Copper oxides and its salts are now widely used as pesticides to control fungal and bacterial diseases of field crops. Copper toxicity is often a major contributor of human health problems caused through accumulation ...Copper oxides and its salts are now widely used as pesticides to control fungal and bacterial diseases of field crops. Copper toxicity is often a major contributor of human health problems caused through accumulation of excess copper ions in various organs via drinking water, fruits and vegetables. So, detection and estimation of cupric ions in biological organs, drinking water, fruits and vegetables are extremely important. Recently, a fluorescence based sensor using coumarin dye (high quantum yield) has been proposed to detect micromolar Cu++ ion in biological organs. But major problem with coumarin dye is that it is insoluble in water and undergoes dye-dye aggregation in organic solvents. We proposed here a synthetic scheme of preparation of graphene oxide conjugated coumarin dye derivative which would be water dispersible and expected to be an ideal candidate for Cu2+ ion estimation in biological organs and drinking water.展开更多
A novel graphene oxide/titanium dioxide(GO/TiO2) solvent-free nanofluid was firstly synthesized by employing GO, which was in-situ deposited by TiO2 as the core and(3-Glycidyloxypropyl) trime thoxysilane(KH560) ...A novel graphene oxide/titanium dioxide(GO/TiO2) solvent-free nanofluid was firstly synthesized by employing GO, which was in-situ deposited by TiO2 as the core and(3-Glycidyloxypropyl) trime thoxysilane(KH560) and polyetheramine-M2070 as the shell. The morphology and structure of GO/TiO2 nanofluid were verified by Transmission electron microscopy(TEM), X-ray diffraction(XRD) analysis, Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS) and UV-vis absorption spectra. These studies confirmed that TiO2 has been deposited onto GO with good dispersion, and the organic shell has been grafted onto the core successfully. Thermo gravimetric analysis(TGA) and viscosity analysis indicated that this nanoparticle hybrid material presented a liquid state without solvent at room temperature, and has great fluidity and thermal stability. The solubility investigation of GO/TiO2 nanofluid revealed its excellent amphiphilicity and the potential as the functional nanocomposites.展开更多
A multi-heat pipe is a device for heat transmission. It is composed of a heating section, a cooling section and an adiabatic section. The heating and cooling sections are the same and both are connected by four circul...A multi-heat pipe is a device for heat transmission. It is composed of a heating section, a cooling section and an adiabatic section. The heating and cooling sections are the same and both are connected by four circular parallel tubes. This experimental study is performed to investigate heat transfer performance of a multi-heat pipe in the vertical orientation using pure water and GO (graphene oxide)/water nanofluid. GO/water nanofluids were synthesized by the modified Hummers method with 0.05%, 0.1%, 0.15%, and 0.2% volume concentrations. The thermal performance has been investigated with varying heat flux in the range of 10-30 W and 100% fill charge ratio. Wall temperature, thermal resistance, and heat transfer coefficient of the heat pipe are measured and compared with those for the heat pipe using pure water. The experimental results show that the evaporator wall temperature with GO nanofluid is lower than that of the base fluid. Also, the heat pipe that charged with nanofluids showed lower thermal resistance compared with pure water. Heat transfer enhancement is caused by suspended nanoparticles and is pronounced with the increase in particle volume fraction.展开更多
Variant graphene,graphene oxides(GO),and graphene nanoplatelets(GNP)dispersed in blood-based copper(Cu)nanoliquids over a leaning permeable cylinder are the focus of this study.These forms of graphene are highly benef...Variant graphene,graphene oxides(GO),and graphene nanoplatelets(GNP)dispersed in blood-based copper(Cu)nanoliquids over a leaning permeable cylinder are the focus of this study.These forms of graphene are highly beneficial in the biological and medical fields for cancer therapy,anti-infection measures,and drug delivery.The non-Newtonian Sutterby(blood-based)hybrid nanoliquid flows are generalized within the context of the Tiwari-Das model to simulate the effects of radiation and heating sources.The governing partial differential equations are reformulated into a nonlinear set of ordinary differential equations using similar transformational expressions.These equations are then transformed into boundary value problems through a shooting technique,followed by the implementation of the bvp4c tool in MATLAB.The influences of various parameters on the model’s nondimensional velocity and temperature profiles,reduced skin friction,and reduced Nusselt number are presented for detailed discussions.The results indicated that Cu-GNP/blood and Cu-GO/blood hybrid nanofluids exhibit the lowest and highest velocity distributions,respectively,for increased nanoparticles volume fraction,curvature parameter,Sutterby fluid parameter,Hartmann number,and wall permeability parameter.Conversely,opposite trends are observed for the temperature distribution for all considered parameters,except the mixed convection parameter.Increases in the reduced skin friction magnitude and the reduced Nusselt number with higher values of graphene/GO/GNP nanoparticle volume fraction are also reported.Finally,GNP is identified as the superior heat conductor,with an average increase of approximately 5%and a peak of 7.8%in the reduced Nusselt number compared to graphene and GO nanoparticles in the Cu/blood nanofluids.展开更多
A novel integrated film of sulfonated polysulfone/graphene/potassium copper ferricyanide(KCuFC/SPSG)was used for selectively extracting rubidium ion(Rb^(+))from brine.To form KCuFC/SPSG,the precursor film of sulfonate...A novel integrated film of sulfonated polysulfone/graphene/potassium copper ferricyanide(KCuFC/SPSG)was used for selectively extracting rubidium ion(Rb^(+))from brine.To form KCuFC/SPSG,the precursor film of sulfonated polysulfone/graphene(SPSG)was synthesized by phase conversion process,which was alternately immersed in 0.1 mol·L^(-1)CuSO_(4)/K_(4)[Fe(CN)_(6)]by in-situ adsorption coupled co-precipitation method.Various data such as nuclear magnetic resonance spectrometer,Fourier transform infrared spectroscope,X-ray photoelectron spectroscope,X-ray diffraction,scanning electron microscope,and energy dispersive spectroscopy all verified that abundant KCuFC were uniformly located on the film.The resulting KCuFC/SPSG was used in film separation system.As the solution was fed into the system,the Rb^(+)could be selectively adsorption by KCuFC/SPSG.After the saturation adsorption,0.5 mol·L^(-1)NH_(4)Cl/HCl was fed into the film cell,Rb^(+)could be quickly desorbed by ion-exchange between Rb^(+)and NH_(4)^(+)in the lattice of KCuFC.The purpose of separating and recovering Rb^(+)from the brine can be achieved after the repeated operation.The effects of pH,adsorption time,and interferential ions on the adsorption capacity of Rb^(+)were investigated by batch experiments.The adsorption behavior fits the pseudo-second order kinetic process,while KCuFC has a higher adsorption capacity(Langmuir maximum sorption 165.4 mg·g^(-1)).In addition,KCuFC/SPSG shows excellent selectivity for Rb^(+)even in complex brine systems.KCuFC/SPSG could maintain 93.5%extraction efficiency after five adsorption/desorption cycles.展开更多
In this study,the characteristics of heat transfer on an unsteady magnetohydrodynamic(MHD)Casson nanofluid over an exponentially accelerated vertical porous plate with rotating effects were investigated.The flow was d...In this study,the characteristics of heat transfer on an unsteady magnetohydrodynamic(MHD)Casson nanofluid over an exponentially accelerated vertical porous plate with rotating effects were investigated.The flow was driven by the combined effects of the magnetic field,heat radiation,heat source/sink and chemical reaction.Copper oxide(CuO)and titanium oxide(TiO2)are acknowledged as nanoparticle materials.The nondimensional governing equations were subjected to the Laplace transformation technique to derive closed-form solutions.Graphical representations are provided to analyze how changes in physical parameters,such as the magnetic field,heat radiation,heat source/sink and chemical reaction,affect the velocity,temperature and concentration profiles.The computed values of skin friction,heat and mass transfer rates at the surface were tabulated for various sets of input parameters.It is perceived that there is a drop in temperature due to the rise in the heat source/sink and the Prandtl number.It should be noted that a boost in the thermal radiation parameter prompts an increase in temperature.An increase in the Prandtl number,heat source/sink parameter,time and a decrease in the thermal radiation parameter result in an increase in theNusselt number.The computed values of the skin friction,heat andmass transfer rates at the surface were tabulated for various values of the flow parameters.The present results were compared with those of previously published studies andwere found to be in excellent agreement.This research has practical applications in areas such as drug delivery,thermal medicine and cancer treatment.展开更多
Fluorescent graphene oxide(GO) nanoparticles were obtained from the thermal carbonization of citrate acid.Depending on the synthesizing temperature,the size of GO varied from several to several hundred nanometers.Owin...Fluorescent graphene oxide(GO) nanoparticles were obtained from the thermal carbonization of citrate acid.Depending on the synthesizing temperature,the size of GO varied from several to several hundred nanometers.Owing to the confinement from the size,green and blue emissions at around 504 and 450 nm were observed from the GO suspension.These emissions could be dynamically quenched by titrating against copper(Ⅱ)(Cu^(2+)) ions,and the emission intensity was reduced exponentially as a function of Cu^(2+)concentration.The quenching mechanism was ascribed to the bridging of the surface-COOH andOH groups by Cu^(2+),which restricted the vibration of edge atoms or clusters and reduced the number of luminophores of GO nanosheets.As a result,the concentration of Cu^(2+)was detectable with the fluorescent intensity of GO.展开更多
A 2D layer Cu(Ⅱ) coordination polymer [Cu(npth)(H_(2)O)]n(1) was crystallized from a mixture of 3-nitrophthalic acid and Cu(OAc)_(2)·H_(2)O in water under room temperature and structurally characterized by singl...A 2D layer Cu(Ⅱ) coordination polymer [Cu(npth)(H_(2)O)]n(1) was crystallized from a mixture of 3-nitrophthalic acid and Cu(OAc)_(2)·H_(2)O in water under room temperature and structurally characterized by single-crystal X-ray diffraction, FT-IR and TGA. Compound 1 was applied to make a nanocomposite with graphene oxide(GO). A highly dispersible and stable nanocomposite of Cu(npth)-GO was successfully synthesized by a simple ultrasonication method. SEM, TEM, UV-vis, FT-IR and TGA were used to characterize the morphology and structure of the prepared composite. In accordance with the characterization results, we suspected that the binding mechanism of Cu(npth) and GO was assigned to be the cooperative interaction of Cu–O coordination, π-π stacking and hydrogen bonding.展开更多
Textile industries extensively use colorants,such as methylene blue,and if disposed off untreated,they contaminate the effluent streams,causing a severe impact on the environment and aquatic life.Photocatalytic degrad...Textile industries extensively use colorants,such as methylene blue,and if disposed off untreated,they contaminate the effluent streams,causing a severe impact on the environment and aquatic life.Photocatalytic degradation has been found as an inevitable approach to treat them.Herein,we decorated the copper oxide nanoparticles on graphene nanosheets during the reflux process.The resultant copper oxide/graphene nanocomposites were analyzed for structural and functional attributes.It was observed that on increasing the copper oxide contents,the z-average size of the resultant nanocomposites decreased.The X-ray diffraction analysis demonstrated the crystalline nature of the nanocomposite.The surface morphology of the copper oxide nanoparticles appeared to be spherical and that of the copper oxide/graphene composite somehow wrinkled.The infrared analysis indicated successful intercalation of precursors in the nanocomposite.The bandgap of copper oxide/graphene nanocomposites varied in the range of 1.03—1.30 eV,which indicated their effective photocatalytic activity.The results demonstrated that after 120 min of exposure,the methylene blue removal efficiency reached 94.0%,92.2%,and 89.4%(mass fraction)on the copper oxide/graphene nanocomposite at copper oxide nanoparticles to graphene nanosheets ratios of 1:1,1.5:1,and 2:1(mass ratio),respectively.The photodegradation performance of the prepared nano-catalyst was found satisfactory even after five cycles.展开更多
Here, we report a study of ion transport across graphene oxide (GO) membranes of various thicknesses, made by vacuum filtration of GO aqueous solutions. The diffusive transport rates of two charge-equivalent rutheni...Here, we report a study of ion transport across graphene oxide (GO) membranes of various thicknesses, made by vacuum filtration of GO aqueous solutions. The diffusive transport rates of two charge-equivalent ruthenium complex ions Ru(bpy)3^2+ and Ru(phen)32% with a sub-angstrom size difference, are distinguishable through GO membranes and their ratio can be a unique tool for probing the transport-relevant pore structures. Pore and slit-dominant hindered diffusion models are presented and correlated to experimental results. Our analysis suggests that ion transport is mostly facilitated by large pores (larger than 1.75 nm in diameter) in the relatively thin GO membranes, while slits formed by GO stacking (less than 1.42 nm in width) become dominant only in thick membranes. By grafting PEG molecules to the lateral plane of GO sheets, membranes with enlarged interlayer spacing were engineered, which showed drastically increased ion transport rates and lower distinction among the two ruthenium complex ions, consistent with the prediction by the slit-dominant steric hindered diffusion model.展开更多
Reduced graphene oxide-supported tungsten carbide composite(WC/RGO)was prepared by program-con-trolled reduction-carburization technique.Scanning electron microscope(SEM)and transmission electron micro-scope(TEM)show ...Reduced graphene oxide-supported tungsten carbide composite(WC/RGO)was prepared by program-con-trolled reduction-carburization technique.Scanning electron microscope(SEM)and transmission electron micro-scope(TEM)show that WC nanoparticles with a narrow distribution(10-20 nm)are highly dispersed both on the edge and between the layers of RGO.And then it was used as a support to load different low contents(no more than 0.4 wt%)of Pt via sacrificial Cu adlayers.The morphology and the electrocatalytic activity of the prepared catalysts were characterized by TEM and cyclic voltammograms(CV),respectively.The results indicate that a small amount of isolated Pt atoms show low or even no activity for methanol oxidation.With the increasing deposition cycles,the content of Pt and the ensembles of neighboring Pt atoms are increased,which makes the onset potential shift nega-tively and mass current density increase.The results demonstrate that controllable amount of Pt can be deposited on WC/RGO by galvanic displacement with Cu,and the extent and domain of Pt loading affect the electrochemical performance.Meanwhile,this research also provides another route to prepare a catalyst with ultra low noble metal on WC/RGO for solving the problem of high cost of the catalyst.展开更多
The growth of graphene on oriented (111) copper films has been achieved by atmospheric pressure chemical vapor deposition. The structural properties of as-produced graphene have been investigated by scanning tunneli...The growth of graphene on oriented (111) copper films has been achieved by atmospheric pressure chemical vapor deposition. The structural properties of as-produced graphene have been investigated by scanning tunneling microscopy. Anomalous moir6 superstructures composed of well-defined linear periodic modulations have been observed. We report here on comprehensive and detailed studies of these particular moir6 patterns present in the graphene topography revealing that, in certain conditions, the growth can occur on the oxygen-induced reconstructed copper surface and not directly on the oriented (111) copper film as expected.展开更多
目的探讨硫化铜(CuS)/氧化石墨烯(GO)/壳聚糖(CS)/纳米羟基磷灰石(nHA)复合材料(CGCHs)的抗菌和促成骨作用及其作用机制。方法采用水热法合成CuS/GO纳米颗粒,通过原位沉淀法合成CS/nHA支架和CGCHs支架,检测材料表征、光热转换性能和生...目的探讨硫化铜(CuS)/氧化石墨烯(GO)/壳聚糖(CS)/纳米羟基磷灰石(nHA)复合材料(CGCHs)的抗菌和促成骨作用及其作用机制。方法采用水热法合成CuS/GO纳米颗粒,通过原位沉淀法合成CS/nHA支架和CGCHs支架,检测材料表征、光热转换性能和生物安全性,评估CGCHs组和近红外光(NIR)照射下CGCHs(CGCHs+NIR)组的细菌抑制效果及其对细菌生物膜相关基因表达的影响,观察CGCHs和CS/nHA不同材料组的促成骨分化和成骨、破骨相关基因表达。结果CGCHs是具有高度孔隙率的三维支架,在CuS/GO浓度为200μg/mL时CGCHs同时兼具良好的红外升温效果和生物安全性。琼脂糖平板涂菌和细菌死活染色结果均表明CGCHs+NIR组抗菌性能最佳,生物膜相关基因qPCR检测证实其具有抑制细菌生物膜相关基因表达的作用。茜素红染色结果表明CGCHs具有良好的体外促成骨性能,体外共培养3、7、14、21和28 d qPCR结果表明CGCHs对成骨早期和晚期相关基因表达均具有促进作用。与破骨细胞共培养结果可观察到CGCHs具有抑制破骨细胞形成的作用,细胞凋亡检测结果进一步验证这一结论,破骨分化相关基因qPCR检测结果表明,CGCHs主要通过抑制抗酒石酸酸性磷酸酶、组织蛋白酶K、CTR、P65和P38在共培养7、14 d的表达来抑制破骨细胞的分化。结论作为纳米复合材料,CGCHs生物安全性好,具有良好的红外光热协同抗菌作用,在促成骨分化的同时抑制破骨细胞分化,有望为感染性骨缺损治疗提供新的思路。展开更多
文摘Copper oxides and its salts are now widely used as pesticides to control fungal and bacterial diseases of field crops. Copper toxicity is often a major contributor of human health problems caused through accumulation of excess copper ions in various organs via drinking water, fruits and vegetables. So, detection and estimation of cupric ions in biological organs, drinking water, fruits and vegetables are extremely important. Recently, a fluorescence based sensor using coumarin dye (high quantum yield) has been proposed to detect micromolar Cu++ ion in biological organs. But major problem with coumarin dye is that it is insoluble in water and undergoes dye-dye aggregation in organic solvents. We proposed here a synthetic scheme of preparation of graphene oxide conjugated coumarin dye derivative which would be water dispersible and expected to be an ideal candidate for Cu2+ ion estimation in biological organs and drinking water.
基金supported by the National Natural Science Foundation of China(51373137)the International cooperation project of Shaanxi Province(2016KW-053)the Natural Science Basic Research Plan in Shaanxi(2017JQ2002)
文摘A novel graphene oxide/titanium dioxide(GO/TiO2) solvent-free nanofluid was firstly synthesized by employing GO, which was in-situ deposited by TiO2 as the core and(3-Glycidyloxypropyl) trime thoxysilane(KH560) and polyetheramine-M2070 as the shell. The morphology and structure of GO/TiO2 nanofluid were verified by Transmission electron microscopy(TEM), X-ray diffraction(XRD) analysis, Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS) and UV-vis absorption spectra. These studies confirmed that TiO2 has been deposited onto GO with good dispersion, and the organic shell has been grafted onto the core successfully. Thermo gravimetric analysis(TGA) and viscosity analysis indicated that this nanoparticle hybrid material presented a liquid state without solvent at room temperature, and has great fluidity and thermal stability. The solubility investigation of GO/TiO2 nanofluid revealed its excellent amphiphilicity and the potential as the functional nanocomposites.
文摘A multi-heat pipe is a device for heat transmission. It is composed of a heating section, a cooling section and an adiabatic section. The heating and cooling sections are the same and both are connected by four circular parallel tubes. This experimental study is performed to investigate heat transfer performance of a multi-heat pipe in the vertical orientation using pure water and GO (graphene oxide)/water nanofluid. GO/water nanofluids were synthesized by the modified Hummers method with 0.05%, 0.1%, 0.15%, and 0.2% volume concentrations. The thermal performance has been investigated with varying heat flux in the range of 10-30 W and 100% fill charge ratio. Wall temperature, thermal resistance, and heat transfer coefficient of the heat pipe are measured and compared with those for the heat pipe using pure water. The experimental results show that the evaporator wall temperature with GO nanofluid is lower than that of the base fluid. Also, the heat pipe that charged with nanofluids showed lower thermal resistance compared with pure water. Heat transfer enhancement is caused by suspended nanoparticles and is pronounced with the increase in particle volume fraction.
基金funded by the Ministry of Higher Education,Malaysia,through the Research Fund of Fundamental Research Grant Scheme (FRGS/1/2020/STG06/UM/02/1:FP009-2020).
文摘Variant graphene,graphene oxides(GO),and graphene nanoplatelets(GNP)dispersed in blood-based copper(Cu)nanoliquids over a leaning permeable cylinder are the focus of this study.These forms of graphene are highly beneficial in the biological and medical fields for cancer therapy,anti-infection measures,and drug delivery.The non-Newtonian Sutterby(blood-based)hybrid nanoliquid flows are generalized within the context of the Tiwari-Das model to simulate the effects of radiation and heating sources.The governing partial differential equations are reformulated into a nonlinear set of ordinary differential equations using similar transformational expressions.These equations are then transformed into boundary value problems through a shooting technique,followed by the implementation of the bvp4c tool in MATLAB.The influences of various parameters on the model’s nondimensional velocity and temperature profiles,reduced skin friction,and reduced Nusselt number are presented for detailed discussions.The results indicated that Cu-GNP/blood and Cu-GO/blood hybrid nanofluids exhibit the lowest and highest velocity distributions,respectively,for increased nanoparticles volume fraction,curvature parameter,Sutterby fluid parameter,Hartmann number,and wall permeability parameter.Conversely,opposite trends are observed for the temperature distribution for all considered parameters,except the mixed convection parameter.Increases in the reduced skin friction magnitude and the reduced Nusselt number with higher values of graphene/GO/GNP nanoparticle volume fraction are also reported.Finally,GNP is identified as the superior heat conductor,with an average increase of approximately 5%and a peak of 7.8%in the reduced Nusselt number compared to graphene and GO nanoparticles in the Cu/blood nanofluids.
基金supported by the Ministry of Science and Technology of China(Science and Technology to Boost Economy 2020 Key Project,SQ2020YFF0412719 and SQ2020YFF0404901)The Key Research and Development and Transformation Program Funding in Qinghai Province(2021-GX-105)Major projects of Anhui Province and Anhui Province Key Research and Development Plan(202104e11020005)。
文摘A novel integrated film of sulfonated polysulfone/graphene/potassium copper ferricyanide(KCuFC/SPSG)was used for selectively extracting rubidium ion(Rb^(+))from brine.To form KCuFC/SPSG,the precursor film of sulfonated polysulfone/graphene(SPSG)was synthesized by phase conversion process,which was alternately immersed in 0.1 mol·L^(-1)CuSO_(4)/K_(4)[Fe(CN)_(6)]by in-situ adsorption coupled co-precipitation method.Various data such as nuclear magnetic resonance spectrometer,Fourier transform infrared spectroscope,X-ray photoelectron spectroscope,X-ray diffraction,scanning electron microscope,and energy dispersive spectroscopy all verified that abundant KCuFC were uniformly located on the film.The resulting KCuFC/SPSG was used in film separation system.As the solution was fed into the system,the Rb^(+)could be selectively adsorption by KCuFC/SPSG.After the saturation adsorption,0.5 mol·L^(-1)NH_(4)Cl/HCl was fed into the film cell,Rb^(+)could be quickly desorbed by ion-exchange between Rb^(+)and NH_(4)^(+)in the lattice of KCuFC.The purpose of separating and recovering Rb^(+)from the brine can be achieved after the repeated operation.The effects of pH,adsorption time,and interferential ions on the adsorption capacity of Rb^(+)were investigated by batch experiments.The adsorption behavior fits the pseudo-second order kinetic process,while KCuFC has a higher adsorption capacity(Langmuir maximum sorption 165.4 mg·g^(-1)).In addition,KCuFC/SPSG shows excellent selectivity for Rb^(+)even in complex brine systems.KCuFC/SPSG could maintain 93.5%extraction efficiency after five adsorption/desorption cycles.
文摘In this study,the characteristics of heat transfer on an unsteady magnetohydrodynamic(MHD)Casson nanofluid over an exponentially accelerated vertical porous plate with rotating effects were investigated.The flow was driven by the combined effects of the magnetic field,heat radiation,heat source/sink and chemical reaction.Copper oxide(CuO)and titanium oxide(TiO2)are acknowledged as nanoparticle materials.The nondimensional governing equations were subjected to the Laplace transformation technique to derive closed-form solutions.Graphical representations are provided to analyze how changes in physical parameters,such as the magnetic field,heat radiation,heat source/sink and chemical reaction,affect the velocity,temperature and concentration profiles.The computed values of skin friction,heat and mass transfer rates at the surface were tabulated for various sets of input parameters.It is perceived that there is a drop in temperature due to the rise in the heat source/sink and the Prandtl number.It should be noted that a boost in the thermal radiation parameter prompts an increase in temperature.An increase in the Prandtl number,heat source/sink parameter,time and a decrease in the thermal radiation parameter result in an increase in theNusselt number.The computed values of the skin friction,heat andmass transfer rates at the surface were tabulated for various values of the flow parameters.The present results were compared with those of previously published studies andwere found to be in excellent agreement.This research has practical applications in areas such as drug delivery,thermal medicine and cancer treatment.
基金financially supported by One-Hundred Young Talents project from Guangdong University of Technology (No.220413182)。
文摘Fluorescent graphene oxide(GO) nanoparticles were obtained from the thermal carbonization of citrate acid.Depending on the synthesizing temperature,the size of GO varied from several to several hundred nanometers.Owing to the confinement from the size,green and blue emissions at around 504 and 450 nm were observed from the GO suspension.These emissions could be dynamically quenched by titrating against copper(Ⅱ)(Cu^(2+)) ions,and the emission intensity was reduced exponentially as a function of Cu^(2+)concentration.The quenching mechanism was ascribed to the bridging of the surface-COOH andOH groups by Cu^(2+),which restricted the vibration of edge atoms or clusters and reduced the number of luminophores of GO nanosheets.As a result,the concentration of Cu^(2+)was detectable with the fluorescent intensity of GO.
基金Supported by the National Natural Science Foundation of China (No.22001064)the Natural Science Foundation of Hunan Province (No.2020JJ4155)+1 种基金the 2020 Hunan Province College Students’Innovation Entrepreneurship Training Program (No.3373)the Scientific Research Project of Hunan Province Department of Education (No.20B105)。
文摘A 2D layer Cu(Ⅱ) coordination polymer [Cu(npth)(H_(2)O)]n(1) was crystallized from a mixture of 3-nitrophthalic acid and Cu(OAc)_(2)·H_(2)O in water under room temperature and structurally characterized by single-crystal X-ray diffraction, FT-IR and TGA. Compound 1 was applied to make a nanocomposite with graphene oxide(GO). A highly dispersible and stable nanocomposite of Cu(npth)-GO was successfully synthesized by a simple ultrasonication method. SEM, TEM, UV-vis, FT-IR and TGA were used to characterize the morphology and structure of the prepared composite. In accordance with the characterization results, we suspected that the binding mechanism of Cu(npth) and GO was assigned to be the cooperative interaction of Cu–O coordination, π-π stacking and hydrogen bonding.
基金supported by the Fund of the Higher Education Commission of Pakistan.
文摘Textile industries extensively use colorants,such as methylene blue,and if disposed off untreated,they contaminate the effluent streams,causing a severe impact on the environment and aquatic life.Photocatalytic degradation has been found as an inevitable approach to treat them.Herein,we decorated the copper oxide nanoparticles on graphene nanosheets during the reflux process.The resultant copper oxide/graphene nanocomposites were analyzed for structural and functional attributes.It was observed that on increasing the copper oxide contents,the z-average size of the resultant nanocomposites decreased.The X-ray diffraction analysis demonstrated the crystalline nature of the nanocomposite.The surface morphology of the copper oxide nanoparticles appeared to be spherical and that of the copper oxide/graphene composite somehow wrinkled.The infrared analysis indicated successful intercalation of precursors in the nanocomposite.The bandgap of copper oxide/graphene nanocomposites varied in the range of 1.03—1.30 eV,which indicated their effective photocatalytic activity.The results demonstrated that after 120 min of exposure,the methylene blue removal efficiency reached 94.0%,92.2%,and 89.4%(mass fraction)on the copper oxide/graphene nanocomposite at copper oxide nanoparticles to graphene nanosheets ratios of 1:1,1.5:1,and 2:1(mass ratio),respectively.The photodegradation performance of the prepared nano-catalyst was found satisfactory even after five cycles.
文摘Here, we report a study of ion transport across graphene oxide (GO) membranes of various thicknesses, made by vacuum filtration of GO aqueous solutions. The diffusive transport rates of two charge-equivalent ruthenium complex ions Ru(bpy)3^2+ and Ru(phen)32% with a sub-angstrom size difference, are distinguishable through GO membranes and their ratio can be a unique tool for probing the transport-relevant pore structures. Pore and slit-dominant hindered diffusion models are presented and correlated to experimental results. Our analysis suggests that ion transport is mostly facilitated by large pores (larger than 1.75 nm in diameter) in the relatively thin GO membranes, while slits formed by GO stacking (less than 1.42 nm in width) become dominant only in thick membranes. By grafting PEG molecules to the lateral plane of GO sheets, membranes with enlarged interlayer spacing were engineered, which showed drastically increased ion transport rates and lower distinction among the two ruthenium complex ions, consistent with the prediction by the slit-dominant steric hindered diffusion model.
基金This work was supported by International Science&Technology Cooperation Program of China(No.2010DFB63680)the National Natural Science Foundation of China(No.21376220).
文摘Reduced graphene oxide-supported tungsten carbide composite(WC/RGO)was prepared by program-con-trolled reduction-carburization technique.Scanning electron microscope(SEM)and transmission electron micro-scope(TEM)show that WC nanoparticles with a narrow distribution(10-20 nm)are highly dispersed both on the edge and between the layers of RGO.And then it was used as a support to load different low contents(no more than 0.4 wt%)of Pt via sacrificial Cu adlayers.The morphology and the electrocatalytic activity of the prepared catalysts were characterized by TEM and cyclic voltammograms(CV),respectively.The results indicate that a small amount of isolated Pt atoms show low or even no activity for methanol oxidation.With the increasing deposition cycles,the content of Pt and the ensembles of neighboring Pt atoms are increased,which makes the onset potential shift nega-tively and mass current density increase.The results demonstrate that controllable amount of Pt can be deposited on WC/RGO by galvanic displacement with Cu,and the extent and domain of Pt loading affect the electrochemical performance.Meanwhile,this research also provides another route to prepare a catalyst with ultra low noble metal on WC/RGO for solving the problem of high cost of the catalyst.
文摘The growth of graphene on oriented (111) copper films has been achieved by atmospheric pressure chemical vapor deposition. The structural properties of as-produced graphene have been investigated by scanning tunneling microscopy. Anomalous moir6 superstructures composed of well-defined linear periodic modulations have been observed. We report here on comprehensive and detailed studies of these particular moir6 patterns present in the graphene topography revealing that, in certain conditions, the growth can occur on the oxygen-induced reconstructed copper surface and not directly on the oriented (111) copper film as expected.
文摘目的探讨硫化铜(CuS)/氧化石墨烯(GO)/壳聚糖(CS)/纳米羟基磷灰石(nHA)复合材料(CGCHs)的抗菌和促成骨作用及其作用机制。方法采用水热法合成CuS/GO纳米颗粒,通过原位沉淀法合成CS/nHA支架和CGCHs支架,检测材料表征、光热转换性能和生物安全性,评估CGCHs组和近红外光(NIR)照射下CGCHs(CGCHs+NIR)组的细菌抑制效果及其对细菌生物膜相关基因表达的影响,观察CGCHs和CS/nHA不同材料组的促成骨分化和成骨、破骨相关基因表达。结果CGCHs是具有高度孔隙率的三维支架,在CuS/GO浓度为200μg/mL时CGCHs同时兼具良好的红外升温效果和生物安全性。琼脂糖平板涂菌和细菌死活染色结果均表明CGCHs+NIR组抗菌性能最佳,生物膜相关基因qPCR检测证实其具有抑制细菌生物膜相关基因表达的作用。茜素红染色结果表明CGCHs具有良好的体外促成骨性能,体外共培养3、7、14、21和28 d qPCR结果表明CGCHs对成骨早期和晚期相关基因表达均具有促进作用。与破骨细胞共培养结果可观察到CGCHs具有抑制破骨细胞形成的作用,细胞凋亡检测结果进一步验证这一结论,破骨分化相关基因qPCR检测结果表明,CGCHs主要通过抑制抗酒石酸酸性磷酸酶、组织蛋白酶K、CTR、P65和P38在共培养7、14 d的表达来抑制破骨细胞的分化。结论作为纳米复合材料,CGCHs生物安全性好,具有良好的红外光热协同抗菌作用,在促成骨分化的同时抑制破骨细胞分化,有望为感染性骨缺损治疗提供新的思路。