Chicken manure with similar content of copper and zinc was changes of organic carbon and humus substance complexed chosen to conduct a composting experiment to investigate the copper (HS-Cu) and zinc (HS-Zn), whic...Chicken manure with similar content of copper and zinc was changes of organic carbon and humus substance complexed chosen to conduct a composting experiment to investigate the copper (HS-Cu) and zinc (HS-Zn), which were extracted by water (H2O), sodium hydroxide (NaOH), and sodium pyrophate-NaOH mixture (Na4P2O7-NaOH), sequentially. Distributions of copper and zinc in fulvic acids (FA) and humic acids (HA) in the three extracts were studied. During manure composting, the concentrations of copper and zinc increased from about 500 mg kg^-1 in the raw material to 1 100 mg kg^-1 in the final products. HS-Cu in H2O, NaOH, and Na4P2O7-NaOH extracts occupied 6.7, 26.7, and 19% averagely of total copper and HS-Zn represented 2.7, 13.7, and 17% averagely of total zinc in compost, respectively. In water extracts, both HA and FA mainly complexed with Cu and the mole ratio of Cu to Zn was 2.8 in HA fractions and was 2.6 in FA fractions, respectively. HA mainly complexed with copper, so that the ratios of HA-Cu to HA-Zn averaged 3.4 in NaOH extracts. FA had a similar potential to complex with copper and zinc, so that the ratio of FA-Cu to FA-Zn was close to 1. In Na4P2O7-NaOH extracts, HA or FA had a similar potential to complex with copper and zinc. The ratio of HS-Cu to HS-Zn was close to 1. With manure composting, Na4P2O7-NaOH extractable HS-Zn increased to a level as high as HS-Cu. This indicated that more and more stable complexes of HS-Zn were formed in the late decomposition period. The competition between copper and zinc to be complexed with humic substance became weaker and weaker with the decomposition process.展开更多
基金the National Natural Science Foundation of China (39800093)University Students Innovative Project of Ministry of Education of ChinaYouth Plan of Northwest A & F University
文摘Chicken manure with similar content of copper and zinc was changes of organic carbon and humus substance complexed chosen to conduct a composting experiment to investigate the copper (HS-Cu) and zinc (HS-Zn), which were extracted by water (H2O), sodium hydroxide (NaOH), and sodium pyrophate-NaOH mixture (Na4P2O7-NaOH), sequentially. Distributions of copper and zinc in fulvic acids (FA) and humic acids (HA) in the three extracts were studied. During manure composting, the concentrations of copper and zinc increased from about 500 mg kg^-1 in the raw material to 1 100 mg kg^-1 in the final products. HS-Cu in H2O, NaOH, and Na4P2O7-NaOH extracts occupied 6.7, 26.7, and 19% averagely of total copper and HS-Zn represented 2.7, 13.7, and 17% averagely of total zinc in compost, respectively. In water extracts, both HA and FA mainly complexed with Cu and the mole ratio of Cu to Zn was 2.8 in HA fractions and was 2.6 in FA fractions, respectively. HA mainly complexed with copper, so that the ratios of HA-Cu to HA-Zn averaged 3.4 in NaOH extracts. FA had a similar potential to complex with copper and zinc, so that the ratio of FA-Cu to FA-Zn was close to 1. In Na4P2O7-NaOH extracts, HA or FA had a similar potential to complex with copper and zinc. The ratio of HS-Cu to HS-Zn was close to 1. With manure composting, Na4P2O7-NaOH extractable HS-Zn increased to a level as high as HS-Cu. This indicated that more and more stable complexes of HS-Zn were formed in the late decomposition period. The competition between copper and zinc to be complexed with humic substance became weaker and weaker with the decomposition process.