The palladium-salen complex palladium(Ⅱ) N,N'-bis{[5-(triphenylphosphonium)-methyl]salicylidene}-1,2-ethanediamine chloride was found to be a highly active catalyst for the copper- and solvent-free coupling react...The palladium-salen complex palladium(Ⅱ) N,N'-bis{[5-(triphenylphosphonium)-methyl]salicylidene}-1,2-ethanediamine chloride was found to be a highly active catalyst for the copper- and solvent-free coupling reaction of terminal alkynes with different acyl chlorides in the presence of triethylamine as base,giving excellent ynones under aerobic conditions.展开更多
Copper-catalyzed synthesis of N-aryl anthranilic acid derivatives using effective amination of 2-chloro and 2-bromobenzoic acid under microwave irradiation is reported. Some of the advantages of this method are high c...Copper-catalyzed synthesis of N-aryl anthranilic acid derivatives using effective amination of 2-chloro and 2-bromobenzoic acid under microwave irradiation is reported. Some of the advantages of this method are high chemoselectivity, short reaction times, ease of work up procedure and elimination of the need for acid protection. 2009 Published by Elsevier B.V. on behalf of Chinese Chemical Society.展开更多
To determine the environmental free metal ion activity was a recent hot issue. A method to measure low-level free cupric ion activity in soil solution extracted with 0.01 mol/L KNO3 was developed by using cupric ion-s...To determine the environmental free metal ion activity was a recent hot issue. A method to measure low-level free cupric ion activity in soil solution extracted with 0.01 mol/L KNO3 was developed by using cupric ion-selective electrode (ISE) and calibrating with Cu-buffer solution. Three copper buffers including iminodiacetic acid (IDA), ethylenediamine (EN), and glycine (Gly) were compared for calibrating the Cu-ISE curves in the range of free cupric ions (pCu^2+) 7-13. The Cu-EN buffer showed the best electrode response and thus was applied as the calibration buffer. The pCu^2+ of 39 contaminated agricultural soils around a copper mine was measured, ranging from 5.03 to 9.20. Most Cu in the soil solutions was found to be complexed with dissolved soil organic matters, averaging 98.1%. The proportion of free Cu^2+ ions in the soil solutions decreased with the increasing of solution pH. Soluble Cu and free Cu^2+ ions concentrations were analyzed by multiple linear regressions to evaluate the effects of soil properties on metal levels and speciation. The results showed that soil solution pH was the most significant factor influencing pCu^2+ (with R^2 value of 0.76), while not important for the soluble Cu concentration.展开更多
It was reported that hemispheric corrosion occurred in copper tubes in an acetic acid environment. When hemispheric corrosion occurred, corrosion could easily progress if water then flowed into the copper pipe, and co...It was reported that hemispheric corrosion occurred in copper tubes in an acetic acid environment. When hemispheric corrosion occurred, corrosion could easily progress if water then flowed into the copper pipe, and countermeasures were needed. Therefore, we studied the copper corrosion caused by acetic acid. The present work investigated the relationship between the corrosion form of copper and acetic acid concentration using phosphorous-deoxidized copper, and reported that hemispherical corrosion was observed at acetic acid concentrations of 0.01 to 1 vol.% (0.002 to 0.2 mol·L<sup>-1</sup>) in the immersion test. In this study, the effects of acetic acid and phosphate on copper corrosion were examined using oxygen-free copper in immersion tests. The results suggested that different concentrations of phosphate in acetic acid solutions and the presence or absence of acetic acid and phosphate affected the corrosion of copper, resulting in different corrosion forms and corrosion progress.展开更多
The basic principle of friction welding is intermetallic bonding at the stage of super plasticity attained with self-generating heat due to friction and finishing at upset pressure. Now the dissimilar metal joints are...The basic principle of friction welding is intermetallic bonding at the stage of super plasticity attained with self-generating heat due to friction and finishing at upset pressure. Now the dissimilar metal joints are especially popular in defense, aerospace, automobile, bio-medical,refinery and nuclear engineerings. In friction welding, some special alloys with dual phase are not joined successfully due to poor bonding strength. The alloy surfaces after bonding also have metallurgical changes in the line of interfacing. The reported research work in this area is scanty. Although the sound weld zone of direct bonding between Tie6Ale4 V and SS304 L was obtained though many trials, the joint was not successful. In this paper, the friction welding characteristics between Tie6Ale4 V and SS304 L into which pure oxygen free copper(OFC) was introduced as interlayer were investigated. Boxe Behnken design was used to minimize the number of experiments to be performed. The weld joint was analyzed for its mechanical strength. The highest tensile strength between Tie6Ale4 V and SS304 L between which pure copper was used as insert metal was acquired. Micro-structural analysis and elemental analysis were carried out by EDS, and the formation of intermetallic compound at the interface was identified by XRD analysis.展开更多
Cyclic voltammetry, open circuit potential— time curve after potentiostatic electrolysis and potential step chronoamperometry were used to investigate the electrochemical formation processes of holmium-copper alloys ...Cyclic voltammetry, open circuit potential— time curve after potentiostatic electrolysis and potential step chronoamperometry were used to investigate the electrochemical formation processes of holmium-copper alloys on copper cathode in molten HoCl3-KCl. Intermetallic compounds HoCu5, HoCu4, HoCu2 and HoCu are formed in sequence and then the metallic Ho is deposited when Ho3+ is reduced on copper electrode in molten KCl-HoCl3 at 1066 K. The first charge-transfer reaction is reversible. The structure of holmium-copper alloy film deposited on copper electrode by potentiostatic electrolysis was characterized by X-ray diffraction. The standard free energies of formation for the intermetallic compounds HoCu5, HoCu4, HoCu2 and HoCu are - 95.5, - 92.6, - 73.8 and - 44.0 kJ/mol, respectively. The diffusion coefficient and diffusion activation energy of Ho atom in the alloy are estimated to be 10-10- 10-11 cm2/s and 75.35 kJ/mol, respectively, from the chronoamperometry data.展开更多
Carbon-supported copper catalyst was prepared for the first time in one-step with copper nitrate and corn stalk through calcination under different temperatures. Uniformly dispersed nanoparticles were obtained and wer...Carbon-supported copper catalyst was prepared for the first time in one-step with copper nitrate and corn stalk through calcination under different temperatures. Uniformly dispersed nanoparticles were obtained and were identified to be Cu(0) and Cu(Ⅰ) in XRD patterns. Excellent catalytic activity and selectivity were achieved in the N-arylation of pyrazole under ligand and protection gas free conditions. About90.4% of product yield was achieved with only 0.5 mol% of copper catalyst(Cu-C-300), which was considerably more efficient than previous reports. XPS results suggested that the N-arylation of pyrazole activity was closely related to the surface Cu(Ⅰ) species.展开更多
[目的]烧结钕铁硼(Nd Fe B)的电镀前处理技术还不够成熟,开发适宜的前处理工艺极其重要。[方法]在电镀铜前,先采用以羟基乙叉二膦酸(HEDP)为主配位剂的溶液对NdFeB进行预浸。预浸液组成和工艺条件为:HEDP 20~30 g/L,氢氧化钾20~25 g/L,...[目的]烧结钕铁硼(Nd Fe B)的电镀前处理技术还不够成熟,开发适宜的前处理工艺极其重要。[方法]在电镀铜前,先采用以羟基乙叉二膦酸(HEDP)为主配位剂的溶液对NdFeB进行预浸。预浸液组成和工艺条件为:HEDP 20~30 g/L,氢氧化钾20~25 g/L,碳酸钾10~15 g/L,葡萄糖酸钾1~2 g/L,乙酸0.5~1.0 g/L,室温,时间60 s。通过电化学测试对比了Nd Fe B基体有无预浸处理时,铜在其表面的电沉积行为,并通过金相显微镜、扫描电镜、能谱仪和荧光光谱测厚仪,对比了有无预浸处理的Nd FeB基体表面Cu镀层的宏观和微观表面形貌、截面形貌、元素分布及厚度分布均匀性。[结果]Nd Fe B基体预浸后表面被活化,静态电位降低。预浸液能够填满基体表面的孔隙并形成一层水薄膜,在后续电镀铜时保护基体不被腐蚀。预浸处理的Nd Fe B基体表面所得Cu镀层均匀、致密,不易氧化发黑,结合力和耐蚀性较好。[结论]对烧结钕铁硼进行预浸处理,能够保证其在后续电镀铜过程不被腐蚀,提高Cu镀层的综合性能。展开更多
[目的]烧结钕铁硼(NdFeB)磁体在声电磁性器件中的应用日益广泛,但其耐蚀性较差,一般需要进行有效的表面处理以提高其耐腐蚀性能和使用寿命。[方法]采用以羟基乙叉二膦酸(HEDP)为主配位剂的碱性无氰体系对烧结Nd Fe B磁体表面电镀铜。研...[目的]烧结钕铁硼(NdFeB)磁体在声电磁性器件中的应用日益广泛,但其耐蚀性较差,一般需要进行有效的表面处理以提高其耐腐蚀性能和使用寿命。[方法]采用以羟基乙叉二膦酸(HEDP)为主配位剂的碱性无氰体系对烧结Nd Fe B磁体表面电镀铜。研究了HEDP质量浓度对Cu镀层外观、表面粗糙度、厚度、结合力和耐蚀性的影响。[结果]HEDP的质量浓度为100~150 g/L时所得Cu镀层表面较光亮,厚度约为1.55μm,表面粗糙度较低,结合力和耐蚀性最佳。[结论]适宜的HEDP浓度有利于获得综合性能较好的Cu镀层。展开更多
基金the Research Council of Shahrood University of Technology for the support of this work
文摘The palladium-salen complex palladium(Ⅱ) N,N'-bis{[5-(triphenylphosphonium)-methyl]salicylidene}-1,2-ethanediamine chloride was found to be a highly active catalyst for the copper- and solvent-free coupling reaction of terminal alkynes with different acyl chlorides in the presence of triethylamine as base,giving excellent ynones under aerobic conditions.
基金the financial support of this work by the Research Council of Mazandaran University.
文摘Copper-catalyzed synthesis of N-aryl anthranilic acid derivatives using effective amination of 2-chloro and 2-bromobenzoic acid under microwave irradiation is reported. Some of the advantages of this method are high chemoselectivity, short reaction times, ease of work up procedure and elimination of the need for acid protection. 2009 Published by Elsevier B.V. on behalf of Chinese Chemical Society.
基金The National Key Basic Research Program (973) of China (No. 2002CB410808) and CAS Research Program on Soil Biosystems andAgro-Product Safety (No. CXTD-Z2005-4-1)
文摘To determine the environmental free metal ion activity was a recent hot issue. A method to measure low-level free cupric ion activity in soil solution extracted with 0.01 mol/L KNO3 was developed by using cupric ion-selective electrode (ISE) and calibrating with Cu-buffer solution. Three copper buffers including iminodiacetic acid (IDA), ethylenediamine (EN), and glycine (Gly) were compared for calibrating the Cu-ISE curves in the range of free cupric ions (pCu^2+) 7-13. The Cu-EN buffer showed the best electrode response and thus was applied as the calibration buffer. The pCu^2+ of 39 contaminated agricultural soils around a copper mine was measured, ranging from 5.03 to 9.20. Most Cu in the soil solutions was found to be complexed with dissolved soil organic matters, averaging 98.1%. The proportion of free Cu^2+ ions in the soil solutions decreased with the increasing of solution pH. Soluble Cu and free Cu^2+ ions concentrations were analyzed by multiple linear regressions to evaluate the effects of soil properties on metal levels and speciation. The results showed that soil solution pH was the most significant factor influencing pCu^2+ (with R^2 value of 0.76), while not important for the soluble Cu concentration.
文摘It was reported that hemispheric corrosion occurred in copper tubes in an acetic acid environment. When hemispheric corrosion occurred, corrosion could easily progress if water then flowed into the copper pipe, and countermeasures were needed. Therefore, we studied the copper corrosion caused by acetic acid. The present work investigated the relationship between the corrosion form of copper and acetic acid concentration using phosphorous-deoxidized copper, and reported that hemispherical corrosion was observed at acetic acid concentrations of 0.01 to 1 vol.% (0.002 to 0.2 mol·L<sup>-1</sup>) in the immersion test. In this study, the effects of acetic acid and phosphate on copper corrosion were examined using oxygen-free copper in immersion tests. The results suggested that different concentrations of phosphate in acetic acid solutions and the presence or absence of acetic acid and phosphate affected the corrosion of copper, resulting in different corrosion forms and corrosion progress.
文摘The basic principle of friction welding is intermetallic bonding at the stage of super plasticity attained with self-generating heat due to friction and finishing at upset pressure. Now the dissimilar metal joints are especially popular in defense, aerospace, automobile, bio-medical,refinery and nuclear engineerings. In friction welding, some special alloys with dual phase are not joined successfully due to poor bonding strength. The alloy surfaces after bonding also have metallurgical changes in the line of interfacing. The reported research work in this area is scanty. Although the sound weld zone of direct bonding between Tie6Ale4 V and SS304 L was obtained though many trials, the joint was not successful. In this paper, the friction welding characteristics between Tie6Ale4 V and SS304 L into which pure oxygen free copper(OFC) was introduced as interlayer were investigated. Boxe Behnken design was used to minimize the number of experiments to be performed. The weld joint was analyzed for its mechanical strength. The highest tensile strength between Tie6Ale4 V and SS304 L between which pure copper was used as insert metal was acquired. Micro-structural analysis and elemental analysis were carried out by EDS, and the formation of intermetallic compound at the interface was identified by XRD analysis.
文摘Cyclic voltammetry, open circuit potential— time curve after potentiostatic electrolysis and potential step chronoamperometry were used to investigate the electrochemical formation processes of holmium-copper alloys on copper cathode in molten HoCl3-KCl. Intermetallic compounds HoCu5, HoCu4, HoCu2 and HoCu are formed in sequence and then the metallic Ho is deposited when Ho3+ is reduced on copper electrode in molten KCl-HoCl3 at 1066 K. The first charge-transfer reaction is reversible. The structure of holmium-copper alloy film deposited on copper electrode by potentiostatic electrolysis was characterized by X-ray diffraction. The standard free energies of formation for the intermetallic compounds HoCu5, HoCu4, HoCu2 and HoCu are - 95.5, - 92.6, - 73.8 and - 44.0 kJ/mol, respectively. The diffusion coefficient and diffusion activation energy of Ho atom in the alloy are estimated to be 10-10- 10-11 cm2/s and 75.35 kJ/mol, respectively, from the chronoamperometry data.
基金supported by the Natural Science Foundation of China(91645115 and 21473003)High-level talents funding project of Hebei(CL201601,E2016100015)science technology research and development guidance program project of Baoding City(No.16ZF027)
文摘Carbon-supported copper catalyst was prepared for the first time in one-step with copper nitrate and corn stalk through calcination under different temperatures. Uniformly dispersed nanoparticles were obtained and were identified to be Cu(0) and Cu(Ⅰ) in XRD patterns. Excellent catalytic activity and selectivity were achieved in the N-arylation of pyrazole under ligand and protection gas free conditions. About90.4% of product yield was achieved with only 0.5 mol% of copper catalyst(Cu-C-300), which was considerably more efficient than previous reports. XPS results suggested that the N-arylation of pyrazole activity was closely related to the surface Cu(Ⅰ) species.
文摘[目的]烧结钕铁硼(Nd Fe B)的电镀前处理技术还不够成熟,开发适宜的前处理工艺极其重要。[方法]在电镀铜前,先采用以羟基乙叉二膦酸(HEDP)为主配位剂的溶液对NdFeB进行预浸。预浸液组成和工艺条件为:HEDP 20~30 g/L,氢氧化钾20~25 g/L,碳酸钾10~15 g/L,葡萄糖酸钾1~2 g/L,乙酸0.5~1.0 g/L,室温,时间60 s。通过电化学测试对比了Nd Fe B基体有无预浸处理时,铜在其表面的电沉积行为,并通过金相显微镜、扫描电镜、能谱仪和荧光光谱测厚仪,对比了有无预浸处理的Nd FeB基体表面Cu镀层的宏观和微观表面形貌、截面形貌、元素分布及厚度分布均匀性。[结果]Nd Fe B基体预浸后表面被活化,静态电位降低。预浸液能够填满基体表面的孔隙并形成一层水薄膜,在后续电镀铜时保护基体不被腐蚀。预浸处理的Nd Fe B基体表面所得Cu镀层均匀、致密,不易氧化发黑,结合力和耐蚀性较好。[结论]对烧结钕铁硼进行预浸处理,能够保证其在后续电镀铜过程不被腐蚀,提高Cu镀层的综合性能。
文摘[目的]烧结钕铁硼(NdFeB)磁体在声电磁性器件中的应用日益广泛,但其耐蚀性较差,一般需要进行有效的表面处理以提高其耐腐蚀性能和使用寿命。[方法]采用以羟基乙叉二膦酸(HEDP)为主配位剂的碱性无氰体系对烧结Nd Fe B磁体表面电镀铜。研究了HEDP质量浓度对Cu镀层外观、表面粗糙度、厚度、结合力和耐蚀性的影响。[结果]HEDP的质量浓度为100~150 g/L时所得Cu镀层表面较光亮,厚度约为1.55μm,表面粗糙度较低,结合力和耐蚀性最佳。[结论]适宜的HEDP浓度有利于获得综合性能较好的Cu镀层。