The kinetic behavior of leaching copper from low grade copper oxide ore was investigated. The effects of leaching temperature, H2SO4 concentration, particle size of crude ore and agitation rate on the leaching efficie...The kinetic behavior of leaching copper from low grade copper oxide ore was investigated. The effects of leaching temperature, H2SO4 concentration, particle size of crude ore and agitation rate on the leaching efficiency of copper were also evaluated. And the kinetic equations of the leaching process were obtained. The results show that the leaching process can be described with a reaction model of shrinking core. The reaction can be divided into three stages. The first stage is the dissolution of free copper oxide and copper oxide wrapped by hematite-limonite ore. At this stage, the leaching efficiency is very fast (leaching efficiency is larger than 60%). The second stage is the leaching of diffiuent copper oxides, whose apparent activation energy is 43.26 kJ/mol. During this process, the chemical reaction is the control step, and the reaction order of H2SO4 is 0.433 84. The third stage is the leaching of copper oxide wrapped by hematite-limonite and silicate ore with apparent activation energy of 16.08 kJ/mol, which belongs to the mixed control.展开更多
The effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores was carried out by phase analysis means of XRD, optical microscopy and SEM-EDS. The resul...The effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores was carried out by phase analysis means of XRD, optical microscopy and SEM-EDS. The results indicated that at ambient temperature, the easily leached copper oxide minerals were completely dissolved, while the bonded copper minerals were insoluble. At lukewarm temperature of 40℃, it was mainly the dissolution of copper in isomorphism state. With increasing temperature to 60℃, the copper leaching rate in the adsorbed state was significantly accelerated. In addition, when the temperature increased to 80℃, the isomorphic copper was completely leached, leaving 11.2% adsorbed copper un-leached. However, the copper in feldspar-quartz-copper-iron colloid state was not dissolved throughout the leaching process. Overall, the leaching rates of copper in different copper minerals decreased in the order: malachite, pseudo-malachite > chrysocolla > copper-bearing chlorite > copper-bearing muscovite > copper-bearing biotite > copper-bearing limonite > feldspar-quartz-copper-iron colloid.展开更多
One of the Iranian copper deposits that is located east of Iran and also known as a primeval one in that area is Mesgaran Field. Old mining works have been clearly seen in the area. Iran is located on global copper be...One of the Iranian copper deposits that is located east of Iran and also known as a primeval one in that area is Mesgaran Field. Old mining works have been clearly seen in the area. Iran is located on global copper belt and as a result it has numerous potential areas as copper deposits. The purpose of this study is identifying possible potentialities of copper mining in less developed regions of Iran with basic modern technologies. In this study, laboratory investigations of this field were done on samples via leaching and the cementation method. According to the study purposes, acid concentration, temperature, time and pulp density were selected as the main factors that were tested in leaching studies. Moreover, pH, temperature, time and the amount of iron powder were factors which were tested for copper cementation. Optimum conditions of leaching studies with 99.11% recovery rate were obtained after 120 grams per liter of H2SO4, 80 degrees Celsius, 2 hours and 100 grams per liter of solid to liquid. On the other hand, optimum conditions of cementation by iron powder were resulted at more than 95% with a pH of 3, 45 degrees Celsius, 1 hour and 1.5 times more than the stoichiometric equation of required iron powder amount to precipitate copper.展开更多
The chemical binder is one of the critical factors affecting ore agglomeration behavior and leaching efficiency.In this study,we in-vestigated the effect of the type of binder and mass fraction of the H_(2)SO_(4)solut...The chemical binder is one of the critical factors affecting ore agglomeration behavior and leaching efficiency.In this study,we in-vestigated the effect of the type of binder and mass fraction of the H_(2)SO_(4)solution used on the curing,soaking,and leaching behavior of ag-glomerations.The results revealed that Portland cement(3CaO·SiO_(2),2CaO·SiO_(2),and 3CaO·Al_(2)O_(3))was the optimal binder for obtaining a well-shaped,stable agglomeration structure.A higher extraction rate was achieved when using Portland cement than that obtained using sodi-um silicate,gypsum,or acid-proof cement.An excessive geometric mean size is not conducive to obtaining well-shaped agglomerations and desirable porosity.Using computed tomography(CT)and MATLAB,the porosity of two-dimensional CT images in sample concentrations L1-L3 was observed to increase at least 4.5vol%after acid leaching.Ore agglomerations began to be heavily destroyed and even to disinteg-rate when the sulfuric acid solution concentration was higher than 30 g/L,which was caused by the excessive accumulation of reaction products and residuals.展开更多
The artificial neural network(ANN)and hybrid of artificial neural network and genetic algorithm(GANN)were appliedto predict the optimized conditions of column leaching of copper oxide ore with relations of input and o...The artificial neural network(ANN)and hybrid of artificial neural network and genetic algorithm(GANN)were appliedto predict the optimized conditions of column leaching of copper oxide ore with relations of input and output data.The leachingexperiments were performed in three columns with the heights of2,4and6m and in particle size of<25.4and<50.8mm.Theeffects of different operating parameters such as column height,particle size,acid flow rate and leaching time were studied tooptimize the conditions to achieve the maximum recovery of copper using column leaching in pilot scale.It was found that therecovery increased with increasing the acid flow rate and leaching time and decreasing particle size and column height.Theefficiency of GANN and ANN algorithms was compared with each other.The results showed that GANN is more efficient than ANNin predicting copper recovery.The proposed model can be used to predict the Cu recovery with a reasonable error.展开更多
A new hydrometallurgical route for separation and recovery of Cu from Cu-As-bearing copper electrorefining black slime was developed. The proposed process comprised oxidation acid leaching of Cu-As-bearing slime and s...A new hydrometallurgical route for separation and recovery of Cu from Cu-As-bearing copper electrorefining black slime was developed. The proposed process comprised oxidation acid leaching of Cu-As-bearing slime and selective sulfide precipitation of Cu from the leachate. The effects of various process parameters on the leaching and precipitation of Cu and As were investigated. At the first stage, Cu extraction of 95.2% and As extraction of 97.6% were obtained at 80 ℃ after 4 h with initial H2 SO4 concentration of 1.0 mol/L and liquid-to-solid ratio of 10 mL/g. In addition, the leaching kinetics of Cu and As was successfully reproduced by the Avrami model, and the apparent activation energies were found to be 33.6 and 35.1 kJ/mol for the Cu and As leaching reaction, respectively, suggesting a combination of chemical reaction and diffusion control. During the selective sulfide precipitation, about 99.4% Cu was recovered as CuS, while only 0.1% As was precipitated under the optimal conditions using sulfide-to-copper ratio of 2.4:1, time of 1.5 h and temperature of 25 ℃.展开更多
A study was conducted for metal extraction from copper smelting dust using the oxidation leaching and control of potential technology.The effects of H2O2 dosage,H2O2 feeding speed,initial HCl concentration,leaching te...A study was conducted for metal extraction from copper smelting dust using the oxidation leaching and control of potential technology.The effects of H2O2 dosage,H2O2 feeding speed,initial HCl concentration,leaching temperature,liquid-to-solid ratio and leaching time on metals leaching efficiencies were investigated.The following optimized leaching conditions were obtained:H2O2 dosage of 0.8 mL/g(redox potential of 429 mV),H2O2 feeding speed of 1.0 mL/min,initial H2SO4 concentration of 1.0 mol/L,initial HCl concentration of 1.0 mol/L,leaching temperature of 80°C,initial liquid-to-solid ratio of 5:1 mL/g and leaching time of 1.5 h.Under the optimized conditions,copper and arsenic can be effectively leached from copper smelting dust,leaving residue as a suitable lead resource.The average leaching efficiencies of copper,arsenic and iron are 95.27%,96.82%and 46.65%,respectively.展开更多
Brass ash from the industrial brass manufacturer in Turkey was leached using the solutions of ionic liquid (IL) 1-butyl-3-methyl-imi-dazolium hydrogen sulfate ([bmim]HSO4) at ambient pressure in the presence of hy...Brass ash from the industrial brass manufacturer in Turkey was leached using the solutions of ionic liquid (IL) 1-butyl-3-methyl-imi-dazolium hydrogen sulfate ([bmim]HSO4) at ambient pressure in the presence of hydrogen peroxide (H2O2) and potassium peroxymonosulfate (oxone) as the oxidants. Parameters affecting leaching efficiency, such as dissolution time, IL concentration, and oxidizing agent addition, were investigated. The results show that [bmim]HSO4 is an efficient IL for the brass ash leaching, providing the dissolution efficiencies of 99%for Zn and 24.82%for Cu at a concentration of 50vol%[bmim]HSO4 in the aqueous solution without any oxidant. However, more than 99%of zinc and 82%of copper are leached by the addition of 50vol%H2O2 to the [bmim]HSO4 solution. Nevertheless, the oxone does not show the promising oxidant behavior in leaching using [bmim]HSO4.展开更多
CuO was used as a catalyst in the concentrated KOH solution to enhance the leaching of chromium from the chromite ore.The impacts of temperature,KOH-to-chromite ore mass ratio,CuO-to-chromite ore mass ratio,and gas fl...CuO was used as a catalyst in the concentrated KOH solution to enhance the leaching of chromium from the chromite ore.The impacts of temperature,KOH-to-chromite ore mass ratio,CuO-to-chromite ore mass ratio,and gas flow rate on the chromiumleaching rate were investigated.The results indicated that CuO played an important role in improving the chromium leaching rate.The leaching rate reached98%after leaching for6h when CuO was applied,whereas it was only60.8%without CuO under thesame reaction conditions:temperature230°C,KOH-to-ore mass ratio6:1,stirring speed700r/min,gas flow rate1L/min.Accordingto the kinetics study,the catalytic oxidation was controlled by surface chemical reaction and the activation energy was calculated tobe15.79kJ/mol when the temperature was above230°C.In contrast,without CuO,the rate-determining step was external diffusionand the apparent activation energy was38.01kJ/mol.展开更多
After Cu-Ni ore powder pre-soaked in AlCl<sub>3</sub> solution.the leaching ratios of copper andnickel can increase obviously.By X-ray diffraction analyses,electron energy spectrum analysesand electrochemi...After Cu-Ni ore powder pre-soaked in AlCl<sub>3</sub> solution.the leaching ratios of copper andnickel can increase obviously.By X-ray diffraction analyses,electron energy spectrum analysesand electrochemical experiments,it is affirmed that,the activation of aluminum ion includestwo aspects:one is the surface change of the ore by the absorption of hydrolysates,and the oth-er is the change of semiconductor characteristics of the metal sulfides by impurity aluminum ionentering the lattice,so that leaching reactions are accelerated.展开更多
Mexican copper ore is a mixed ore containing mainly copper oxide and some copper sulfide that responds well to flotation. The joint techniques of flotation and leaching were studied. The results indicate that an ore c...Mexican copper ore is a mixed ore containing mainly copper oxide and some copper sulfide that responds well to flotation. The joint techniques of flotation and leaching were studied. The results indicate that an ore containing 19.01% copper could be obtained at a recovery ratio of 35.02% by using sodium sulfide and butyl xanthate flotation. Over 83.33% of the copper oxide can be recovered from the railings by leaching in suitable conditions, such as 1 h stirring at a temperature around 25 ℃with a mixing speed of S00 r/min, an H2SO4 concentration of 1.0 mol/L and a mass ratio of the ore-slurry-liquid to solid (mL/ms) of 3. The overall yield of refined ore after flotation and leaching is over 89.18% of the copper, which is much better than sole flotation or leaching. A copper product containing more than 99.9% copper was obtained by using the process: flotation-agitation leaching- solvent extraction-electro-winning.展开更多
An intensified oxidative acid leaching of copper–cadmium-bearing slag featuring using high-efficient oxygen carrier, such as activated carbon, was investigated to achieve high leaching rate of valuable metals. The ef...An intensified oxidative acid leaching of copper–cadmium-bearing slag featuring using high-efficient oxygen carrier, such as activated carbon, was investigated to achieve high leaching rate of valuable metals. The effects of leaching variables, including agitation rate, sulfuric acid concentration, temperature, slag particle size, activated carbon and cupric ion concentration, were examined. It is found that leaching rates of cadmium and zinc both exceed 99 % in a very short time, but for copper, leaching rate of 99 % is achieved under the optimized leaching parameters, which are agitation rate of 100 r·min^(-1), sulfuric acid concentration of 15 wt%, leaching temperature of 80 ℃, slag particle size of 48–75 lm, activated carbon concentration of 3 g·L^(-1),liquid-to-solid ratio of 4:1, oxygen flow rate of 0.16 L·min^(-1),and leaching time of 60 min. The macro-leaching kinetics of copper metal was analyzed, and it is concluded that the inner diffusion is the controlling step, with apparent activation energy of 18.6 kJ·mol^(-1). The leaching solution with pH value of 2–4 can be designed to selectively extract valuable metals without neutralization, and the leaching residue can be treated by prevailing Pb smelting process.展开更多
The addition of NaCl in the ammonium persulfate-APS(as an oxidant)leaching was investigated.APS has some advantages compared with conventional oxidants and its standard redox potential(E°)is2.0V.Effect of six par...The addition of NaCl in the ammonium persulfate-APS(as an oxidant)leaching was investigated.APS has some advantages compared with conventional oxidants and its standard redox potential(E°)is2.0V.Effect of six parameters such as NaCl concentration,APS concentration,temperature,time,liquid–solid ration(L/S),and stirring speed on the leaching behavior was studied.Results showed that metals extraction increased with increasing of NaCl concentration,APS concentration,leaching temperature(up to333K),and L/S ratio.During oxidative leaching of sulfide minerals,the occurrence of elemental sulfur layer on particle surface is known as primary problem that causes low metal extraction.According to the results,the passivation effect of sulfur layer and low dissolution problems can be eliminated in the presence of chloride ions.Copper and iron extraction yields were obtained as75%and80%,respectively under leaching conditions as follows:APS concentration250g/L;NaCl concentration150g/L;time180min;temperature333K;stirring speed400r/min;and L/S250mL/g.展开更多
The heap leaching of oxide copper ores with copper cathode recovery by solvent extraction and electro-winning is now well established as a low-cost method of copper recovery. This technology has recently been applied ...The heap leaching of oxide copper ores with copper cathode recovery by solvent extraction and electro-winning is now well established as a low-cost method of copper recovery. This technology has recently been applied successfully to mixed oxide and chalcocite ores, notably in Chile at Cerro Colorado, Quebrada Blanca and Zaldivar. Currently, there are significant development efforts underway to try to extend heap leaching to chalcopyrite ores. The success of heap leaching/SX/EW has also led to a revival in the development of hydrometallurgical processes to recover copper from chalcopyrite and other copper concentrates. The current status of copper hydrometallurgy is reviewed and the most commercially attractive potential applications are explored. The advantages and disadvantages of the hydrometallurgical treatment of chalcopyrite concentrates and its preliminary economics are compared with those for the current best practices in copper smelting and refining.展开更多
The Luanshya area of Zambia is rich in copper oxide resources.However,copper mainly exists in biotite and phlogopite,which presents challenges for efficient extraction.To improve the leaching rate of copper from these...The Luanshya area of Zambia is rich in copper oxide resources.However,copper mainly exists in biotite and phlogopite,which presents challenges for efficient extraction.To improve the leaching rate of copper from these ores,local hydrometallurgical plants use heating and stirring;however,the leaching rate is not high.To address the issue in this work,CaF_(2) was introduced as a leaching aid,and the effects of various parameters on leaching were systematically studied.The results revealed that when the dosage of CaF_(2) is 5wt%of raw ore mass,the dosage of sulfuric acid is 120 kg/t,the leaching temperature is 60℃,and the leaching time is 200 min with a slurry concentration of 30wt%,the leaching rate of copper can reach 80.44%.Compared with regular heating stirring acid leaching,the copper leaching rate was found to increase by 8.76%,while the leaching temperature decreased by 5℃ and the leaching time shortened by 40 min.The results of the HSC Chemistry 6.0 thermodynamic calculations and mechanism analysis indicated that F can promote the fracture of si-O and Al-O bonds in the crystal structure of biotite and phlogopite in sulfuric acid solution,enabling a direct reaction between the acid and copper.The proposed method can be applied not only to the treatment of cupriferous mica ores but also to the processing of other copper ores.This process is more efficient and cost-effective than the regular heating-stirring acid leaching process.展开更多
基金Project(2005BA639C) supported by the National Science and Technology Development of China
文摘The kinetic behavior of leaching copper from low grade copper oxide ore was investigated. The effects of leaching temperature, H2SO4 concentration, particle size of crude ore and agitation rate on the leaching efficiency of copper were also evaluated. And the kinetic equations of the leaching process were obtained. The results show that the leaching process can be described with a reaction model of shrinking core. The reaction can be divided into three stages. The first stage is the dissolution of free copper oxide and copper oxide wrapped by hematite-limonite ore. At this stage, the leaching efficiency is very fast (leaching efficiency is larger than 60%). The second stage is the leaching of diffiuent copper oxides, whose apparent activation energy is 43.26 kJ/mol. During this process, the chemical reaction is the control step, and the reaction order of H2SO4 is 0.433 84. The third stage is the leaching of copper oxide wrapped by hematite-limonite and silicate ore with apparent activation energy of 16.08 kJ/mol, which belongs to the mixed control.
基金Project(U1608254) supported by the Special Fund for the National Natural Science Foundation of ChinaProjects(ZJKY2017(B)KFJJ01,ZJKY2017(B)KFJJ02) supported by Zijin Mining Group Co.,Ltd.,China
文摘The effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores was carried out by phase analysis means of XRD, optical microscopy and SEM-EDS. The results indicated that at ambient temperature, the easily leached copper oxide minerals were completely dissolved, while the bonded copper minerals were insoluble. At lukewarm temperature of 40℃, it was mainly the dissolution of copper in isomorphism state. With increasing temperature to 60℃, the copper leaching rate in the adsorbed state was significantly accelerated. In addition, when the temperature increased to 80℃, the isomorphic copper was completely leached, leaving 11.2% adsorbed copper un-leached. However, the copper in feldspar-quartz-copper-iron colloid state was not dissolved throughout the leaching process. Overall, the leaching rates of copper in different copper minerals decreased in the order: malachite, pseudo-malachite > chrysocolla > copper-bearing chlorite > copper-bearing muscovite > copper-bearing biotite > copper-bearing limonite > feldspar-quartz-copper-iron colloid.
文摘One of the Iranian copper deposits that is located east of Iran and also known as a primeval one in that area is Mesgaran Field. Old mining works have been clearly seen in the area. Iran is located on global copper belt and as a result it has numerous potential areas as copper deposits. The purpose of this study is identifying possible potentialities of copper mining in less developed regions of Iran with basic modern technologies. In this study, laboratory investigations of this field were done on samples via leaching and the cementation method. According to the study purposes, acid concentration, temperature, time and pulp density were selected as the main factors that were tested in leaching studies. Moreover, pH, temperature, time and the amount of iron powder were factors which were tested for copper cementation. Optimum conditions of leaching studies with 99.11% recovery rate were obtained after 120 grams per liter of H2SO4, 80 degrees Celsius, 2 hours and 100 grams per liter of solid to liquid. On the other hand, optimum conditions of cementation by iron powder were resulted at more than 95% with a pH of 3, 45 degrees Celsius, 1 hour and 1.5 times more than the stoichiometric equation of required iron powder amount to precipitate copper.
基金This work was financially supported by the National Nat-ural Science Foundation for Excellent Youth of China(No.51722401)the State Key Research Development Program of China(No.2016YFC0600704)the Key Program of Na-tional Natural Science Foundation of China(No.51734001).
文摘The chemical binder is one of the critical factors affecting ore agglomeration behavior and leaching efficiency.In this study,we in-vestigated the effect of the type of binder and mass fraction of the H_(2)SO_(4)solution used on the curing,soaking,and leaching behavior of ag-glomerations.The results revealed that Portland cement(3CaO·SiO_(2),2CaO·SiO_(2),and 3CaO·Al_(2)O_(3))was the optimal binder for obtaining a well-shaped,stable agglomeration structure.A higher extraction rate was achieved when using Portland cement than that obtained using sodi-um silicate,gypsum,or acid-proof cement.An excessive geometric mean size is not conducive to obtaining well-shaped agglomerations and desirable porosity.Using computed tomography(CT)and MATLAB,the porosity of two-dimensional CT images in sample concentrations L1-L3 was observed to increase at least 4.5vol%after acid leaching.Ore agglomerations began to be heavily destroyed and even to disinteg-rate when the sulfuric acid solution concentration was higher than 30 g/L,which was caused by the excessive accumulation of reaction products and residuals.
文摘The artificial neural network(ANN)and hybrid of artificial neural network and genetic algorithm(GANN)were appliedto predict the optimized conditions of column leaching of copper oxide ore with relations of input and output data.The leachingexperiments were performed in three columns with the heights of2,4and6m and in particle size of<25.4and<50.8mm.Theeffects of different operating parameters such as column height,particle size,acid flow rate and leaching time were studied tooptimize the conditions to achieve the maximum recovery of copper using column leaching in pilot scale.It was found that therecovery increased with increasing the acid flow rate and leaching time and decreasing particle size and column height.Theefficiency of GANN and ANN algorithms was compared with each other.The results showed that GANN is more efficient than ANNin predicting copper recovery.The proposed model can be used to predict the Cu recovery with a reasonable error.
基金financial supports from the National Natural Science Foundation of China (51634010,51904354)the National Science Fund for Distinguished Young Scholars of China (51825403)+1 种基金the National Key R&D Program of China (2018YFC1900306,2019YFC1907405)Key Research and Development Program of Hunan Province,China (2019SK2291)。
文摘A new hydrometallurgical route for separation and recovery of Cu from Cu-As-bearing copper electrorefining black slime was developed. The proposed process comprised oxidation acid leaching of Cu-As-bearing slime and selective sulfide precipitation of Cu from the leachate. The effects of various process parameters on the leaching and precipitation of Cu and As were investigated. At the first stage, Cu extraction of 95.2% and As extraction of 97.6% were obtained at 80 ℃ after 4 h with initial H2 SO4 concentration of 1.0 mol/L and liquid-to-solid ratio of 10 mL/g. In addition, the leaching kinetics of Cu and As was successfully reproduced by the Avrami model, and the apparent activation energies were found to be 33.6 and 35.1 kJ/mol for the Cu and As leaching reaction, respectively, suggesting a combination of chemical reaction and diffusion control. During the selective sulfide precipitation, about 99.4% Cu was recovered as CuS, while only 0.1% As was precipitated under the optimal conditions using sulfide-to-copper ratio of 2.4:1, time of 1.5 h and temperature of 25 ℃.
基金Project(2016M602427)supported by the Postdoctoral Science Foundation of ChinaProject supported by the Fundamental Research Funds for the Central Universities of Central South University,China
文摘A study was conducted for metal extraction from copper smelting dust using the oxidation leaching and control of potential technology.The effects of H2O2 dosage,H2O2 feeding speed,initial HCl concentration,leaching temperature,liquid-to-solid ratio and leaching time on metals leaching efficiencies were investigated.The following optimized leaching conditions were obtained:H2O2 dosage of 0.8 mL/g(redox potential of 429 mV),H2O2 feeding speed of 1.0 mL/min,initial H2SO4 concentration of 1.0 mol/L,initial HCl concentration of 1.0 mol/L,leaching temperature of 80°C,initial liquid-to-solid ratio of 5:1 mL/g and leaching time of 1.5 h.Under the optimized conditions,copper and arsenic can be effectively leached from copper smelting dust,leaving residue as a suitable lead resource.The average leaching efficiencies of copper,arsenic and iron are 95.27%,96.82%and 46.65%,respectively.
文摘Brass ash from the industrial brass manufacturer in Turkey was leached using the solutions of ionic liquid (IL) 1-butyl-3-methyl-imi-dazolium hydrogen sulfate ([bmim]HSO4) at ambient pressure in the presence of hydrogen peroxide (H2O2) and potassium peroxymonosulfate (oxone) as the oxidants. Parameters affecting leaching efficiency, such as dissolution time, IL concentration, and oxidizing agent addition, were investigated. The results show that [bmim]HSO4 is an efficient IL for the brass ash leaching, providing the dissolution efficiencies of 99%for Zn and 24.82%for Cu at a concentration of 50vol%[bmim]HSO4 in the aqueous solution without any oxidant. However, more than 99%of zinc and 82%of copper are leached by the addition of 50vol%H2O2 to the [bmim]HSO4 solution. Nevertheless, the oxone does not show the promising oxidant behavior in leaching using [bmim]HSO4.
基金Project(2013CB632601)supported by the National Basic Research of ChinaProjects(91634111,51404227)supported by the National Natural Science Foundation of China
文摘CuO was used as a catalyst in the concentrated KOH solution to enhance the leaching of chromium from the chromite ore.The impacts of temperature,KOH-to-chromite ore mass ratio,CuO-to-chromite ore mass ratio,and gas flow rate on the chromiumleaching rate were investigated.The results indicated that CuO played an important role in improving the chromium leaching rate.The leaching rate reached98%after leaching for6h when CuO was applied,whereas it was only60.8%without CuO under thesame reaction conditions:temperature230°C,KOH-to-ore mass ratio6:1,stirring speed700r/min,gas flow rate1L/min.Accordingto the kinetics study,the catalytic oxidation was controlled by surface chemical reaction and the activation energy was calculated tobe15.79kJ/mol when the temperature was above230°C.In contrast,without CuO,the rate-determining step was external diffusionand the apparent activation energy was38.01kJ/mol.
基金Supported by the National Nature Science and the fund of Natione Educational Committee for doctor degree
文摘After Cu-Ni ore powder pre-soaked in AlCl<sub>3</sub> solution.the leaching ratios of copper andnickel can increase obviously.By X-ray diffraction analyses,electron energy spectrum analysesand electrochemical experiments,it is affirmed that,the activation of aluminum ion includestwo aspects:one is the surface change of the ore by the absorption of hydrolysates,and the oth-er is the change of semiconductor characteristics of the metal sulfides by impurity aluminum ionentering the lattice,so that leaching reactions are accelerated.
基金Projects 50604016 supported by the National Natural Science Foundation of China2007BAB22B01 by the 11th Five-Year Plan of National Science and Technology of China
文摘Mexican copper ore is a mixed ore containing mainly copper oxide and some copper sulfide that responds well to flotation. The joint techniques of flotation and leaching were studied. The results indicate that an ore containing 19.01% copper could be obtained at a recovery ratio of 35.02% by using sodium sulfide and butyl xanthate flotation. Over 83.33% of the copper oxide can be recovered from the railings by leaching in suitable conditions, such as 1 h stirring at a temperature around 25 ℃with a mixing speed of S00 r/min, an H2SO4 concentration of 1.0 mol/L and a mass ratio of the ore-slurry-liquid to solid (mL/ms) of 3. The overall yield of refined ore after flotation and leaching is over 89.18% of the copper, which is much better than sole flotation or leaching. A copper product containing more than 99.9% copper was obtained by using the process: flotation-agitation leaching- solvent extraction-electro-winning.
基金financially supported by the National Science&Technology Pillar Program during the Twelfth Five-Year Plan Period of China(No.2012BAC12B01)the Major Scientific and Technological Special Project of Hunan Province,China(No.2012FJ1010)。
文摘An intensified oxidative acid leaching of copper–cadmium-bearing slag featuring using high-efficient oxygen carrier, such as activated carbon, was investigated to achieve high leaching rate of valuable metals. The effects of leaching variables, including agitation rate, sulfuric acid concentration, temperature, slag particle size, activated carbon and cupric ion concentration, were examined. It is found that leaching rates of cadmium and zinc both exceed 99 % in a very short time, but for copper, leaching rate of 99 % is achieved under the optimized leaching parameters, which are agitation rate of 100 r·min^(-1), sulfuric acid concentration of 15 wt%, leaching temperature of 80 ℃, slag particle size of 48–75 lm, activated carbon concentration of 3 g·L^(-1),liquid-to-solid ratio of 4:1, oxygen flow rate of 0.16 L·min^(-1),and leaching time of 60 min. The macro-leaching kinetics of copper metal was analyzed, and it is concluded that the inner diffusion is the controlling step, with apparent activation energy of 18.6 kJ·mol^(-1). The leaching solution with pH value of 2–4 can be designed to selectively extract valuable metals without neutralization, and the leaching residue can be treated by prevailing Pb smelting process.
基金supported by the FUBAP(Firat University scientific research projects)under the project No:MF.12.32
文摘The addition of NaCl in the ammonium persulfate-APS(as an oxidant)leaching was investigated.APS has some advantages compared with conventional oxidants and its standard redox potential(E°)is2.0V.Effect of six parameters such as NaCl concentration,APS concentration,temperature,time,liquid–solid ration(L/S),and stirring speed on the leaching behavior was studied.Results showed that metals extraction increased with increasing of NaCl concentration,APS concentration,leaching temperature(up to333K),and L/S ratio.During oxidative leaching of sulfide minerals,the occurrence of elemental sulfur layer on particle surface is known as primary problem that causes low metal extraction.According to the results,the passivation effect of sulfur layer and low dissolution problems can be eliminated in the presence of chloride ions.Copper and iron extraction yields were obtained as75%and80%,respectively under leaching conditions as follows:APS concentration250g/L;NaCl concentration150g/L;time180min;temperature333K;stirring speed400r/min;and L/S250mL/g.
文摘The heap leaching of oxide copper ores with copper cathode recovery by solvent extraction and electro-winning is now well established as a low-cost method of copper recovery. This technology has recently been applied successfully to mixed oxide and chalcocite ores, notably in Chile at Cerro Colorado, Quebrada Blanca and Zaldivar. Currently, there are significant development efforts underway to try to extend heap leaching to chalcopyrite ores. The success of heap leaching/SX/EW has also led to a revival in the development of hydrometallurgical processes to recover copper from chalcopyrite and other copper concentrates. The current status of copper hydrometallurgy is reviewed and the most commercially attractive potential applications are explored. The advantages and disadvantages of the hydrometallurgical treatment of chalcopyrite concentrates and its preliminary economics are compared with those for the current best practices in copper smelting and refining.
文摘The Luanshya area of Zambia is rich in copper oxide resources.However,copper mainly exists in biotite and phlogopite,which presents challenges for efficient extraction.To improve the leaching rate of copper from these ores,local hydrometallurgical plants use heating and stirring;however,the leaching rate is not high.To address the issue in this work,CaF_(2) was introduced as a leaching aid,and the effects of various parameters on leaching were systematically studied.The results revealed that when the dosage of CaF_(2) is 5wt%of raw ore mass,the dosage of sulfuric acid is 120 kg/t,the leaching temperature is 60℃,and the leaching time is 200 min with a slurry concentration of 30wt%,the leaching rate of copper can reach 80.44%.Compared with regular heating stirring acid leaching,the copper leaching rate was found to increase by 8.76%,while the leaching temperature decreased by 5℃ and the leaching time shortened by 40 min.The results of the HSC Chemistry 6.0 thermodynamic calculations and mechanism analysis indicated that F can promote the fracture of si-O and Al-O bonds in the crystal structure of biotite and phlogopite in sulfuric acid solution,enabling a direct reaction between the acid and copper.The proposed method can be applied not only to the treatment of cupriferous mica ores but also to the processing of other copper ores.This process is more efficient and cost-effective than the regular heating-stirring acid leaching process.