Photopromoted carbonylation of alkyl bromides with carbon monoxide or carbon dioxide catalyzed by copper salts can be carried out under ambient conditions (atmospheric pressure and room temperature) and the correspo...Photopromoted carbonylation of alkyl bromides with carbon monoxide or carbon dioxide catalyzed by copper salts can be carried out under ambient conditions (atmospheric pressure and room temperature) and the corresponding ester was produced. The yield and the selectivity of the ester can be improved greatly by addition of sodium phosphate.展开更多
A novel energetic combustion catalyst, 4-amino-3,S-dinitropyrazole copper salt ([Cu(adnp)2(H2O)2]), was synthesized in a yield of 93.6% for the first time. The single crystal of [Cu(adnp)2(H2O)2] was determi...A novel energetic combustion catalyst, 4-amino-3,S-dinitropyrazole copper salt ([Cu(adnp)2(H2O)2]), was synthesized in a yield of 93.6% for the first time. The single crystal of [Cu(adnp)2(H2O)2] was determined by single crystal X-ray diffraction. It crystallizes in a triclinic system, space group p^-1 with crystal parameters a = 5.541(3) A, b = 7.926(4) A, c = 10.231(5) A,β = 101.372(8)°, V = 398.3(3) A3, Z = 1, μ = 1.467 mm^-1, F(0 0 0) = 243, and Dc = 2.000 g cm^-3. The thermal behavior and non-isothermal decomposition reaction kinetics of [Cu(adnp)2(H2O)2] were studied by means of different heating rate differential scanning calorimetry (DSC). The kinetic equation of major exothermic decomposition reaction for [Cu(adnp)2(H2O)2] was obtained. The entropy of activation (△S≠), enthalpy of activation (△H≠), free energy of activation (△G≠), the self-accelerating decomposition temperature (TSADT) and the critical temperature of thermal explosion (Tb) are 59.42 j mol^-1 K^-1, 169.5 kJ mol^-1, 1141.26 kJ mol ^-1 457.3 K and 468.1 K, respectively.展开更多
The thermal behavior and kinetic parameters of the major exothermic decomposition reaction of the title compound in a temperature-programmed mode were studied by means of TG-DTG and DSC. The critical temperature of th...The thermal behavior and kinetic parameters of the major exothermic decomposition reaction of the title compound in a temperature-programmed mode were studied by means of TG-DTG and DSC. The critical temperature of thermal explosion was calculated. The effect of the title compound on the combustion characteristic of composition modifier double base propellant containing RDX was explored with a strand burner. The results show that the kinetic model function in differential forms, the apparent activation energy(E a) and the pre-exponential factor(A) of the major exothermic decomposition reaction are 3(1-α)[-ln(1-α)] 2/3, 190.56 kJ/mol and 10 13.39 s -1, respectively. The critical temperature of thermal explosion of the compound is 353.08 ℃. The kinetic equation of the major exothermic decomposition process of the title compound at 0.1 MPa could be expressed as dα/dT=10 14.65(1-α)[-ln(1-α)] 2/3 e -2.2920×104/T. As an auxiliary catalyzer, the title compound can help the main catalyzer of lead salt of 4-hydroxy-3,5-dinitropyridine to accelerate the burning rate and reduce the pressure exponent of RDX-CMDB propellant.展开更多
The electrochemical behaviour of copper electrode in molten NaCl-KCl-LaCl_3 has been investigated.The La-Cu alloy is formed at first and then the metallic lanthanum is deposited when the La^(3+)is reduced on the coppe...The electrochemical behaviour of copper electrode in molten NaCl-KCl-LaCl_3 has been investigated.The La-Cu alloy is formed at first and then the metallic lanthanum is deposited when the La^(3+)is reduced on the copper electrode.The technological conditions of preparing La-Cu alloy by consumable cathode have been dis- cussed.The La-Cu alloy contained lanthanum over 90wt% was obtained.The composition of alloy was LaCu_2 and La.The current efficiency was 85% and the recovery of lanthanum was near 90%.展开更多
The complexes of hydrous copper chloride and copper nitrate with 2-amino-4,6-dimethylpyrimidine(ADMP) were prepared via reflux in alcohol. The compositions of the complexes were identified as Cu(ADMP) 2Cl 2·2H 2O...The complexes of hydrous copper chloride and copper nitrate with 2-amino-4,6-dimethylpyrimidine(ADMP) were prepared via reflux in alcohol. The compositions of the complexes were identified as Cu(ADMP) 2Cl 2·2H 2O(b) and Cu(ADMP)(NO 3) 2·H 2O(c) by chemical and elemental analyses. The complexes were characterized by IR, XPS, 1H NMR and TG-DTG techniques. The constant-volume combustion energies of ADMP and the complexes, Δ c E , were determined by a precise rotating-bomb calorimeter at 298 15 K. They were (-3664 53±1 18), (-4978 47±2 72) and (-1696 70±1 36) kJ/mol, respectively. Their standard enthalpies of combustion, Δ c H 0 m, and standard enthalpies of formation, Δ f H 0 m, were calculated to be (-3666 39±1 18), (-4977 23±2 72), (-1691 12±1 36) kJ/mol and (19 09±1 43), (-2041 80±3 29), (-2397 24±1 65) kJ/mol, respectively.展开更多
Copper( Ⅱ ) resercyiic acid(CuRes) nanoparticles were synthesized by using reactive precipitation method with resorcylic acid and blue copperas as the raw material in a rotating packed bed. The sample obtained wa...Copper( Ⅱ ) resercyiic acid(CuRes) nanoparticles were synthesized by using reactive precipitation method with resorcylic acid and blue copperas as the raw material in a rotating packed bed. The sample obtained was characterized by using X-ray diffraction(XRD), transmission electron micrescopy(TEM), Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analyses (TG), and element analysis. In addition, the catalytic activity of CuRes nanoparticles on the thermal decomposition of nitrocellulose-nitroglycerine(NC-NG) was also determined via DSC. The results show that the spherical nanoparticles with a diameter of 20 nm were obtained in ethanol solution. The peak temperature of the thermal decomposition of NC-NG-CuRes decreases by 3℃ compared with that of normal CuRes, and the decomposition enthalpy is increased by 735 J/g, and therefore, it is reasonable to assume that CuRes nanoparticles have a better catalytic activity.展开更多
A novel method is proposed to enhance the gasification and removal of copper from molten steel by adding ammonium salts or urea into molten steel under normal pressure.The decopperization experiments were conducted in...A novel method is proposed to enhance the gasification and removal of copper from molten steel by adding ammonium salts or urea into molten steel under normal pressure.The decopperization experiments were conducted in a molybdenum-wire resistance furnace at 1 873 K.The copper content of about 400 g of a mild steel was reduced from 0.49%(mass fraction,the same below) and 0.51% to 0.31% and 0.38% using 0.7 g of NHC1 and 0.5 g of(NH)COrespectively,while the copper content of the molten steel was reduced from 0.61%to 0.56% using 2.00 g of NHCONH.展开更多
In this study,for the first time,direct copper production from copper sulfide was carried out via direct electrochemical reduction method using inexpensive and stable molten borax electrolyte.The effects of current de...In this study,for the first time,direct copper production from copper sulfide was carried out via direct electrochemical reduction method using inexpensive and stable molten borax electrolyte.The effects of current density(100–800 mA/cm^2)and electrolysis time(15–90 min)on both the cathodic current efficiency and copper yield were systematically investigated in consideration of possible electrochemical/chemical reactions at 1200℃.The copper production yield reached 98.09%after 90 min of electrolysis at a current density of 600 mA/cm^2.Direct metal production was shown to be possible with 6 kWh/kg energy consumption at a 600 mA/cm2 current density,at which the highest current efficiency(41%)was obtained.The suggested method can also be applied to metal/alloy production from single-and mixed-metal sulfides coming from primary production and precipitated sulfides,which are produced in the mining and metallurgical industries during treatment of process solutions or wastewaters.展开更多
基金the National Natural Science Foundation of China(No.20372012)for the generous financial support.
文摘Photopromoted carbonylation of alkyl bromides with carbon monoxide or carbon dioxide catalyzed by copper salts can be carried out under ambient conditions (atmospheric pressure and room temperature) and the corresponding ester was produced. The yield and the selectivity of the ester can be improved greatly by addition of sodium phosphate.
基金the National Science Foundation of China(No.21173163 and No. 21303133)
文摘A novel energetic combustion catalyst, 4-amino-3,S-dinitropyrazole copper salt ([Cu(adnp)2(H2O)2]), was synthesized in a yield of 93.6% for the first time. The single crystal of [Cu(adnp)2(H2O)2] was determined by single crystal X-ray diffraction. It crystallizes in a triclinic system, space group p^-1 with crystal parameters a = 5.541(3) A, b = 7.926(4) A, c = 10.231(5) A,β = 101.372(8)°, V = 398.3(3) A3, Z = 1, μ = 1.467 mm^-1, F(0 0 0) = 243, and Dc = 2.000 g cm^-3. The thermal behavior and non-isothermal decomposition reaction kinetics of [Cu(adnp)2(H2O)2] were studied by means of different heating rate differential scanning calorimetry (DSC). The kinetic equation of major exothermic decomposition reaction for [Cu(adnp)2(H2O)2] was obtained. The entropy of activation (△S≠), enthalpy of activation (△H≠), free energy of activation (△G≠), the self-accelerating decomposition temperature (TSADT) and the critical temperature of thermal explosion (Tb) are 59.42 j mol^-1 K^-1, 169.5 kJ mol^-1, 1141.26 kJ mol ^-1 457.3 K and 468.1 K, respectively.
文摘The thermal behavior and kinetic parameters of the major exothermic decomposition reaction of the title compound in a temperature-programmed mode were studied by means of TG-DTG and DSC. The critical temperature of thermal explosion was calculated. The effect of the title compound on the combustion characteristic of composition modifier double base propellant containing RDX was explored with a strand burner. The results show that the kinetic model function in differential forms, the apparent activation energy(E a) and the pre-exponential factor(A) of the major exothermic decomposition reaction are 3(1-α)[-ln(1-α)] 2/3, 190.56 kJ/mol and 10 13.39 s -1, respectively. The critical temperature of thermal explosion of the compound is 353.08 ℃. The kinetic equation of the major exothermic decomposition process of the title compound at 0.1 MPa could be expressed as dα/dT=10 14.65(1-α)[-ln(1-α)] 2/3 e -2.2920×104/T. As an auxiliary catalyzer, the title compound can help the main catalyzer of lead salt of 4-hydroxy-3,5-dinitropyridine to accelerate the burning rate and reduce the pressure exponent of RDX-CMDB propellant.
文摘The electrochemical behaviour of copper electrode in molten NaCl-KCl-LaCl_3 has been investigated.The La-Cu alloy is formed at first and then the metallic lanthanum is deposited when the La^(3+)is reduced on the copper electrode.The technological conditions of preparing La-Cu alloy by consumable cathode have been dis- cussed.The La-Cu alloy contained lanthanum over 90wt% was obtained.The composition of alloy was LaCu_2 and La.The current efficiency was 85% and the recovery of lanthanum was near 90%.
基金Supported by the Education Ministry Foundation of Shaanxi Province(No.HF0 130 4 )
文摘The complexes of hydrous copper chloride and copper nitrate with 2-amino-4,6-dimethylpyrimidine(ADMP) were prepared via reflux in alcohol. The compositions of the complexes were identified as Cu(ADMP) 2Cl 2·2H 2O(b) and Cu(ADMP)(NO 3) 2·H 2O(c) by chemical and elemental analyses. The complexes were characterized by IR, XPS, 1H NMR and TG-DTG techniques. The constant-volume combustion energies of ADMP and the complexes, Δ c E , were determined by a precise rotating-bomb calorimeter at 298 15 K. They were (-3664 53±1 18), (-4978 47±2 72) and (-1696 70±1 36) kJ/mol, respectively. Their standard enthalpies of combustion, Δ c H 0 m, and standard enthalpies of formation, Δ f H 0 m, were calculated to be (-3666 39±1 18), (-4977 23±2 72), (-1691 12±1 36) kJ/mol and (19 09±1 43), (-2041 80±3 29), (-2397 24±1 65) kJ/mol, respectively.
基金the National Natural Science Foundation of China(No 20576128)partially supported by the Natural ScienceFoundation of Shanxi Province(No 20051015)
文摘Copper( Ⅱ ) resercyiic acid(CuRes) nanoparticles were synthesized by using reactive precipitation method with resorcylic acid and blue copperas as the raw material in a rotating packed bed. The sample obtained was characterized by using X-ray diffraction(XRD), transmission electron micrescopy(TEM), Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analyses (TG), and element analysis. In addition, the catalytic activity of CuRes nanoparticles on the thermal decomposition of nitrocellulose-nitroglycerine(NC-NG) was also determined via DSC. The results show that the spherical nanoparticles with a diameter of 20 nm were obtained in ethanol solution. The peak temperature of the thermal decomposition of NC-NG-CuRes decreases by 3℃ compared with that of normal CuRes, and the decomposition enthalpy is increased by 735 J/g, and therefore, it is reasonable to assume that CuRes nanoparticles have a better catalytic activity.
基金supported by the National Foundation of Natural Science of China
文摘A novel method is proposed to enhance the gasification and removal of copper from molten steel by adding ammonium salts or urea into molten steel under normal pressure.The decopperization experiments were conducted in a molybdenum-wire resistance furnace at 1 873 K.The copper content of about 400 g of a mild steel was reduced from 0.49%(mass fraction,the same below) and 0.51% to 0.31% and 0.38% using 0.7 g of NHC1 and 0.5 g of(NH)COrespectively,while the copper content of the molten steel was reduced from 0.61%to 0.56% using 2.00 g of NHCONH.
文摘In this study,for the first time,direct copper production from copper sulfide was carried out via direct electrochemical reduction method using inexpensive and stable molten borax electrolyte.The effects of current density(100–800 mA/cm^2)and electrolysis time(15–90 min)on both the cathodic current efficiency and copper yield were systematically investigated in consideration of possible electrochemical/chemical reactions at 1200℃.The copper production yield reached 98.09%after 90 min of electrolysis at a current density of 600 mA/cm^2.Direct metal production was shown to be possible with 6 kWh/kg energy consumption at a 600 mA/cm2 current density,at which the highest current efficiency(41%)was obtained.The suggested method can also be applied to metal/alloy production from single-and mixed-metal sulfides coming from primary production and precipitated sulfides,which are produced in the mining and metallurgical industries during treatment of process solutions or wastewaters.