Copper intercalated birnessite MnO_(2)(δ-MnO_(2))with weak crystallinity and high specific surface area(421 m^(2)/g)was synthesized by a one-pot redox method and investigated for low-temperature CO oxidation.The mola...Copper intercalated birnessite MnO_(2)(δ-MnO_(2))with weak crystallinity and high specific surface area(421 m^(2)/g)was synthesized by a one-pot redox method and investigated for low-temperature CO oxidation.The molar ratio of Cu/Mn was as high as 0.37,which greatly weakened the Mn-O bond and created a lot of low-temperature active oxygen species.In situ DRIFTS revealed strong bonding of copper ions with CO.As-synthesized MnO_(2)-150Cu achieved 100%conversion of 250 ppm CO in normal air(3.1 ppm H_(2)O)even at−10°C under the weight-hourly space velocity(WHSV)of 150 L/(g·h).In addition,it showed high oxygen storage capacity to oxidize CO in inert atmosphere.Though the concurrent moisture in air significantly inhibited CO adsorption and its conversion at ambient temperature,MnO_(2)-150Cu could stably convert CO in 1.3%moisture air at 70°C owing to its great low-temperature activity and reduced competitive adsorption of water with increased temperature.This study discovers the excellent low-temperature activity of weakly crystallized δ-MnO_(2) induced by high content intercalated copper ions.展开更多
A method to decide near optimal settings of the process parameters in friction welding was proposed.The success of the friction welding process is based on various input parameters like friction pressure,friction time...A method to decide near optimal settings of the process parameters in friction welding was proposed.The success of the friction welding process is based on various input parameters like friction pressure,friction time,upset pressure and upset time and output parameters like tensile strength,hardness and material loss.Ti-6Al-4V and SS304L(SS) materials were joined by friction welding process using interlayer techniques.The Box-Behnken design and response surface methodology(RSM) were applied to deciding the number of experiments to be performed and identify the optimum process parameters for obtaining better joint strength.The results were highly encouraging.Join strength of 523 MPa was obtained at a friction pressure of 12 N/mm^2,upset pressure of40 N/mm^2,friction time of 1.2 s and upset time of 7 s.展开更多
基金financially supported by the National Natural Science Foundation of China(No.22076094)the Science&Technology Innovation Program of Shunde of Foshan City(China)(No.2130218002526)and the Tsinghua-Foshan Innovation Special Fund(China)(No.2021THFS0503).
文摘Copper intercalated birnessite MnO_(2)(δ-MnO_(2))with weak crystallinity and high specific surface area(421 m^(2)/g)was synthesized by a one-pot redox method and investigated for low-temperature CO oxidation.The molar ratio of Cu/Mn was as high as 0.37,which greatly weakened the Mn-O bond and created a lot of low-temperature active oxygen species.In situ DRIFTS revealed strong bonding of copper ions with CO.As-synthesized MnO_(2)-150Cu achieved 100%conversion of 250 ppm CO in normal air(3.1 ppm H_(2)O)even at−10°C under the weight-hourly space velocity(WHSV)of 150 L/(g·h).In addition,it showed high oxygen storage capacity to oxidize CO in inert atmosphere.Though the concurrent moisture in air significantly inhibited CO adsorption and its conversion at ambient temperature,MnO_(2)-150Cu could stably convert CO in 1.3%moisture air at 70°C owing to its great low-temperature activity and reduced competitive adsorption of water with increased temperature.This study discovers the excellent low-temperature activity of weakly crystallized δ-MnO_(2) induced by high content intercalated copper ions.
文摘A method to decide near optimal settings of the process parameters in friction welding was proposed.The success of the friction welding process is based on various input parameters like friction pressure,friction time,upset pressure and upset time and output parameters like tensile strength,hardness and material loss.Ti-6Al-4V and SS304L(SS) materials were joined by friction welding process using interlayer techniques.The Box-Behnken design and response surface methodology(RSM) were applied to deciding the number of experiments to be performed and identify the optimum process parameters for obtaining better joint strength.The results were highly encouraging.Join strength of 523 MPa was obtained at a friction pressure of 12 N/mm^2,upset pressure of40 N/mm^2,friction time of 1.2 s and upset time of 7 s.