The composition of the polishing solution is optimized by investigating the impact of the WIWNU (the so-called within-wafer-non-uniformity WIWNU) and the removal rate (RR) on the polishing characteristics of coppe...The composition of the polishing solution is optimized by investigating the impact of the WIWNU (the so-called within-wafer-non-uniformity WIWNU) and the removal rate (RR) on the polishing characteristics of copper, The oxidizer concentration is 1 Vol%; the abrasive concentration is 0.8 Vol%; the chelating agent of the solution is 2 Vol%. The working pressure is 1 kPa. The defect on the surface is degraded and the surface is clean after polishing. The removal rate is 289 nm/min and the WIWNU is 0,065. The surface roughness measured by AFM after CMP (chemical mechanical planarization) is 0.22 nm.展开更多
CMP process optimization for bulk copper removal based on alkaline copper slurry was performed on a 300 mm Applied Materials Reflexion LK system. Under the DOE condition, we conclude that as the pressure increases, th...CMP process optimization for bulk copper removal based on alkaline copper slurry was performed on a 300 mm Applied Materials Reflexion LK system. Under the DOE condition, we conclude that as the pressure increases, the removal rate increases and non-uniformity is improved. As the slurry flow rate increases, there is no significant improvement in the material removal rate, but it does slightly reduce the WIWNU and thus improve uniformity. The optimal variables are obtained at a reduced pressure of 1.5 psi and a slurry flow rate of 300 ml/min. Platen/carrier rotary speed is set at a constant value of 97/103 rpm. We obtain optimized CMP characteristics including a removal rate over 6452 A/min and non-uniformity below 4% on blanket wafer and the step height is reduced by nearly 8000 A/min in the center of the wafer on eight layers of copper patterned wafer, the surface roughness is reduced to 0.225 nm.展开更多
The chemical mechanical polishing/planarization(CMP) performance of an inhibitor-free alkaline copper slurry is investigated.The results of the Cu dissolution rate(DR) and the polish rate(PR) show that the alkal...The chemical mechanical polishing/planarization(CMP) performance of an inhibitor-free alkaline copper slurry is investigated.The results of the Cu dissolution rate(DR) and the polish rate(PR) show that the alkaline slurry without inhibitors has a relatively high copper removal rate and considerable dissolution rate.Although the slurry with inhibitors has a somewhat low DR,the copper removal rate was significantly reduced due to the addition of inhibitors(Benzotriazole,BTA).The results obtained from pattern wafers show that the alkaline slurry without inhibitors has a better planarization efficacy;it can planarize the uneven patterned surface during the excess copper removal.These results indicate that the proposed inhibitor-free copper slurry has a considerable planarization capability for CMP of Cu pattern wafers,it can be applied in the first step of Cu CMP for copper bulk removal.展开更多
The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acid...The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acidic copper slurry,the copper slurry used in this research adopted the way of alkaline technology based on complexation. According to the passivation property of copper in alkaline conditions,the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole(BTA),by which the problems caused by BTA can be avoided.Through the experiments and theories research,the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed. Based on the chemical mechanical kinetics theory,the planarization mechanism of alkaline copper slurry was established. In alkaline CMP conditions,the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier.The kinetic energy at the concave position should be lower than the complexation reaction barrier,which is the key to achieve planarization.展开更多
To achieve"waste controlled by waste",a novel wet process using KMnO_(4)/copper converter slag slurry for simultaneously removing SO_(2)and NO_(x)from acid-making tail gas was proposed.Through the solid-liqu...To achieve"waste controlled by waste",a novel wet process using KMnO_(4)/copper converter slag slurry for simultaneously removing SO_(2)and NO_(x)from acid-making tail gas was proposed.Through the solid-liquid separation for copper slag slurry,the liquid-phase part has a critical influence on removing NO_(x)and SO_(2).Also,the leached metal ions played a crucial role in the absorption of SO_(2)and NO_(x).Subsequently,the effects of single/multi-metal ions on NO_(x)removal was investigated.The results showed that the leached metal from copper converter slag(Al^(3+),Cu^((2+),and Mg^((2+))and KMnO_(4)had a synergistic effect on NO_(x)removal,thereby improving the NO_(x)removal efficiency.Whereas Fe^(2+) had an inhibitory effect on the NO_(x)removal owing to the reaction between Fe^(2+) and KMnO_(4),thereby consuming the KMnO_(4).Besides,SO_(2)was converted to SO_(4)^(2-) completely partly due to the liquid catalytic oxidation by metal ions.The XRD and XPS results indicated that the Fe(Ⅱ)species(Fe_(2)SiO_(4),Fe_(3)O_(4))in copper slag can react with H+ions with the generation of Fe^(2+),and further consumed the KMnO_(4),thereby resulting in a decrease in the NO_(x)removal.The characterization of the slags and solutions before and after reaction led us to propose the possible mechanisms.The role of copper slag is as follows:(1)the alkaline substances in copper slag can absorb SO_(2)and NO_(2)by KMnO_(4)oxidation.(2)copper slag may function as a catalyst to accelerate SO_(2)conversion and improve NO_(x)removal by synergistic effect between leached metal ions and KMnO_(4).展开更多
Chemical mechanical polishing(CMP) is one of the important machining procedures of multilayered copper interconnection for GLSI, meanwhile polishing slurry is a critical factor for realizing the high polishing perfo...Chemical mechanical polishing(CMP) is one of the important machining procedures of multilayered copper interconnection for GLSI, meanwhile polishing slurry is a critical factor for realizing the high polishing performance such as high planarization efficiency, low surface roughness. The effect of slurry components such as abrasive(colloidal silica), complexing agent(glycine), inhibitor(BTA) and oxidizing agent(H_2O_2) on the stability of the novel weakly alkaline slurry of copper interconnection CMP for GLSI was investigated in this paper. First, the synergistic and competitive relationship of them in a peroxide-based weakly alkaline slurry during the copper CMP process was studied and the stability mechanism was put forward. Then 1 wt% colloidal silica, 2.5 wt% glycine,200 ppm BTA, 20 m L/L H_2O_2 had been selected as the appropriate concentration to prepare copper slurry, and using such slurry the copper blanket wafer was polished. From the variations of copper removal rate, root-mean square roughness(Sq) value with the setting time, it indicates that the working-life of the novel weakly alkaline slurry can reach more than 7 days, which satisfies the requirement of microelectronics further development.展开更多
基金supported by the Special Project Items No.2 in the National Long-Term Technology Development Plan,China(No.2009ZX02308)
文摘The composition of the polishing solution is optimized by investigating the impact of the WIWNU (the so-called within-wafer-non-uniformity WIWNU) and the removal rate (RR) on the polishing characteristics of copper, The oxidizer concentration is 1 Vol%; the abrasive concentration is 0.8 Vol%; the chelating agent of the solution is 2 Vol%. The working pressure is 1 kPa. The defect on the surface is degraded and the surface is clean after polishing. The removal rate is 289 nm/min and the WIWNU is 0,065. The surface roughness measured by AFM after CMP (chemical mechanical planarization) is 0.22 nm.
基金Project supported by the Major National Science and Technology Special Projects(No.2009ZX02308)the Tianjin Natural Science Foundation of China(No.10JCZDJC15500)+1 种基金the National Natural Science Foundation of China(No.10676008)the Fund Project of the Hebei Provincial Department of Education(No.2011128)
文摘CMP process optimization for bulk copper removal based on alkaline copper slurry was performed on a 300 mm Applied Materials Reflexion LK system. Under the DOE condition, we conclude that as the pressure increases, the removal rate increases and non-uniformity is improved. As the slurry flow rate increases, there is no significant improvement in the material removal rate, but it does slightly reduce the WIWNU and thus improve uniformity. The optimal variables are obtained at a reduced pressure of 1.5 psi and a slurry flow rate of 300 ml/min. Platen/carrier rotary speed is set at a constant value of 97/103 rpm. We obtain optimized CMP characteristics including a removal rate over 6452 A/min and non-uniformity below 4% on blanket wafer and the step height is reduced by nearly 8000 A/min in the center of the wafer on eight layers of copper patterned wafer, the surface roughness is reduced to 0.225 nm.
基金supported by the Major National Science and Technology Special Projects,China(No.2009ZX02308)the Tianjin Natural Science Foundation of China(No.lOJCZDJC 15500)+1 种基金the National Natural Science Foundation of China(No.10676008)the Fund Project of Hebei Provincial Department of Education,China(No.2011128)
文摘The chemical mechanical polishing/planarization(CMP) performance of an inhibitor-free alkaline copper slurry is investigated.The results of the Cu dissolution rate(DR) and the polish rate(PR) show that the alkaline slurry without inhibitors has a relatively high copper removal rate and considerable dissolution rate.Although the slurry with inhibitors has a somewhat low DR,the copper removal rate was significantly reduced due to the addition of inhibitors(Benzotriazole,BTA).The results obtained from pattern wafers show that the alkaline slurry without inhibitors has a better planarization efficacy;it can planarize the uneven patterned surface during the excess copper removal.These results indicate that the proposed inhibitor-free copper slurry has a considerable planarization capability for CMP of Cu pattern wafers,it can be applied in the first step of Cu CMP for copper bulk removal.
基金supported by the Special Project Items No.2 in National Long-term Technology Development Plan,China(No.2009ZX02308)
文摘The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acidic copper slurry,the copper slurry used in this research adopted the way of alkaline technology based on complexation. According to the passivation property of copper in alkaline conditions,the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole(BTA),by which the problems caused by BTA can be avoided.Through the experiments and theories research,the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed. Based on the chemical mechanical kinetics theory,the planarization mechanism of alkaline copper slurry was established. In alkaline CMP conditions,the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier.The kinetic energy at the concave position should be lower than the complexation reaction barrier,which is the key to achieve planarization.
基金supported by the National Natural Science Foundation of China(Nos.51708266,51968034,21667015,and 41807373)the National Key Research and Development Program of China(Nos.2018YFC0213400 and 2018YFC1900305)。
文摘To achieve"waste controlled by waste",a novel wet process using KMnO_(4)/copper converter slag slurry for simultaneously removing SO_(2)and NO_(x)from acid-making tail gas was proposed.Through the solid-liquid separation for copper slag slurry,the liquid-phase part has a critical influence on removing NO_(x)and SO_(2).Also,the leached metal ions played a crucial role in the absorption of SO_(2)and NO_(x).Subsequently,the effects of single/multi-metal ions on NO_(x)removal was investigated.The results showed that the leached metal from copper converter slag(Al^(3+),Cu^((2+),and Mg^((2+))and KMnO_(4)had a synergistic effect on NO_(x)removal,thereby improving the NO_(x)removal efficiency.Whereas Fe^(2+) had an inhibitory effect on the NO_(x)removal owing to the reaction between Fe^(2+) and KMnO_(4),thereby consuming the KMnO_(4).Besides,SO_(2)was converted to SO_(4)^(2-) completely partly due to the liquid catalytic oxidation by metal ions.The XRD and XPS results indicated that the Fe(Ⅱ)species(Fe_(2)SiO_(4),Fe_(3)O_(4))in copper slag can react with H+ions with the generation of Fe^(2+),and further consumed the KMnO_(4),thereby resulting in a decrease in the NO_(x)removal.The characterization of the slags and solutions before and after reaction led us to propose the possible mechanisms.The role of copper slag is as follows:(1)the alkaline substances in copper slag can absorb SO_(2)and NO_(2)by KMnO_(4)oxidation.(2)copper slag may function as a catalyst to accelerate SO_(2)conversion and improve NO_(x)removal by synergistic effect between leached metal ions and KMnO_(4).
基金supported by the Major National Science and Technology Special Projects(No.2016ZX02301003-004-007)the Professional Degree Teaching Case Foundation of Hebei Province,China(No.KCJSZ2017008)+1 种基金the Natural Science Foundation of Hebei Province,China(No.F2015202267)the Natural Science Foundation of Tianjin,China(No.16JCYBJC16100)
文摘Chemical mechanical polishing(CMP) is one of the important machining procedures of multilayered copper interconnection for GLSI, meanwhile polishing slurry is a critical factor for realizing the high polishing performance such as high planarization efficiency, low surface roughness. The effect of slurry components such as abrasive(colloidal silica), complexing agent(glycine), inhibitor(BTA) and oxidizing agent(H_2O_2) on the stability of the novel weakly alkaline slurry of copper interconnection CMP for GLSI was investigated in this paper. First, the synergistic and competitive relationship of them in a peroxide-based weakly alkaline slurry during the copper CMP process was studied and the stability mechanism was put forward. Then 1 wt% colloidal silica, 2.5 wt% glycine,200 ppm BTA, 20 m L/L H_2O_2 had been selected as the appropriate concentration to prepare copper slurry, and using such slurry the copper blanket wafer was polished. From the variations of copper removal rate, root-mean square roughness(Sq) value with the setting time, it indicates that the working-life of the novel weakly alkaline slurry can reach more than 7 days, which satisfies the requirement of microelectronics further development.