identifying the active sites.Distinct from sp2-conjugated graphene and carbon nanotube,fullerene possesses unique characteristics that are growingly being discovered and exploited by the electrocatalysis community.For instance,the well-defined atomic and molecular structures,the good electron affinity to tune the electronic structures of other substances,the intermolecular self-assembly into superlattices,and the on-demand chemical modification have endowed fullerene with incomparable advantages as electrocatalysts that are otherwise not applicable to other carbon ma-terials.As increasing studies are being reported on this intriguing topic,it is necessary to provide a state-of-the-art overview of the recent progress.This review takes such an initiative by summarizing the promises and challenges in the electrocatalytic applications of fullerene and its derivatives.The content is structured according to the composition and structure of fullerene,including intact fullerene(e.g.,fullerene composite and superlattices)and fullerene derivatives(e.g.,doped,endohedral,and disintegrated fullerene).The synthesis,characterization,catalytic mechanisms,and deficiencies of these fullerene-based materials are explicitly elaborated.We conclude it by sharing our perspectives on the key aspects that future efforts shall consider. 展开更多
关键词 FULLERENE Fullerene derivative Metal-free catalyst Structural defect ELECTROcatalyst
下载PDF
Efficient and stable PtFe alloy catalyst for electrocatalytic methanol oxidation with high resistance to CO
14
作者 Qian Yang Sifan Zhang +5 位作者 Fengshun Wu Lihua Zhu Guang Li Mingzhi Chen An Pei Yingliang Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期327-336,I0008,共11页
Direct methanol fuel cells(DMFC) are widely considered to be an ideal green energy conversion device but their widespread applications are limited by the high price of the Pt-based catalysts and the instability in ter... Direct methanol fuel cells(DMFC) are widely considered to be an ideal green energy conversion device but their widespread applications are limited by the high price of the Pt-based catalysts and the instability in terms of surface CO toxicity in long-term operation.Herein,the PtFe alloy nanoparticles(NPs) with small particle size(~4.12 nm) supported on carbon black catalysts with different Pt/Fe atomic ratios(Pt_(1)Fe_(2)/C,Pt_(3)Fe_(4)/C,Pt_(1)Fe_(1)/C,and Pt_(2)Fe_(1)/C) are successfully prepared for enhanced anti-CO poisoning during methanol oxidation reaction(MOR).The optimal atomic ratio of Pt/Fe for the MOR is 1:2,and the mass activity of Pt_(1)Fe_(2)/C(5.40 A mg_(Pt)^(-1)) is 13.5 times higher than that of conventional commercial Pt/C(Pt/C-JM)(0.40 A mg_(Pt)^(-1)).The introduction of Fe into the Pt lattice forms the PtFe alloy phase,and the electron density of Pt is reduced after forming the PtFe alloy.In-situ Fourier transform infrared results indicate that the addition of oxyphilic metal Fe has reduced the adsorption of reactant molecules on Pt during the MOR.The doping of Fe atoms helps to desorb toxic intermediates and regenerate Pt active sites,promoting the cleavage of C-O bonds with good selectivity of CO_(2)(58.1%).Moreover,the Pt_(1)Fe_(2)/C catalyst exhibits higher CO tolerance,methanol electrooxidation activity,and long-term stability than other Pt_(x)Fe_(y)/C catalysts. 展开更多
关键词 Alloy catalyst PTFE Methanol oxidation in-situ FTiR CO resistance
下载PDF
Serum Zinc and Copper Level in Juvenile Idiopathic Arthritis (JIA) Patients and Its Correlation with Disease Duration-A Tertiary Hospital Study
15
作者 Mohammad Imnul Islam Mujammel Haque +4 位作者 Tanzida Sultana Mousumi Ahmed Mohammed Mahbubul Islam Kamrul Laila Manik Kumar Talukder 《Open Journal of Rheumatology and Autoimmune Diseases》 2024年第2期60-68,共9页
Background: Juvenile Idiopathic Arthritis (JIA) is the most prevalent rheumatic disease in children. It is associated with abnormal levels of serum zinc (Zn) and copper (Cu) as during inflammation serum copper concent... Background: Juvenile Idiopathic Arthritis (JIA) is the most prevalent rheumatic disease in children. It is associated with abnormal levels of serum zinc (Zn) and copper (Cu) as during inflammation serum copper concentration increases and zinc decreases. Objective: To assess the serum Zn and Cu levels in different sub-types of JIA patients and their correlation with the disease duration. Methods: This cross-sectional study was conducted over twelve months at the Pediatric Rheumatology Division, Department of Paediatrics, Bangabandhu Sheikh Mujib Medical University. Sixty-nine JIA cases that fulfilled the International League of Association for Rheumatology (ILAR) criteria were taken as cases and age and sex-matched healthy children were considered as controls. The serum Zn and Cu tests were done using the spectrophotometric method with INDIKO PLUS Drug Analyzer. Data were recorded in a pre-designed questionnaire. Data were checked, verified and analyzed manually where continuous variables were analyzed using unpaired t-test and categorical variables using the ANOVA test. Pearson’s correlation coefficient test was used to see the correlation of serum zinc and copper levels with disease duration. Results: Boys were predominant in both case and control groups, with the majority within the 10 to 16-year-age group. Enthesitis-related arthritis (ERA) was the most common subtype followed by sJIA, Oligo JIA, Poly JIA (RF-) and unclassified subtypes. Disease duration was found less than 12 months in 30.4% of JIA patients. Serum analysis revealed a statistically significant reduction in mean zinc levels and increased copper levels in JIA patients compared to controls. This study observed a negative correlation between serum zinc levels and disease duration, whereas serum copper levels exhibited a positive correlation with disease duration. Conclusion: In conclusion, this study revealed that JIA patients exhibit alterations in serum zinc and copper levels. Serum copper levels showed a positive correlation and serum zinc levels showed a negative correlation with the duration of the disease. 展开更多
关键词 copper Juvenile idiopathic Arthritis ZiNC
下载PDF
Catalyst光学体表监测在左侧乳腺癌ABC-DIBH放射治疗中的应用
16
作者 刘剑锋 钟鹤立 +4 位作者 张光伟 吴何苟 刘婷婷 高勇 李彬 《中国医疗设备》 2024年第1期61-66,共6页
目的 探讨在应用主动呼吸控制(Active Breathing Control,ABC)技术的左侧乳腺癌深吸气屏气(Deep Inspiration Breath Hold,DIBH)放疗中,使用光学体表追踪技术监测屏气的有效性和体位的重复性效果,以保证患者在放疗中吸气方式一致和体位... 目的 探讨在应用主动呼吸控制(Active Breathing Control,ABC)技术的左侧乳腺癌深吸气屏气(Deep Inspiration Breath Hold,DIBH)放疗中,使用光学体表追踪技术监测屏气的有效性和体位的重复性效果,以保证患者在放疗中吸气方式一致和体位不变,提高放射治疗的精确性。方法 选取应用ABC技术放疗的23例左侧乳腺癌患者为研究对象,以Catalyst进行治疗中DIBH体位监测,以分次内锥形束计算机断层扫描(Cone Beam Computed Tomography,CBCT)为参考标准,分别记录二者误差数据,应用Pearson法和Bland-Altman法分别评估两组误差的相关性和两种系统的一致性。将光学体表监测值与CBCT配准误差值之间的差值定义为Catalyst体表监测精度。结果 Catalyst监测在左右(x轴)方向、头脚(y轴)方向和前后(z轴)方向误差分别为(0.08±1.04)、(1.44±2.15)、(0.45±1.69)mm,CBCT配准误差分别为(0.15±1.15)、(1.51±2.28)、(0.44±1.81)mm。x轴方向和z轴方向相关系数r值分别为0.60、0.77,呈强相关;y轴方向r值为0.82,呈极强相关。二者95%CI值在x、y与z轴方向分别为[-2.01,1.86]、[-2.69,2.57]、[-2.32,2.34] mm,Catalyst监测精度在x、y、z轴方向分别为(-0.08±0.99)、(-0.06±1.34)、(0.01±1.19)mm。结论 Catalyst可有效监测使用ABC进行治疗左侧乳腺癌患者的屏气状态,能准确且实时监测患者位置,提高治疗精确度,具有临床应用价值。 展开更多
关键词 catalyst 光学体表追踪 主动呼吸控制 左侧乳腺癌 放射治疗
下载PDF
Design of low-alloying and high-performance solid solution-strengthened copper alloys with element substitution for sustainable development
17
作者 Jiaqiang Li Hongtao Zhang +2 位作者 Jingtai Sun Huadong Fu Jianxin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期826-832,共7页
Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-... Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-speed rail contact wires,electronic component connectors,and other devices.Overcoming the contradiction between low alloying and high performance is an important challenge in the development of solid solution-strengthened copper alloys.Taking the typical solid solution-strengthened alloy Cu-4Zn-1Sn as the research object,we proposed using the element In to replace Zn and Sn to achieve low alloying in this work.Two new alloys,Cu-1.5Zn-1Sn-0.4In and Cu-1.5Zn-0.9Sn-0.6In,were designed and prepared.The total weight percentage content of alloying elements decreased by 43%and 41%,respectively,while the product of ultimate tensile strength(UTS)and electrical conductivity(EC)of the annealed state increased by 14%and 15%.After cold rolling with a 90%reduction,the UTS of the two new alloys reached 576 and 627MPa,respectively,the EC was 44.9%IACS and 42.0%IACS,and the product of UTS and EC(UTS×EC)was 97%and 99%higher than that of the annealed state alloy.The dislocations proliferated greatly in cold-rolled alloys,and the strengthening effects of dislocations reached 332 and 356 MPa,respectively,which is the main reason for the considerable improvement in mechanical properties. 展开更多
关键词 element substitution copper alloy solid solution strengthening microstructure and performance
下载PDF
Efficient Direct Decomposition of NO over La_(0.8)A_(0.2)NiO_(3)(A=K, Ba, Y) Catalysts under Microwave Irradiation
18
作者 王浩 ZHAO Zijian +1 位作者 DUAN Xinghui ZHOU Shijia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期17-23,共7页
La_(0.8)A_(0.2)NiO_(3) (A=K,Ba,Y) catalysts supported on the microwave-absorbing ceramic heating carrier were prepared by the sol-gel method.The crystalline phase and the catalytic activity of the La_(0.8)A_(0.2)NiO_(... La_(0.8)A_(0.2)NiO_(3) (A=K,Ba,Y) catalysts supported on the microwave-absorbing ceramic heating carrier were prepared by the sol-gel method.The crystalline phase and the catalytic activity of the La_(0.8)A_(0.2)NiO_(3)catalysts were characterized by XRD and H_(2) temperature-programmed reduction (TPR).The effects of reaction temperature,oxygen concentration,and gas flow rate on the direct decomposition of nitric oxide over the synthesized catalysts were studied under microwave irradiation (2.45 GHz).The XRD results indicated that the La_(0.8)A_(0.2)NiO_(3) catalysts formed an ABO_(3) perovskite structure,and the H_(2)-TPR results revealed that the relative reducibility of the catalysts increased in the order of La_(0.8)K_(0.2)NiO_(3)>La_(0.8)Ba_(0.2)NiO_(3)>La_(0.8)Y_(0.2)Ni O_(3).Under microwave irradiation,the highest NO conversion amounted to 98.9%,which was obtained with the La_(0.8)K_(0.2)NiO_(3) catalyst at 400℃.The oxygen concentration did not inhibit the NO decomposition on the La_(0.8)A_(0.2)NiO_(3) catalysts,thus the N_(2) selectivity exceeded 99.8%under excess oxygen at 550℃.The NOconversion of the La_(0.8)A_(0.2)NiO_(3) catalysts decreased linearly with the increase in the gas flow rate. 展开更多
关键词 microwave catalysis direct decomposition of NO microwave-absorbing heating ceramics perovskite catalyst
下载PDF
100 W-class green hydrogen production from ammonia at a dual-layer electrode containing a Pt-Ir catalyst for an alkaline electrolytic process
19
作者 Donghyun Yoon Sunki Chung +2 位作者 Minjun Choi Eunhyeok Yang Jaeyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期352-360,I0009,共10页
Ammonia allows storage and transport of hydrogen over long distances and is an attractive potential hydrogen carrier.Electrochemical decomposition has recently been used for the conversion of ammonia to hydrogen and i... Ammonia allows storage and transport of hydrogen over long distances and is an attractive potential hydrogen carrier.Electrochemical decomposition has recently been used for the conversion of ammonia to hydrogen and is regarded as a future technology for production of CO_(2)-free pure hydrogen.Herein,a heterostructural Pt-Ir dual-layer electrode is developed and shown to achieve successful long-term operation in an ammonia electrolyzer with an anion exchange membrane(AEM).This electrolyzer consisted of eight membra ne electrode assemblies(MEAs)with a total geometric area of 200 cm~2 on the anode side,which resulted in a hydrogen production rate of 25 L h~(-1).We observed the degradation in MEA performance attributed to changes in the anode catalyst layer during hydrogen production via ammonia electrolysis.Furthermore,we demonstrated the relationship between the ammonia oxidation reaction(AOR)and the oxygen evolution reaction(OER). 展开更多
关键词 Ammonia oxidation Dual-layer catalyst Green hydrogen Electrolytic process Oxygen evolution reaction
下载PDF
Enhanced stability of nitrogen-doped carbon-supported palladium catalyst for oxidative carbonylation of phenol
20
作者 Xiaojing Liu Ruohan Zhao +4 位作者 Hao Zhao Zhimiao Wang Fang Li Wei Xue Yanji Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期19-28,共10页
Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticle... Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts. 展开更多
关键词 Supported Pd catalyst N-doped carbon Amphiphilic triblock copolymer Pyridinic nitrogen STABiLiTY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部