Large-scale growth of copper oxide nanowires was realized on surfaces of various copper-containing substrates, including copper grids, high-purity copper foils, and small copper blocks, by the stress-induced method. A...Large-scale growth of copper oxide nanowires was realized on surfaces of various copper-containing substrates, including copper grids, high-purity copper foils, and small copper blocks, by the stress-induced method. A relatively low heating temperature of 340 ~C was demonstrated to give rise to dense nanowire growth with fine crystal structures and high aspect ratio of approximately 300. Gradual cooling process, which is positive for the growth of nanowires on multi-layer substrates, is shown to have no effect on the nanowire growth on other pure copper substrates. Diameter of as-obtained nanowires is mainly dependent on the heating temperature. Moreover, the nanowires growing on copper grids are much longer than those growing on two other substrates.展开更多
Copper oxide nanowires and nanoparticles were fabricated through electrospinning followed by calcinations in different heating conditions.It was found that the solution viscosity and environment humidity had great imp...Copper oxide nanowires and nanoparticles were fabricated through electrospinning followed by calcinations in different heating conditions.It was found that the solution viscosity and environment humidity had great impact on the morphologies of precursor nanowires,and the parameters of heat treatment,including final temperature and heating rate,significantly affected the product morphologies.展开更多
Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still fac...Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance.展开更多
文摘Large-scale growth of copper oxide nanowires was realized on surfaces of various copper-containing substrates, including copper grids, high-purity copper foils, and small copper blocks, by the stress-induced method. A relatively low heating temperature of 340 ~C was demonstrated to give rise to dense nanowire growth with fine crystal structures and high aspect ratio of approximately 300. Gradual cooling process, which is positive for the growth of nanowires on multi-layer substrates, is shown to have no effect on the nanowire growth on other pure copper substrates. Diameter of as-obtained nanowires is mainly dependent on the heating temperature. Moreover, the nanowires growing on copper grids are much longer than those growing on two other substrates.
基金The National Natural Science Foundation of China(Grant No.51171006)The Key Research Project in Science and Technology of Leshan(Grant No.12GZD066)
文摘Copper oxide nanowires and nanoparticles were fabricated through electrospinning followed by calcinations in different heating conditions.It was found that the solution viscosity and environment humidity had great impact on the morphologies of precursor nanowires,and the parameters of heat treatment,including final temperature and heating rate,significantly affected the product morphologies.
基金the financial support from National Natural Science Foundation of China (No. 21972102)National Key Research and Development Program of China (2021YFA0910400)+3 种基金Natural Science Foundation of Jiangsu Province (BK20200991)Suzhou Science and Technology Planning Project (SS202016)the USTS starting fund (No.332012104)the Natural Science Foundation of Suzhou University of Science and Technology (No.342134401)。
文摘Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance.