期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
IMPROVING THE MECHANICAL PROPERTIES OF COPPER ALLOYS BY THERMO-MECHANICAL PROCESSING 被引量:5
1
作者 M.C.Somani L.P.Karjalainen 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第2期111-117,共7页
Systematic physical simulation of thermo-mechanical processing routes has been ap-plied on a Gleeble 1500 simulator to four copper alloys (mass %) Cu-0.57Co-0.32Si,Cu-0.55Cr-0.065P, Cu-0.22Zr-0.035Si and Cu-1.01Ni-0.4... Systematic physical simulation of thermo-mechanical processing routes has been ap-plied on a Gleeble 1500 simulator to four copper alloys (mass %) Cu-0.57Co-0.32Si,Cu-0.55Cr-0.065P, Cu-0.22Zr-0.035Si and Cu-1.01Ni-0.43Si aimed at clarifying theinfluences of processing conditions on their final properties, strength and electricalconductivity. Flow curves were determined over wide temperature and strain rateranges. Hardness was used as a measure of the strength level achieved. High hard-ness was obtained as using equal amounts (strains 0.5) of cold deformation beforeand after the precipitation annealing stage. The maximum values achieved for theCu-Co-Si, Cu-Cr-P, Cu-Zr-Si and Cu-Ni-Si alloys were 190, 165, 178 and 193 HV5,respectively. A thermo-mechanical schedule involving the hot deformation-ageing-colddeformation stages showed even better results for the Cu-Zr-Si alloy. Consequently,the processing routes were designed based on simulation test results and wires of 5 and2mm in diameters have been successfully processed in the industrial scale. 展开更多
关键词 copper allys thermo-mechanical processing ageing STRENGTH flow stress HARDNESS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部