The combined reagents of sodium N-oleoylsarcosinate(SNOS)with metal ions(Ca(Ⅱ),Mg(Ⅱ),Cu(Ⅱ),and Pb(Ⅱ))was employed to facilitate the separation of lepidolite from feldspar.The synergistic interaction mechanism of t...The combined reagents of sodium N-oleoylsarcosinate(SNOS)with metal ions(Ca(Ⅱ),Mg(Ⅱ),Cu(Ⅱ),and Pb(Ⅱ))was employed to facilitate the separation of lepidolite from feldspar.The synergistic interaction mechanism of this combined reagent was systematically investigated via contact angle measurements,AFM,FTIR,species distribution calculations,and DFT calculations.The results suggested that Ca(Ⅱ)exhibited the best selectivity for activating lepidolite flotation.SNOS was chemically adsorbed on the Ca(Ⅱ)-activated lepidolite surface with an adsorption energy of−1248.91 kJ/mol while a lower adsorption energy of−598.84 kJ/mol of SNOS on Ca(Ⅱ)-activated feldspar was calculated.Therefore,this combination of SNOS and Ca(Ⅱ)is a promising reagent scheme for the efficient recovery of lithium from aluminosilicate ore.展开更多
Copper possesses very strong chacophile properties,but under the conditions found in meteorites,its behavior is like that of siderophile elements.The Suizhou meteorite is a highly shocked L6 chondrite.Troilite and tae...Copper possesses very strong chacophile properties,but under the conditions found in meteorites,its behavior is like that of siderophile elements.The Suizhou meteorite is a highly shocked L6 chondrite.Troilite and taenite are considered the main primary carrier of copper in this meteorite,and the post-shock thermal episode is considered the main reason that elemental Cu migrates from its original host phase and forms metallic grains.The Suizhou meteorite contains a few very thin shock melt veins.The occurrence and behavior of metallic copper in this meteorite were studied by optical microscopic examination,electron microprobe analyses,and high-resolution X-ray elemental intensity mapping.Our results show that metallic copper is abundant in the Suizhou chondritic rock.Metallic copper grains adjacent to small troilite grains inside FeNi metal are the most common occurrence,and those at the FeNi metal–troilite interface are the second most common case.The metallic copper grains occurring at the interface of FeNi metal/troililte and silicate are rather rare.Metallic copper grains are not observed within the Suizhou shock veins,Instead,Cu in elemental form is transferred through shock metamorphism into FeNi metal+troilite intergrowths.Four diff erent occurrence types of Cu in the FeNi metal+troilite intergrowths have been identifi ed:the concentrations of Cu in the FeNi+FeS intergrowths for four occurrence types are rather close,we estimate it might be lower than 1 wt%.展开更多
The separation of halogens and recovery of heavy metals from secondary copper smelting(SCS)dust using a sulfating roasting−water leaching process were investigated.The thermodynamic analysis results confirm the feasib...The separation of halogens and recovery of heavy metals from secondary copper smelting(SCS)dust using a sulfating roasting−water leaching process were investigated.The thermodynamic analysis results confirm the feasibility of the phase transformation to metal sulfates and to gaseous HF and HCl.Under the sulfating roasting conditions of the roasting temperature of 250℃ and the sulfuric acid excess coefficient of 1.8,over 74 wt.%of F and 98 wt.%of Cl were volatilized into flue gas.Approximately 98.6 wt.%of Zn and 96.5 wt.%of Cu in the roasting product were dissolved into the leaching solution after the water leaching process,while the leaching efficiencies of Pb and Sn were only 0.12%and 0.22%,respectively.The mechanism studies indicate the pivotal effect of roasting temperature on the sulphation reactions from various metal species to metal sulfates and the salting out reactions from various metal halides to gaseous hydrogen halides.展开更多
The practical application of lithium(Li)metal anodes in high-capacity batteries is impeded by the formation of hazardous Li dendrites.To address this challenge,this research presents a novel methodology that combines ...The practical application of lithium(Li)metal anodes in high-capacity batteries is impeded by the formation of hazardous Li dendrites.To address this challenge,this research presents a novel methodology that combines laser ablation and heat treatment to precisely induce controlled grain growth within laser-structured grooves on copper(Cu)current collectors.Specifically,this approach enhances the prevalence of Cu(100)facets within the grooves,effectively lowering the overpotential for Li nucleation and promoting preferential Li deposition.Unlike approaches that modify the entire surface of collectors,our work focuses on selectively enhancing lithiophilicity within the grooves to mitigate the formation of Li dendrites and exhibit exceptional performance metrics.The half-cell with these collectors maintains a remarkable Coulombic efficiency of 97.42%over 350 cycles at 1 mA cm^(−2).The symmetric cell can cycle stably for 1600 h at 0.5 mA cm^(−2).Furthermore,when integrated with LiFePO4 cathodes,the full-cell configuration demonstrates outstanding capacity retention of 92.39%after 400 cycles at a 1C discharge rate.This study introduces a novel technique for fabricating selective lithiophilic three-dimensional(3D)Cu current collectors,thereby enhancing the performance of Li metal batteries.The insights gained from this approach hold promise for enhancing the performance of all laser-processed 3D Cu current collectors by enabling precise lithiophilic modifications within complex structures.展开更多
Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonethel...Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.展开更多
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart...In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.展开更多
With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diame...With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode,which are essential for high-voltage batteries.Meanwhile,homogeneous electrolyte is difficult to achieve bi-or multi-functions to meet different requirements of electrodes.In comparison,the asymmetric electrolyte with bi-or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte.Consequently,the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan.In this review,we comprehensively divide asymmetric electrolytes into three categories:decoupled liquid-state electrolytes,bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes.The design principles,reaction mechanism and mutual compatibility are also studied,respectively.Finally,we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density,and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics.展开更多
Inhomogeneous lithium-ion(Li^(+))deposition is one of the most crucial problems,which severely deteriorates the performance of solid-state lithium metal batteries(LMBs).Herein,we discovered that covalent organic frame...Inhomogeneous lithium-ion(Li^(+))deposition is one of the most crucial problems,which severely deteriorates the performance of solid-state lithium metal batteries(LMBs).Herein,we discovered that covalent organic framework(COF-1)with periodically arranged boron-oxygen dipole lithiophilic sites could directionally guide Li^(+)even deposition in asymmetric solid polymer electrolytes.This in situ prepared 3D cross-linked network Poly(ACMO-MBA)hybrid electrolyte simultaneously delivers outstanding ionic conductivity(1.02×10^(-3)S cm^(-1)at 30°C)and excellent mechanical property(3.5 MPa).The defined nanosized channel in COF-1 selectively conducts Li^(+)increasing Li^(+)transference number to 0.67.Besides,The COF-1 layer and Poly(ACMO-MBA)also participate in forming a boron-rich and nitrogen-rich solid electrolyte interface to further improve the interfacial stability.The Li‖Li symmetric cell exhibits remarkable cyclic stability over 1000 h.The Li‖NCM523 full cell also delivers an outstanding lifespan over 400 cycles.Moreover,the Li‖LiFePO_(4)full cell stably cycles with a capacity retention of 85%after 500 cycles.the Li‖LiFePO_(4)pouch full exhibits excellent safety performance under pierced and cut conditions.This work thereby further broadens and complements the application of COF materials in polymer electrolyte for dendrite-free and high-energy-density solid-state LMBs.展开更多
Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide beating wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and po...Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide beating wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sul- fide-beating wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neu- tralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment (t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sul- fate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.展开更多
This paper mainly concentrated on the feasibility of friction stir welding of dissimilar metal of aluminum alloy to copper (I2) and a preliminary analysis of welding parameters influencing on the microstructures and...This paper mainly concentrated on the feasibility of friction stir welding of dissimilar metal of aluminum alloy to copper (I2) and a preliminary analysis of welding parameters influencing on the microstructures and properties of joint was carried out. The results indicated that the thickness of workpiece played an important role in the welding parameters which could succeed in the friction stir welding of dissimilar metal of copper to aluminum alloy, and the parameters were proved to be a narrow choice. The interfacial region between copper and aluminum in the dissimilar joint was not uniformly mixed, constituted with part of incomplete mixing zone, complete mixing zone, dispersion zone and the most region' s boundary was obvious. Meantime a kind banded structure with inhomogeneous width was formed. The intermetallic compounds generated during friction stir welding in the interfacial region were mainly CugAl4, Al2Cu etc, and their hardness was higher than oihers.展开更多
Metallic ore mining causes heavy metal pollution worldwide.However,the fate of heavy metals in agrosystems with long-term contamination has been poorly studied.Dongchuan District(Yunnan,southwest China),located at the...Metallic ore mining causes heavy metal pollution worldwide.However,the fate of heavy metals in agrosystems with long-term contamination has been poorly studied.Dongchuan District(Yunnan,southwest China),located at the middle reaches of the Xiaojiang River,is a well-known 2000-year-old copper mining site.In this work,a survey on soil heavy metal contents was conducted using a handheld X-ray fluorescence instrument to understand the general contamination of heavy metals in the Xiaojiang River Basin.Furthermore,river water,soil,and rice samples at six sites along the fluvial/alluvial fans of the river were collected and analyzed to implement an environmental assessment and an evaluation of irrigated agrosystem.V,Zn,and Cu soil levels(1724,1047,and 696mg·kg-1,respectively)far exceeded background levels.The geo-accumulation indexes(Igeo)showed that cultivated soils near the mining sites were polluted by Cd and Cu,followed by Zn,V,Pb,Cr,Ni,and U.The pollution index(Pi)indicated that rice in the area was heavily polluted with Pb,Cr,Cd,Ni,Zn,and Cu.The difference in orders of metal concentrations between the soil and rice heavy metal contamination was related to the proportion of bioavailable heavy metals in the soil.The crop consumption risk assessment showed that the hazard quotient exceeded the safe threshold,indicating a potential carcinogenic risk to consumers.The Nemerow integrated pollution index and health index indicated that the middle of the river(near the mining area)was the heaviest polluted site.展开更多
Copper (Cu) mine tailings, because of their high content of heavy metals, are usually hostile to plant colonization. A pot experiment was conducted to determine the tolerance of four forage grasses to heavy metals i...Copper (Cu) mine tailings, because of their high content of heavy metals, are usually hostile to plant colonization. A pot experiment was conducted to determine the tolerance of four forage grasses to heavy metals in Cu mine tailings and to examine the variation in the microbial functional diversity of soils from the tailing sites in southern China. All the four grass species survived on Cu mine tailings and Cu mine tailing-soil mixture. However, on pure mine tailings, the growth was minimal, whereas the growth was maximum for the control without mine tailings. The tolerance of grasses to heavy metals followed the sequence: Paspalum notatum 〉 Festuea arundinaeea 〉 Lolium perenne 〉 Cynodon daetylon. The planting of forage grasses enhanced the soil microbial biomass. The Biolog data indicated that the soil microbial metabolic profile values (average well color development, community richness, and Shannon index) of the four forage grasses also followed the sequence: P. notatum 〉 F. arundinaeea 〉 L. perenne 〉 C. daetylon. Thus, P. notatum, under the experimental conditions of this study, may be considered as the preferred plant species for revegetation of Cu mine tailing areas.展开更多
Ny-Ålesund,located in Arctic Svalbard,is one of the most sensitive areas on Earth to global warming.In recent years,accelerated glacier ablation has become remarkable in Ny-Ålesund.Glacial meltwaters dischar...Ny-Ålesund,located in Arctic Svalbard,is one of the most sensitive areas on Earth to global warming.In recent years,accelerated glacier ablation has become remarkable in Ny-Ålesund.Glacial meltwaters discharge a substantial quantity of materials to the ocean,affecting downstream ecosystems and adjacent oceans.In August 2015,various water samples were taken near Ny-Ålesund,including ice marginal meltwater,proglacial meltwater,supraglacial meltwater,englacial meltwater,and groundwater.Trace metals(Al,Cr,Mn,Fe,Co,Cu,Zn,Cd,and Pb),major ions,alkalinity,pH,dissolved oxygen,water temperature and electric conductivity were also measured.Major ions were mainly controlled by chemical weathering intensity and reaction types,while trace metals were influenced by both chemical weathering and physicochemical control upon their mobility.Indeed,we found that Brøggerbreen was dominated by carbonate weathering via carbonation of carbonate,while Austre Lovénbreen and Pedersenbreen were dominated by sulfide oxidation coupled with carbonate dissolution with a doubled silicate weathering.The higher enrichment of trace metals in supraglacial meltwater compared to ice marginal and proglacial meltwater suggested anthropogenic pollution from atmospheric deposition.In ice marginal and proglacial meltwater,principal component analysis indicated that trace metals like Cr,Al,Co,Mn and Cd were correlated to chemical weathering.This implies that under accelerated glacier retreat,glacier-derived chemical components are subjected to future changes in weathering types and intensity.展开更多
Promoting inorganic-rich solid-electrolyte interphase (SEI) formation by constructing anion-rich solvated structures is a promising strategy for improving the long-term cycling of lithium-metal batteries.However,the i...Promoting inorganic-rich solid-electrolyte interphase (SEI) formation by constructing anion-rich solvated structures is a promising strategy for improving the long-term cycling of lithium-metal batteries.However,the increase of anions within the solvated structure inevitably reduces the coordination of Li^(+) with the solvent,which leads to a low lithium diffusion coefficient and a decreased lithium conductivity.Here,high entropy electrolyte is achieved by increasing the molecular diversity in electrolyte.Multiple anions (TFSI^(-),FSI^(-),NO_(3)^(-) and PF_(6)^(-)) presented in entropy electrolyte individually coordinate with Li^(+),creating a diverse and anion-rich solvation structure.The large variety of solvation structures leads to a diversified Li^(+) diffusion barriers in the electrolyte,which results in the increase of channels available for Li^(+) diffusion.Thus,three-dimensional diffusion with high Li^(+) diffusion coefficient occurs in HE electrolytes.Furthermore,the anion-rich solvation structures promote the formation of the inorganic-rich SEI.As a result,over 2000 h of reversible Li plating/stripping with a low overpotential less than 27 mV is achieved in Li||Li cell using electrolyte modified by high-entropy strategy.Besides,the Li||LFP full cell with a negative capacity/positive capacity (N/P) ratio of 4.52 exhibits remarkably enhanced cycling stability,retaining 83.6% of its initial capacity after 150 cycles.This strategy offers a novel approach for accelerating Li^(+) transport kinetics and constructing stable SEI in lithium metal batteries.展开更多
The low reactivity of hemimorphite surfaces hinders the effective action of sulfidizing agents and xanthate,resulting in unsatisfactory flotation performance.To enhance the surface reactivity of hemi-morphite with sul...The low reactivity of hemimorphite surfaces hinders the effective action of sulfidizing agents and xanthate,resulting in unsatisfactory flotation performance.To enhance the surface reactivity of hemi-morphite with sulfidizing agents and xanthate,Cu/Pb binary metal ions were introduced into the sul-fidization flotation system to enhance the sulfidization process and thereby promote hemimorphite flotation.The flotation results demonstrated a remarkable improvement in the hemimorphite flotation recovery when Cu/Pb binary metal ions were added prior to sulfidization.The flotation recovery of hemi-morphite increased from less than 5%to over 80%.After strengthening the sulfidization of hemimorphite with Cu/Pb binary metal ions,the mineral surface formed multicomponent sulfide products composed of zinc,copper,and lead sulfide.The reactivity of the copper-lead sulfide components exceeds that of the zinc sulfide component;thus,the enhancement by Cu/Pb binary metal ions not only increases the content of sulfide products on the hemimorphite surface but also augments their reactivity.Contact angle and adsorption experiments indicated that after enhanced sulfidization with Cu/Pb binary metal ions,the hemimorphite surface adsorbed a greater amount of xanthate,significantly increasing the mineral sur-face hydrophobicity.Consequently,the enhanced sulfidization by Cu/Pb binary metal ions effectively improved the flotation behavior of hemimorphite,presenting an innovative sulfidization system for the flotation recovery of zinc silicate minerals in zinc oxide ores.展开更多
In this paper,high-energy Ne ions were used to irradiate Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) metallic glass(MG)and crystalline W to investigate their difference in mechanical response after irradiation.The results showed t...In this paper,high-energy Ne ions were used to irradiate Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) metallic glass(MG)and crystalline W to investigate their difference in mechanical response after irradiation.The results showed that with the irradiation dose increased,the tensile micro-strain increased,nano-hardness increased from 7.11 GPa to 7.90 GPa and 8.62 GPa,Young’s modulus increased,and H3/E2 increased which indicating that the plastic deformability decreased in crystalline W.Under the same irradiation conditions,the Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG still maintained the amorphous structure and became more disordered despite the longer range and stronger displacement damage of Ne ions in Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG than in crystalline W.Unlike the irradiation hardening and embrittlement behavior of crystalline W,Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG showed the gradual decrease in hardness from 6.02 GPa to 5.89 GPa and 5.50 GPa,the decrease in modulus and the increase in plastic deformability with the increasing dose.Possibly,the irradiation softening and toughening phenomenon of Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG could provide new ideas for the design of nuclear materials.展开更多
The spatial distribution characteristics of six heavy metals and metalloid in soil of Zhuji Lipu copper mining area, Zhejiang Province, was studied by using geostatistics approaches combined with GIS. These elements i...The spatial distribution characteristics of six heavy metals and metalloid in soil of Zhuji Lipu copper mining area, Zhejiang Province, was studied by using geostatistics approaches combined with GIS. These elements included Pb, As, Cr, Cu, Zn and Ni. The statistical analyses showed that concentrations of these elements were lognormal distribution. Concentrations of Pb, As, Cu, Zn and Ni were strongly correlated with each other indicating that these elements in soils may be from the same pollution source. However, accumulation of Cr was unique with its geometric mean being close to that in the control soil. This indicates that Cr content was mainly influenced by soil factors. The Kriging method was applied to estimate the unobserved points. The Kriging interpolation maps reflected significant spatial distribution of these elements as influenced by both pollution and geological factors. The present study indicated that GIS based geostatistics method could accurately analyze the spatial variation of heavy metals and metalloid in the mining area. Overall, higher concentrations of heavy metals and metalloid were found in the center of both the north and south sides. The content of copper in the south was significantly higher than that in the north due to paddy field land uses. In addition, the terrain of four terraces tilted to the center and the broad irrigation accident occurred in the 4th trench in the south of sampling area were also contributed to the higher concentrations of these elements.展开更多
The notorious growth of zinc dendrite and the water-induced corrosion of zinc metal anodes(ZMAs)restrict the practical development of aqueous zinc ion batteries(AZIBs).In this work,a zinc metallized,imide-pillared cov...The notorious growth of zinc dendrite and the water-induced corrosion of zinc metal anodes(ZMAs)restrict the practical development of aqueous zinc ion batteries(AZIBs).In this work,a zinc metallized,imide-pillared covalent organic framework(ZPC)protective film has been engineered as a stable Zn^(2+)ion-conducting interphase to modulate interfacial kinetics and suppress side reactions for ZMAs.Compared to bare Zn,ZPC@Zn exhibits a higher Zn^(2+)ionic conductivity,a larger Zn^(2+)transference number,a lower electronic conductivity,a smaller desolvation activation energy and correspondingly a significant suppression of corrosion,hydrogen evolution and Zn dendrites.Impressively,the ZPC@Zn||ZPC@Zn symmetric cell obtains a cycling lifespan over 3000 h under 5 mA cm^(-2)for 1 mA h cm^(-2).The ZPC@Zn||NH_(4)V_(4)O_(10)coin-type full battery delivers a specific capacity of 195.8 mA h g^(-1)with a retention rate of78.5%at 2 A g^(-1)after 1100 cycles,and the ZPC@Zn||NH_(4)V_(4)O_(10) pouch full cell shows a retention of70.1%in reversible capacity at 3 A g^(-1)after 1100 cycles.The present incorporation of imide-linked covalent organic frameworks in the surface modification of ZMAs will offer fresh perspectives in the search for ideal protective films for the practicality of AZIBs.展开更多
Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition be...Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition behavior still occurs at the top of 3D frameworks owing to the local accumulation of Li ions.To promote uniform Li deposition without top dendrite growth,herein,a layered multifunctional framework based on oxidation-treated polyacrylonitrile(OPAN) and metal-organic framework(MOF) derivatives was proposed for rationally regulating the distribution of Li ions flux,nucleation sites,and electrical conductivity.Profiting from these merits,the OPAN/carbon nano fiber-MOF(CMOF) composite framework demonstrated a reversible Li plating/stripping behavior for 500 cycles with a stable Coulombic efficiency of around 99.0% at the current density of 2 mA/cm~2.Besides,such a Li composite anode exhibited a superior cycle lifespan of over 1300 h under a low polarized voltage of 18 mV in symmetrical cells.When the Li composite anode was paired with LiFePO_(4)(LFP) cathode,the obtained full cell exhibited a stable cycling over 500 cycles.Moreover,the COMSOL Multiphysics simulation was conducted to reveal the effects on homogeneous Li ions distribution derived from the above-mentioned OPAN/CMOF framework and electrical insulation/conduction design.These electrochemical and simulated results shed light on the difficulties of designing stable and safe Li metal anode via optimizing the 3D frameworks.展开更多
The cementation reaction of copper on zinc metal in solutions of different concentrations ofcopper sulphate, at 25℃, has been studied and it is found to be a first order reaction. Moreover,the rates of this reaction ...The cementation reaction of copper on zinc metal in solutions of different concentrations ofcopper sulphate, at 25℃, has been studied and it is found to be a first order reaction. Moreover,the rates of this reaction at 0.15 mol'L-1 copper sulphate solution have been measured in a varietyof ethanol-water media at temperatures from 20℃ to 40℃. The correlation between the masstransfer coefficient and the dielectric constant has been investigated. Also, the thermodynamicparameters of activation have been calculated. The isokinetic relationship reveals the existenceof compensation effect, where the solute-solvent interactions play an important role.展开更多
基金financial support from the National Natural Science Foundation of China(Nos.U2067201,52204300)the National 111 Project,China(No.B14034)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2021zzts0297).
文摘The combined reagents of sodium N-oleoylsarcosinate(SNOS)with metal ions(Ca(Ⅱ),Mg(Ⅱ),Cu(Ⅱ),and Pb(Ⅱ))was employed to facilitate the separation of lepidolite from feldspar.The synergistic interaction mechanism of this combined reagent was systematically investigated via contact angle measurements,AFM,FTIR,species distribution calculations,and DFT calculations.The results suggested that Ca(Ⅱ)exhibited the best selectivity for activating lepidolite flotation.SNOS was chemically adsorbed on the Ca(Ⅱ)-activated lepidolite surface with an adsorption energy of−1248.91 kJ/mol while a lower adsorption energy of−598.84 kJ/mol of SNOS on Ca(Ⅱ)-activated feldspar was calculated.Therefore,this combination of SNOS and Ca(Ⅱ)is a promising reagent scheme for the efficient recovery of lithium from aluminosilicate ore.
基金supported by Science and Technology Planning Project of Guangdong Province,2023B1212060048.
文摘Copper possesses very strong chacophile properties,but under the conditions found in meteorites,its behavior is like that of siderophile elements.The Suizhou meteorite is a highly shocked L6 chondrite.Troilite and taenite are considered the main primary carrier of copper in this meteorite,and the post-shock thermal episode is considered the main reason that elemental Cu migrates from its original host phase and forms metallic grains.The Suizhou meteorite contains a few very thin shock melt veins.The occurrence and behavior of metallic copper in this meteorite were studied by optical microscopic examination,electron microprobe analyses,and high-resolution X-ray elemental intensity mapping.Our results show that metallic copper is abundant in the Suizhou chondritic rock.Metallic copper grains adjacent to small troilite grains inside FeNi metal are the most common occurrence,and those at the FeNi metal–troilite interface are the second most common case.The metallic copper grains occurring at the interface of FeNi metal/troililte and silicate are rather rare.Metallic copper grains are not observed within the Suizhou shock veins,Instead,Cu in elemental form is transferred through shock metamorphism into FeNi metal+troilite intergrowths.Four diff erent occurrence types of Cu in the FeNi metal+troilite intergrowths have been identifi ed:the concentrations of Cu in the FeNi+FeS intergrowths for four occurrence types are rather close,we estimate it might be lower than 1 wt%.
基金the National Key Research and Development Program of China(No.2019YFC1908400)the National Natural Science Foundation of China(Nos.52174334,52374413)+3 种基金the Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects,China(Nos.20212BCJ23007,20212BCJL23052)the Jiangxi Provincial Natural Science Foundation,China(Nos.20224ACB214009,20224BAB214040)the Double Thousand Plan of Jiangxi Province,China(No.S2021GDQN2970)the Distinguished Professor Program of Jinggang Scholars in Institutions of Higher Learning of Jiangxi Province,China.
文摘The separation of halogens and recovery of heavy metals from secondary copper smelting(SCS)dust using a sulfating roasting−water leaching process were investigated.The thermodynamic analysis results confirm the feasibility of the phase transformation to metal sulfates and to gaseous HF and HCl.Under the sulfating roasting conditions of the roasting temperature of 250℃ and the sulfuric acid excess coefficient of 1.8,over 74 wt.%of F and 98 wt.%of Cl were volatilized into flue gas.Approximately 98.6 wt.%of Zn and 96.5 wt.%of Cu in the roasting product were dissolved into the leaching solution after the water leaching process,while the leaching efficiencies of Pb and Sn were only 0.12%and 0.22%,respectively.The mechanism studies indicate the pivotal effect of roasting temperature on the sulphation reactions from various metal species to metal sulfates and the salting out reactions from various metal halides to gaseous hydrogen halides.
基金supported by the National Natural Science Foundation of China(Grant No.52375438)Shenzhen Science and Technology Programs(Grant No.JCYJ20220818100408019,JSGG20220831101401003,JSGG20210802154007021,KQTD201708101102503570).
文摘The practical application of lithium(Li)metal anodes in high-capacity batteries is impeded by the formation of hazardous Li dendrites.To address this challenge,this research presents a novel methodology that combines laser ablation and heat treatment to precisely induce controlled grain growth within laser-structured grooves on copper(Cu)current collectors.Specifically,this approach enhances the prevalence of Cu(100)facets within the grooves,effectively lowering the overpotential for Li nucleation and promoting preferential Li deposition.Unlike approaches that modify the entire surface of collectors,our work focuses on selectively enhancing lithiophilicity within the grooves to mitigate the formation of Li dendrites and exhibit exceptional performance metrics.The half-cell with these collectors maintains a remarkable Coulombic efficiency of 97.42%over 350 cycles at 1 mA cm^(−2).The symmetric cell can cycle stably for 1600 h at 0.5 mA cm^(−2).Furthermore,when integrated with LiFePO4 cathodes,the full-cell configuration demonstrates outstanding capacity retention of 92.39%after 400 cycles at a 1C discharge rate.This study introduces a novel technique for fabricating selective lithiophilic three-dimensional(3D)Cu current collectors,thereby enhancing the performance of Li metal batteries.The insights gained from this approach hold promise for enhancing the performance of all laser-processed 3D Cu current collectors by enabling precise lithiophilic modifications within complex structures.
基金This work was supported by the National Natural Science Foundation of China(52373306,52172233,and 51832004)the Natural Science Foundation of Hubei Province(2023AFA053)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(2021CXLH0007).
文摘Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.
基金supported by the Teli Fellowship from Beijing Institute of Technology,the National Natural Science Foundation of China(Nos.52303366,22173109).
文摘In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.
基金National Natural Science Foundation of China(52202299)the Analytical&Testing Center of Northwestern Polytechnical University(2022T006).
文摘With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode,which are essential for high-voltage batteries.Meanwhile,homogeneous electrolyte is difficult to achieve bi-or multi-functions to meet different requirements of electrodes.In comparison,the asymmetric electrolyte with bi-or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte.Consequently,the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan.In this review,we comprehensively divide asymmetric electrolytes into three categories:decoupled liquid-state electrolytes,bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes.The design principles,reaction mechanism and mutual compatibility are also studied,respectively.Finally,we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density,and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics.
基金financially supported by the National Natural Science Foundation of China(No.52273081,No.22278329)Young Talent Support Plan of Xi’an Jiaotong University+2 种基金Natural Science Basic Research Program of Shaanxi(No.2022TD-27,No.2020-JC-09)the financial support from Swedish Research Council Grant(2021-05839)the“Young Talent Support Plan”of Xi’an Jiaotong University
文摘Inhomogeneous lithium-ion(Li^(+))deposition is one of the most crucial problems,which severely deteriorates the performance of solid-state lithium metal batteries(LMBs).Herein,we discovered that covalent organic framework(COF-1)with periodically arranged boron-oxygen dipole lithiophilic sites could directionally guide Li^(+)even deposition in asymmetric solid polymer electrolytes.This in situ prepared 3D cross-linked network Poly(ACMO-MBA)hybrid electrolyte simultaneously delivers outstanding ionic conductivity(1.02×10^(-3)S cm^(-1)at 30°C)and excellent mechanical property(3.5 MPa).The defined nanosized channel in COF-1 selectively conducts Li^(+)increasing Li^(+)transference number to 0.67.Besides,The COF-1 layer and Poly(ACMO-MBA)also participate in forming a boron-rich and nitrogen-rich solid electrolyte interface to further improve the interfacial stability.The Li‖Li symmetric cell exhibits remarkable cyclic stability over 1000 h.The Li‖NCM523 full cell also delivers an outstanding lifespan over 400 cycles.Moreover,the Li‖LiFePO_(4)full cell stably cycles with a capacity retention of 85%after 500 cycles.the Li‖LiFePO_(4)pouch full exhibits excellent safety performance under pierced and cut conditions.This work thereby further broadens and complements the application of COF materials in polymer electrolyte for dendrite-free and high-energy-density solid-state LMBs.
文摘Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide beating wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sul- fide-beating wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neu- tralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment (t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sul- fate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.
基金This project is supported by National Natural Science Foundation of China ( NSFC)(10577010)
文摘This paper mainly concentrated on the feasibility of friction stir welding of dissimilar metal of aluminum alloy to copper (I2) and a preliminary analysis of welding parameters influencing on the microstructures and properties of joint was carried out. The results indicated that the thickness of workpiece played an important role in the welding parameters which could succeed in the friction stir welding of dissimilar metal of copper to aluminum alloy, and the parameters were proved to be a narrow choice. The interfacial region between copper and aluminum in the dissimilar joint was not uniformly mixed, constituted with part of incomplete mixing zone, complete mixing zone, dispersion zone and the most region' s boundary was obvious. Meantime a kind banded structure with inhomogeneous width was formed. The intermetallic compounds generated during friction stir welding in the interfacial region were mainly CugAl4, Al2Cu etc, and their hardness was higher than oihers.
基金funded by National Key Research and Development Program of China (Grant No. 2017YFC0504902)National Key Technology R&D Program of China (Grant No. 2012BAC06B02)
文摘Metallic ore mining causes heavy metal pollution worldwide.However,the fate of heavy metals in agrosystems with long-term contamination has been poorly studied.Dongchuan District(Yunnan,southwest China),located at the middle reaches of the Xiaojiang River,is a well-known 2000-year-old copper mining site.In this work,a survey on soil heavy metal contents was conducted using a handheld X-ray fluorescence instrument to understand the general contamination of heavy metals in the Xiaojiang River Basin.Furthermore,river water,soil,and rice samples at six sites along the fluvial/alluvial fans of the river were collected and analyzed to implement an environmental assessment and an evaluation of irrigated agrosystem.V,Zn,and Cu soil levels(1724,1047,and 696mg·kg-1,respectively)far exceeded background levels.The geo-accumulation indexes(Igeo)showed that cultivated soils near the mining sites were polluted by Cd and Cu,followed by Zn,V,Pb,Cr,Ni,and U.The pollution index(Pi)indicated that rice in the area was heavily polluted with Pb,Cr,Cd,Ni,Zn,and Cu.The difference in orders of metal concentrations between the soil and rice heavy metal contamination was related to the proportion of bioavailable heavy metals in the soil.The crop consumption risk assessment showed that the hazard quotient exceeded the safe threshold,indicating a potential carcinogenic risk to consumers.The Nemerow integrated pollution index and health index indicated that the middle of the river(near the mining area)was the heaviest polluted site.
基金the National Natural Sciences Foundation of China (Nos40171054 and 40125005)the National Key Basic Research Support Foundation of China (No2002CB410809/10)
文摘Copper (Cu) mine tailings, because of their high content of heavy metals, are usually hostile to plant colonization. A pot experiment was conducted to determine the tolerance of four forage grasses to heavy metals in Cu mine tailings and to examine the variation in the microbial functional diversity of soils from the tailing sites in southern China. All the four grass species survived on Cu mine tailings and Cu mine tailing-soil mixture. However, on pure mine tailings, the growth was minimal, whereas the growth was maximum for the control without mine tailings. The tolerance of grasses to heavy metals followed the sequence: Paspalum notatum 〉 Festuea arundinaeea 〉 Lolium perenne 〉 Cynodon daetylon. The planting of forage grasses enhanced the soil microbial biomass. The Biolog data indicated that the soil microbial metabolic profile values (average well color development, community richness, and Shannon index) of the four forage grasses also followed the sequence: P. notatum 〉 F. arundinaeea 〉 L. perenne 〉 C. daetylon. Thus, P. notatum, under the experimental conditions of this study, may be considered as the preferred plant species for revegetation of Cu mine tailing areas.
基金The National Natural Science Foundation of China under contract Nos 42076227,41676175 and 41276202the Chinese Arctic and Antarctic Administration under contract No.CHINARE-YRS2015-21+1 种基金the Shanghai Pilot Program for Basic Re-search-Shanghai Jiao Tong University under contract No.21TQ1400201the Shanghai Frontiers Science Center of Polar Science(SCOPS).
文摘Ny-Ålesund,located in Arctic Svalbard,is one of the most sensitive areas on Earth to global warming.In recent years,accelerated glacier ablation has become remarkable in Ny-Ålesund.Glacial meltwaters discharge a substantial quantity of materials to the ocean,affecting downstream ecosystems and adjacent oceans.In August 2015,various water samples were taken near Ny-Ålesund,including ice marginal meltwater,proglacial meltwater,supraglacial meltwater,englacial meltwater,and groundwater.Trace metals(Al,Cr,Mn,Fe,Co,Cu,Zn,Cd,and Pb),major ions,alkalinity,pH,dissolved oxygen,water temperature and electric conductivity were also measured.Major ions were mainly controlled by chemical weathering intensity and reaction types,while trace metals were influenced by both chemical weathering and physicochemical control upon their mobility.Indeed,we found that Brøggerbreen was dominated by carbonate weathering via carbonation of carbonate,while Austre Lovénbreen and Pedersenbreen were dominated by sulfide oxidation coupled with carbonate dissolution with a doubled silicate weathering.The higher enrichment of trace metals in supraglacial meltwater compared to ice marginal and proglacial meltwater suggested anthropogenic pollution from atmospheric deposition.In ice marginal and proglacial meltwater,principal component analysis indicated that trace metals like Cr,Al,Co,Mn and Cd were correlated to chemical weathering.This implies that under accelerated glacier retreat,glacier-derived chemical components are subjected to future changes in weathering types and intensity.
基金supported by the National Natural Science Foundation of China (21905033, 52271201)the Science and Technology Department of Sichuan Province (2022YFG0100,2022ZYD0045)。
文摘Promoting inorganic-rich solid-electrolyte interphase (SEI) formation by constructing anion-rich solvated structures is a promising strategy for improving the long-term cycling of lithium-metal batteries.However,the increase of anions within the solvated structure inevitably reduces the coordination of Li^(+) with the solvent,which leads to a low lithium diffusion coefficient and a decreased lithium conductivity.Here,high entropy electrolyte is achieved by increasing the molecular diversity in electrolyte.Multiple anions (TFSI^(-),FSI^(-),NO_(3)^(-) and PF_(6)^(-)) presented in entropy electrolyte individually coordinate with Li^(+),creating a diverse and anion-rich solvation structure.The large variety of solvation structures leads to a diversified Li^(+) diffusion barriers in the electrolyte,which results in the increase of channels available for Li^(+) diffusion.Thus,three-dimensional diffusion with high Li^(+) diffusion coefficient occurs in HE electrolytes.Furthermore,the anion-rich solvation structures promote the formation of the inorganic-rich SEI.As a result,over 2000 h of reversible Li plating/stripping with a low overpotential less than 27 mV is achieved in Li||Li cell using electrolyte modified by high-entropy strategy.Besides,the Li||LFP full cell with a negative capacity/positive capacity (N/P) ratio of 4.52 exhibits remarkably enhanced cycling stability,retaining 83.6% of its initial capacity after 150 cycles.This strategy offers a novel approach for accelerating Li^(+) transport kinetics and constructing stable SEI in lithium metal batteries.
基金supported by National Natural Science Foundation of China(Nos.52304291 and 52264026)Yunnan Fundamental Research Projects(No.202301AW070018).
文摘The low reactivity of hemimorphite surfaces hinders the effective action of sulfidizing agents and xanthate,resulting in unsatisfactory flotation performance.To enhance the surface reactivity of hemi-morphite with sulfidizing agents and xanthate,Cu/Pb binary metal ions were introduced into the sul-fidization flotation system to enhance the sulfidization process and thereby promote hemimorphite flotation.The flotation results demonstrated a remarkable improvement in the hemimorphite flotation recovery when Cu/Pb binary metal ions were added prior to sulfidization.The flotation recovery of hemi-morphite increased from less than 5%to over 80%.After strengthening the sulfidization of hemimorphite with Cu/Pb binary metal ions,the mineral surface formed multicomponent sulfide products composed of zinc,copper,and lead sulfide.The reactivity of the copper-lead sulfide components exceeds that of the zinc sulfide component;thus,the enhancement by Cu/Pb binary metal ions not only increases the content of sulfide products on the hemimorphite surface but also augments their reactivity.Contact angle and adsorption experiments indicated that after enhanced sulfidization with Cu/Pb binary metal ions,the hemimorphite surface adsorbed a greater amount of xanthate,significantly increasing the mineral sur-face hydrophobicity.Consequently,the enhanced sulfidization by Cu/Pb binary metal ions effectively improved the flotation behavior of hemimorphite,presenting an innovative sulfidization system for the flotation recovery of zinc silicate minerals in zinc oxide ores.
基金supported by National Natural Science Foundation of China(Nos.12305224,U23B2099 and 11975065)the Natural Science Foundation of Liaoning Province(No.2021-BS-223)+1 种基金the Liaoning Provincial Department of Education Youth Fund Project(No.LJKQZ20222309)supports from the National Laboratory of Heavy-ion Research Facility(HIRFL)in the Institute of Modern Physics in Lanzhou,China.
文摘In this paper,high-energy Ne ions were used to irradiate Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) metallic glass(MG)and crystalline W to investigate their difference in mechanical response after irradiation.The results showed that with the irradiation dose increased,the tensile micro-strain increased,nano-hardness increased from 7.11 GPa to 7.90 GPa and 8.62 GPa,Young’s modulus increased,and H3/E2 increased which indicating that the plastic deformability decreased in crystalline W.Under the same irradiation conditions,the Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG still maintained the amorphous structure and became more disordered despite the longer range and stronger displacement damage of Ne ions in Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG than in crystalline W.Unlike the irradiation hardening and embrittlement behavior of crystalline W,Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG showed the gradual decrease in hardness from 6.02 GPa to 5.89 GPa and 5.50 GPa,the decrease in modulus and the increase in plastic deformability with the increasing dose.Possibly,the irradiation softening and toughening phenomenon of Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG could provide new ideas for the design of nuclear materials.
文摘The spatial distribution characteristics of six heavy metals and metalloid in soil of Zhuji Lipu copper mining area, Zhejiang Province, was studied by using geostatistics approaches combined with GIS. These elements included Pb, As, Cr, Cu, Zn and Ni. The statistical analyses showed that concentrations of these elements were lognormal distribution. Concentrations of Pb, As, Cu, Zn and Ni were strongly correlated with each other indicating that these elements in soils may be from the same pollution source. However, accumulation of Cr was unique with its geometric mean being close to that in the control soil. This indicates that Cr content was mainly influenced by soil factors. The Kriging method was applied to estimate the unobserved points. The Kriging interpolation maps reflected significant spatial distribution of these elements as influenced by both pollution and geological factors. The present study indicated that GIS based geostatistics method could accurately analyze the spatial variation of heavy metals and metalloid in the mining area. Overall, higher concentrations of heavy metals and metalloid were found in the center of both the north and south sides. The content of copper in the south was significantly higher than that in the north due to paddy field land uses. In addition, the terrain of four terraces tilted to the center and the broad irrigation accident occurred in the 4th trench in the south of sampling area were also contributed to the higher concentrations of these elements.
基金supported by the National Natural Science Foundation of China (52373065)the Joint Fund of Ministry of Education for Equipment Pre-research (8091B032206)+1 种基金the Guang Dong Basic and Applied Basic Research Foundation (2021A1515111067,2023A1515010735)the start-up funding of“Hundred Talent Program”from Sun Yat-sen University。
文摘The notorious growth of zinc dendrite and the water-induced corrosion of zinc metal anodes(ZMAs)restrict the practical development of aqueous zinc ion batteries(AZIBs).In this work,a zinc metallized,imide-pillared covalent organic framework(ZPC)protective film has been engineered as a stable Zn^(2+)ion-conducting interphase to modulate interfacial kinetics and suppress side reactions for ZMAs.Compared to bare Zn,ZPC@Zn exhibits a higher Zn^(2+)ionic conductivity,a larger Zn^(2+)transference number,a lower electronic conductivity,a smaller desolvation activation energy and correspondingly a significant suppression of corrosion,hydrogen evolution and Zn dendrites.Impressively,the ZPC@Zn||ZPC@Zn symmetric cell obtains a cycling lifespan over 3000 h under 5 mA cm^(-2)for 1 mA h cm^(-2).The ZPC@Zn||NH_(4)V_(4)O_(10)coin-type full battery delivers a specific capacity of 195.8 mA h g^(-1)with a retention rate of78.5%at 2 A g^(-1)after 1100 cycles,and the ZPC@Zn||NH_(4)V_(4)O_(10) pouch full cell shows a retention of70.1%in reversible capacity at 3 A g^(-1)after 1100 cycles.The present incorporation of imide-linked covalent organic frameworks in the surface modification of ZMAs will offer fresh perspectives in the search for ideal protective films for the practicality of AZIBs.
基金supported by the National Natural Science Foundation of China (52302292, 52302058, 52302085)the China Postdoctoral Science Foundation (2021M702225)+1 种基金the Anhui Province University Natural Science Research Project (2023AH030093, 2023AH040301)the Startup Research Fund of Chaohu University (KYQD-2023005, KYQD-2023051)。
文摘Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition behavior still occurs at the top of 3D frameworks owing to the local accumulation of Li ions.To promote uniform Li deposition without top dendrite growth,herein,a layered multifunctional framework based on oxidation-treated polyacrylonitrile(OPAN) and metal-organic framework(MOF) derivatives was proposed for rationally regulating the distribution of Li ions flux,nucleation sites,and electrical conductivity.Profiting from these merits,the OPAN/carbon nano fiber-MOF(CMOF) composite framework demonstrated a reversible Li plating/stripping behavior for 500 cycles with a stable Coulombic efficiency of around 99.0% at the current density of 2 mA/cm~2.Besides,such a Li composite anode exhibited a superior cycle lifespan of over 1300 h under a low polarized voltage of 18 mV in symmetrical cells.When the Li composite anode was paired with LiFePO_(4)(LFP) cathode,the obtained full cell exhibited a stable cycling over 500 cycles.Moreover,the COMSOL Multiphysics simulation was conducted to reveal the effects on homogeneous Li ions distribution derived from the above-mentioned OPAN/CMOF framework and electrical insulation/conduction design.These electrochemical and simulated results shed light on the difficulties of designing stable and safe Li metal anode via optimizing the 3D frameworks.
文摘The cementation reaction of copper on zinc metal in solutions of different concentrations ofcopper sulphate, at 25℃, has been studied and it is found to be a first order reaction. Moreover,the rates of this reaction at 0.15 mol'L-1 copper sulphate solution have been measured in a varietyof ethanol-water media at temperatures from 20℃ to 40℃. The correlation between the masstransfer coefficient and the dielectric constant has been investigated. Also, the thermodynamicparameters of activation have been calculated. The isokinetic relationship reveals the existenceof compensation effect, where the solute-solvent interactions play an important role.