期刊文献+
共找到2,411篇文章
< 1 2 121 >
每页显示 20 50 100
Effects of diamond particle size on microstructure and properties of diamond/Al-12Si composites prepared by vacuum-assisted pressure infiltration
1
作者 Jia-ping Fu Can-xu Zhou +1 位作者 Guo-fa Mi Yuan Liu 《China Foundry》 SCIE EI CAS CSCD 2024年第4期360-368,共9页
Diamond/aluminium composites have attracted attention in the field of thermal management of electronic packaging for their excellent properties.In order to solve the interfacial problem between diamond and aluminium,a... Diamond/aluminium composites have attracted attention in the field of thermal management of electronic packaging for their excellent properties.In order to solve the interfacial problem between diamond and aluminium,a novel process combining pressure infiltration with vacuum-assisted technology was proposed to prepare diamond/aluminum composites.The effect of diamond particle size on the microstructure and properties of the diamond/Al-12Si composites was investigated.The results show that the diamond/Al-12Si composites exhibit high relative density and a uniform microstructure.Both thermal conductivity and coefficient of thermal expansion increase with increasing particle size,while the bending strength exhibits the opposite trend.When the average diamond particle size increases from 45μm to 425μm,the thermal conductivity of the composites increases from 455 W·m^(-1)·K^(-1)to 713 W·m^(-1)·K^(-1)and the coefficient of thermal expansion increases from 4.97×10^(-6)K^(-1)to 6.72×10^(-6)K^(-1),while the bending strength decreases from 353 MPa to 246 MPa.This research demonstrates that high-quality composites can be prepared by the vacuum-assisted pressure infiltration process and the thermal conductivity of the composites can be effectively improved by increasing the diamond particle size. 展开更多
关键词 diamond/aluminum composites thermal conductivity electronic packaging vacuum-assisted pressure infiltration
下载PDF
Template synthesis of copper azide primary explosive through Cu2O@HKUST-1 core-shell composite prepared by “bottle around ship” method 被引量:1
2
作者 Xu-wen Liu Yan Hu +4 位作者 Jia-heng Hu Jia-xin Su Cai-min Yang Ying-hua Ye Rui-qi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期99-111,共13页
Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesi... Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesized by the “bottle around ship” methodology in this research by regulating the dissolution rate of Cu2O and the generation rate of metal-organic framework(MOF) materials. Cu2O@HKUST-1 was carbonized to form a Cu O@porous carbon(CuO@PC) composite material. CuO@PC was synthesized into a copper azide(CA) @PC composite energetic material through a gas-solid phase in-situ azidation reaction.CA is encapsulated in PC framework, which acts as a nanoscale Faraday cage, and its excellent electrical conductivity prevents electrostatic charges from accumulating on the energetic material’s surface. The CA@PC composite energetic material has a CA content of 89.6%, and its electrostatic safety is nearly 30times that of pure CA(1.47 mJ compared to 0.05 mJ). CA@PC delivers an outstanding balance of safety and energy density compared to similar materials. 展开更多
关键词 composite energetic materials copper azide CARBONIZATION Template method Core-shell composite Electrostatic safety
下载PDF
Significant strengthening of copper-based composites using boron nitride nanotubes 被引量:1
3
作者 Naiqi Chen Quan Li +4 位作者 Youcao Ma Kunming Yang Jian Song Yue Liu Tongxiang Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1764-1778,共15页
Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, w... Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, well-dispersed 3vol%BNNTs/Cu and 3vol%CNTs/Cu composites were successfully prepared using ball milling, spark plasma sintering, and followed by hot-rolling. Moreover, the mechanical properties and strengthening mechanisms of BNNTs/Cu and CNTs/Cu composites were compared and discussed in details. At 293 K,both BNNTs/Cu and CNTs/Cu composites exhibited similar ultimate tensile strength (UTS) of~404 MPa, which is approximately 170%higher than pure Cu. However, at 873 K, the UTS and yield strength of BNNTs/Cu are 27%and 29%higher than those of CNTs/Cu, respectively.This difference can be attributed to the stronger inter-walls shear resistance, higher thermomechanical stability of BNNTs, and stronger bonding at the BNNTs/Cu interface as compared to the CNTs/Cu interface. These findings provide valuable insights into the potential of BNNTs as an excellent reinforcement for metal matrix composites, particularly at high temperature. 展开更多
关键词 boron nitride nanotubes copper matrix composites excellent mechanical property strengthening mechanism
下载PDF
Ceramic particles reinforced copper matrix composites manufactured by advanced powder metallurgy:preparation, performance, and mechanisms
4
作者 Yi-Fan Yan Shu-Qing Kou +4 位作者 Hong-Yu Yang Shi-Li Shu Feng Qiu Qi-Chuan Jiang Lai-Chang Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期200-234,共35页
Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and e... Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and electrical conductivity.This greatly expands the applications of copper as a functional material in thermal and conductive components,including electronic packaging materials and heat sinks,brushes,integrated circuit lead frames.So far,endeavors have been focusing on how to choose suitable ceramic components and fully exert strengthening effect of ceramic particles in the copper matrix.This article reviews and analyzes the effects of preparation techniques and the characteristics of ceramic particles,including ceramic particle content,size,morphology and interfacial bonding,on the diathermancy,electrical conductivity and mechanical behavior of copper matrix composites.The corresponding models and influencing mechanisms are also elaborated in depth.This review contributes to a deep understanding of the strengthening mechanisms and microstructural regulation of ceramic particle reinforced copper matrix composites.By more precise design and manipulation of composite microstructure,the comprehensive properties could be further improved to meet the growing demands of copper matrix composites in a wide range of application fields. 展开更多
关键词 copper matrix composites advanced powder metallurgy model prediction particle characteristics strengthening mechanism
下载PDF
Microstructure and thermal conductivity of copper matrix composites reinforced with mixtures of diamond and SiC particles 被引量:14
5
作者 Han, Yuanyuan Guo, Hong +3 位作者 Yin, Fazhang Zhang, Ximin Chu, Ke Fan, Yeming 《Rare Metals》 SCIE EI CAS CSCD 2012年第1期58-63,共6页
关键词 diamond hybrid SiC/Cu composite MICROSTRUCTURE thermal conductivity differential effective medium
下载PDF
Thermal conductivity of diamond/copper composites with a bimodal distribution of diamond particle sizes prepared by pressure infiltration method 被引量:3
6
作者 CHEN Chao GUO Hong CHU Ke YIN Fazhang ZHANG Ximing HAN Yuanyuan FAN Yeming 《Rare Metals》 SCIE EI CAS CSCD 2011年第4期408-413,共6页
The thermal conductivity of diamond/copper composites with bimodal particle sizes was studied. The composites were prepared through pressure infiltration of liquid copper into diamond preforms with a mixture of 40 and... The thermal conductivity of diamond/copper composites with bimodal particle sizes was studied. The composites were prepared through pressure infiltration of liquid copper into diamond preforms with a mixture of 40 and 100 pm-size diamonds. The permeability of the preforms with different coarse-to-fine volume ratios of diamonds was investigated. The thermal conductivity of the diamond/copper composites with bimodal size distribution was compared to the theoretical value derived from an analytical model developed by Chu. It is predicted that the diamond/copper composites could reach a higher thermal conductivity and their surface roughness could be improved by applying bimodal diamond particle sizes. 展开更多
关键词 metallic matrix composites thermal conductivity diamonds copper size distribution pressure infiltration
下载PDF
Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique 被引量:9
7
作者 Hui Chen Cheng-chang Jia +2 位作者 Shang-jie Li Xian Jia Xia Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第4期364-371,共8页
Cu-based and Cu-alloy-based diamond composites were made by high-pressure-high-temperature (HPHT) sintering with the aim of maximizing the thermal conductivity of the composites. Improvements in interfacial bonding ... Cu-based and Cu-alloy-based diamond composites were made by high-pressure-high-temperature (HPHT) sintering with the aim of maximizing the thermal conductivity of the composites. Improvements in interfacial bonding strength and thermo-physical properties of the composites were achieved using an atomized copper alloy with minor additions of Co, Cr, 13, and Ti. The thermal conductivity (TC) oh- mined exhibited as high as 688 W.m-1.K-1, but also as low as 325 W.m-1.K-l. A large variation in TC can be rationalized by the discrepancy of diamond-matrix interfacial bonding. It was found from fractography that preferential bonding between diamond and the Cu-alloy matrix occurred only on the diamond {100} faces. EDS analysis and Raman spectra suggested that selective interfacial bonding may be attributed to amorphous carbon increasing the wettability between diamond and the Cu-alloy matrix. Amorphous carbon was found to significantly affect the TC of the composite by interface modification. 展开更多
关键词 metallic matrix composites diamonds copper alloys interfacial bonding thermal conductivity
下载PDF
Effect of sintering parameters on the microstructure and thermal conductivity of diamond/Cu composites prepared by high pressure and high temperature infiltration 被引量:6
8
作者 Hui Chen Cheng-chang Jia Shang-jie Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第2期180-186,共7页
Pure Cu composites reinforced with diamond particles were fabricated by a high pressure and high temperature (HPHT) infiltration technique. Their microstructural evolution and thermal conductivity were presented as ... Pure Cu composites reinforced with diamond particles were fabricated by a high pressure and high temperature (HPHT) infiltration technique. Their microstructural evolution and thermal conductivity were presented as a function of sintering parameters (temperature, pressure, and time). The improvement in interfacial bonding strength and the maximum thermM conductivity of 750 W/(m.K) were achieved at the optimal sintering parameters of 1200℃, 6 GPa and 10 min. It is found that the thermal conductivity of the composites depends strongly on sintering pressure. When the sintering pressure is above 6 GPa, the diamond skeleton is detected, which greatly contributes to the excellent thermal conductivity. 展开更多
关键词 metallic matrix composites particle reinforced composites copper diamonds INFILTRATION microstructuralevolution thermal conductivity
下载PDF
Interfacial microstructure and properties of diamond/Cu-xCr composites for electronic packaging applications 被引量:12
9
作者 ZHANG Ximin GUO Hong YIN Fazhang FAN Yeming ZHANG Yongzhong 《Rare Metals》 SCIE EI CAS CSCD 2011年第1期94-98,共5页
Diamond/Cu-xCr composites were fabricated by pressure infiltration process.The thermal conductivities of diamond/Cu-xCr(x = 0.1,0.5,0.8) composites were above 650 W/mK,higher than that of diamond/Cu composites.The t... Diamond/Cu-xCr composites were fabricated by pressure infiltration process.The thermal conductivities of diamond/Cu-xCr(x = 0.1,0.5,0.8) composites were above 650 W/mK,higher than that of diamond/Cu composites.The tensile strengths ranged from 186 to 225 MPa,and the bonding strengths ranged from 400 to 525 MPa.Influences of Cr element on the thermo-physical properties and interface structures were analyzed.The intermediate layer was confirmed as Cr3C2 and the amount of Cr3C2 increased with the increase of Cr concentration in Cu-xCr alloys.When the Cr concentration was up to 0.5 wt.%,the content of the Cr3C2 layer was constant.As the thickness of the Cr3C2 layer became larger,the composites showed a lower thermal conductivity but higher mechanical properties.The coefficients of thermal expansion(CTE) of diamond/Cu-xCr(x = 0.1,0.5,0.8) composites were in good agreement with the predictions of the Kerner' model. 展开更多
关键词 composite materials copper interfaces bonding electronic packaging INFILTRATION
下载PDF
Predicted interfacial thermal conductance and thermal conductivity of diamond/Al composites with various interfacial coatings 被引量:8
10
作者 LIANG Xuebing JIA Chengchang +1 位作者 CHU Ke CHEN Hui 《Rare Metals》 SCIE EI CAS CSCD 2011年第5期544-549,共6页
The interfacial thermal conductance (ITC) and thermal conductivity (TC) of diamond/Al composites with various coatings were theoretically studied and discussed. A series of predictions and numerical analyses were ... The interfacial thermal conductance (ITC) and thermal conductivity (TC) of diamond/Al composites with various coatings were theoretically studied and discussed. A series of predictions and numerical analyses were performed to investigate the effect of thickness, sound velocity, and other parameters of coating layers on the ITC and TC. It is found that both the ITC and TC decline with increasing coating thickness, especially for the coatings with relatively low thermal conductivity. Nevertheless, if the coating thickness is close to zero, or quite a small value, the ITC and TC are mainly determined by the constants of the coating material. Under this condition, coatings such as Ni, TiC, Mo 2 C, SiC, and Si can significantly improve the ITC and TC of diamond/Al composites. By contrast, coatings like Ag will exert the negative effect. Taking the optimization of interfacial bonding into account, conductive carbides such as TiC or Mo 2 C with low thickness can be the most suitable coatings for diamond/Al composites. 展开更多
关键词 metallic matrix composites COATINGS diamonds thermal conductivity interfacial thermal conductance
下载PDF
Pressure infiltrated Cu/diamond composites for LED applications 被引量:4
11
作者 FAN Yeming GUO Hong +4 位作者 XU Jun CHU Ke ZHU Xuexin JIA Chengchang YIN Fazhang 《Rare Metals》 SCIE EI CAS CSCD 2011年第2期206-210,共5页
Diamond reinforced copper (Cu/diamond) composites were prepared by a pressure infilla'ation technique. The composites show a super high conductivity of 713 W.m-1.K-1 in combination with an extremely low coefficient... Diamond reinforced copper (Cu/diamond) composites were prepared by a pressure infilla'ation technique. The composites show a super high conductivity of 713 W.m-1.K-1 in combination with an extremely low coefficient of thermal expansion (CTE) of 7.72 × 10-6 K-1 (25-100℃), which are achieved by modifying the copper matrix with adding 0.3 wt.% of boron to get a good thermal contact between the matrix and the diamond particles. By adopting a series of postmachining techniques the composites were made into near-net-shape parts, and an electroless silver coating was also successfully plated on the composites. Finally, their potential applications in the thermal management of fight emitting diodes (LED) were illustrated via prototype examples. 展开更多
关键词 light emitting diodes (LED) metallic matrix composites copper alloys diamond INFILTRATION thermal conductivity
下载PDF
Fabrication and thermal conductivity of copper matrix composites reinforced by tungsten-coated carbon nanotubes 被引量:6
12
作者 Jun-hui Nie Cheng-chang Jia +3 位作者 XianJia Yi Li Ya-feng Zhang Xue-bing Liang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第5期446-452,共7页
Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were... Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were consolidated by spark plasma sintering. The W-CNTs obtained a uniform dispersion within the Cu matrix when the W-CNT content was less than 5.0vo1%, but high content of W-CNTs (10vol%) resulted in the presence of clusters. The W-CNT/Cu composites containing low content of W-CNTs (〈5.0vol%) exhibited a higher thermal conductivity than the sintered pure Cu, while the CNT/Cu composites exhibited no increase in thermal conductivity after the incorporation of uncoated CNTs. The W-CNT content was found to play a crucial role in determining the thermal conductivity of the W-CNT/Cu composites. The thermal conductivity of the W-CNT/Cu composites increased first and then decreased with the W-CNT content increasing. When the W-CNT content was 2.5vo1%, the W-CNT/Cu composite obtained the maximum value of thermal conductivity. The thermal resistance of the (W-CNT)-Cu interface was predicted in terms of Maxwell-Gamett effective medium approximation, and its calculated value was about 3.0× 10-9 m2.K.W-l. 展开更多
关键词 metallic matrix composites (MMCs) carbon nanotubes TUNGSTEN copper spark plasma sintering thermal conductivity
下载PDF
Effects of Rare Earth and Hot Pressing Sintering Temperature on the Transverse Rupture Strength of Fe-based Diamond Composites 被引量:5
13
作者 DAI Qiu-lian, LUO Can-ben, XU Xi-peng, WANG Yong-chu (College of Mechanical Engineering & Automation, Huaqiao University, Quanzhou 362011, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期76-77,共2页
Effects of sintering temperature in hot pressing, t yp es, states and amounts of rare earth as well as TiH 2 on the transverse rupture strength (TRS) of Fe-based composites are studied by means of orthogonal test and ... Effects of sintering temperature in hot pressing, t yp es, states and amounts of rare earth as well as TiH 2 on the transverse rupture strength (TRS) of Fe-based composites are studied by means of orthogonal test and variance analysis in this paper. It is found that sintering temperature has a significant effect on the TRS of Fe-based diamond composites. The optimal sin tering temperature is 780~860 ℃. On the contrary, the effects of RE additi v es on values of TRS of the diamond composites have on distinct difference no mat ter the RE is in the state of mixture or compound or oxidization. Experimental r esults demonstrate that Fe-based diamond composites with RE additives exhibit h igher TRS, which results in an increase in diamond retention capacity. The degre e of increment of TRS is different at different sintering temperatures. The opti mal amount of rare earth was found to be about 1% in weight. The effect of RE is more significant at lower sintering temperature. The experimental results also reveal that TiH 2 additive has a negative effect on the TRS of Fe-based compos ites. Microscope observations demonstrate that specimen without TiH 2 additives , shows fewer pores and denser structures in the base metal. It can also be seen from the SEM observation of the resulting fracturing surface of bending test sp ecimens that the bonding of the diamond-matrix interface is better in the speci men without TiH 2 than in the specimen with TiH 2. Also the fracture surface o f the specimen without TiH 2 reveals ductile cup and cone behavior. 展开更多
关键词 rare earth sintering temperature transverse rup ture strength diamond impregnated composite
下载PDF
Fabrication and Characterization of FeNiCr Matrix-TiC Composite for Polishing CVD Diamond Film 被引量:3
14
作者 Zhuji Jin Zewei Yuan Renke Kang Boxian Dong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第3期319-324,共6页
Dynamic friction polishing (DFP) is one of the most promising methods appropriate for polishing CVD diamond film with high efficiency and low cost. By this method CVD diamond film is polished through being simply pr... Dynamic friction polishing (DFP) is one of the most promising methods appropriate for polishing CVD diamond film with high efficiency and low cost. By this method CVD diamond film is polished through being simply pressed against a metal disc rotating at a high speed utilizing the thermochemical reaction occurring as a result of dynamic friction between them in the atmosphere. However, the relatively soft materials such as stainless steel, cast iron and nickel alloy widely used for polishing CVD diamond film are easy to wear and adhere to diamond film surface, which may further lead to low efficiency and poor polishing quality. In this paper, FeNiCr matrix-TiC composite used as grinding wheel for polishing CVD diamond film was obtained by combination of mechanical alloying (MA) and spark plasma sintering (SPS). The process of ball milling, composition, density, hardness, high-temperature oxidation resistance and wear resistance of the sintered piece were analyzed. The results show that TiC was introduced in MA-SPS process and had good combination with FeNiCr matrix and even distribution in the matrix. The density of composite can be improved by mechanical alloying. The FeNiCr matrix-TiC composite obtained at 1273 K was found to be superior to at 1173 K sinterin8 in hardness, high-temperature oxidation resistance and wearability. These properties are more favorable than SUS304 for the preparation of high-performance grinding wheel for polishing CVD diamond film. 展开更多
关键词 CVD diamond film FeNiCr matrix-TiC composite Spark plasma sintering Mechanical alloying
下载PDF
Synthesis and Tribological Properties of Graphene-Copper Nanoparticle Composites as Lithium Grease Additive 被引量:2
15
作者 Wang Jing Guo Xiaochuan +2 位作者 He Yan Jiang Mingjun Zhou Weigui 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2017年第4期113-122,共10页
In this paper, the graphene-copper nanoparticle composites(GN/Cu NPs) were prepared by in situ chemical reduction in aqueous solution. The influence of pH value and the concentration of PVP on the particle size and st... In this paper, the graphene-copper nanoparticle composites(GN/Cu NPs) were prepared by in situ chemical reduction in aqueous solution. The influence of pH value and the concentration of PVP on the particle size and structure of the GN/Cu NPs as well as the element distribution were analyzed via the scanning electron microscopy(SEM), the transmission electron microscopy(TEM), the X-ray diffraction(XRD), and the energy dispersive spectroscopy(EDS). The tribological properties of the grease with GN/Cu NPs composites have been studied by SRV-IV. It was found that compared to the base grease, the GN/Cu NPs composites could help to reduce the wear loss of the disk by 85.5% and the average friction coefficient by 15.5%. The test results clearly indicated that the addition of the GN/Cu NPs composites significantly enhanced the tribological properties of grease. 展开更多
关键词 GRAPHENE copper composite SYNTHESIS TRIBOLOGY
下载PDF
Low-temperature heat conduction characteristics of diamond/Cu composite by pressure infiltration method 被引量:2
16
作者 Hong Guo Guang-Zhong Wang +2 位作者 Xi-Min Zhang Fa-Zhang Yin Cheng-Chang Jia 《Rare Metals》 SCIE EI CAS CSCD 2013年第6期579-585,共7页
In this paper,diamond/CuCr and diamond/CuB composites were prepared using the pressure infiltration method.The physical property measurement system(PPMS)was adopted to evaluate the thermal conductivity of diamond/Cu a... In this paper,diamond/CuCr and diamond/CuB composites were prepared using the pressure infiltration method.The physical property measurement system(PPMS)was adopted to evaluate the thermal conductivity of diamond/Cu and MoCu composites within the range of100–350 K,and a scanning electron microscope(SEM)was utilized to analyze the microstructure and fracture appearance of the materials.The research indicates that the thermal conductivity of diamond/Cu composite within the range of100–350 K is 2.5–3.0 times that of the existing MoCu material,and the low-temperature thermal conductivity of diamond/Cu composite presents an exponential relationship with the temperature.If B element was added to a Cu matrix and a low-temperature binder was used for prefabricated elements,favorable interfacial adhesion,relatively high interfacial thermal conductivity,and favorable low-temperature heat conduction characteristics would be apparent. 展开更多
关键词 diamond/Cu composite Low-temperature thermal conductivity Pressure infiltration
下载PDF
Influence of Li2O Addition on the Performance of Vitrified Bond and Vitrified Diamond Composites 被引量:4
17
作者 郭兵健 JIANG Hongyi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第4期699-705,共7页
In order to develop high-performance diamond wheels,the vitrified bond with different contents of Li2O addition and corresponding diamond composites were prepared.The experimental results show that the addition of a s... In order to develop high-performance diamond wheels,the vitrified bond with different contents of Li2O addition and corresponding diamond composites were prepared.The experimental results show that the addition of a small content of Li2O leads the formation of the mullite phase in vitrified bond.When the Li2O content is 3wt%,the mullite content in the vitrified bond reaches the maximum.Whereas,the vitrified bond turns into a pure glass phase when the Li2O content further increases to 5wt%.The softening temperature of vitrified bond,wetting angle between the vitrified bond and the diamond film decrease with the increasing of the Li2O content.The softening point of the vitrified bond with 5wt% Li2O is 537 ℃ and the contact angle is 32°,which are 44 ℃ and 44° lower than those of the sample without Li2O.The CTE (coefficient of thermal expansion),the flexural strength and hardness of the diamond composite sample first increase and then decrease with the increasing of the Li2O content.When the Li2O addition is 3wt%,the flexural strength and hardness of the composites reaches the maximum values of 93 MPa and 98 HRB,respectively,which are 43.1% and 12.6% higher than those of the sample without Li2O. 展开更多
关键词 Li2O addition PERFORMANCE vitrified bond vitrified diamond composite
下载PDF
Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling 被引量:3
18
作者 Ping-ping Wang Guo-qin Chen +5 位作者 Wen-jun Li Hui Li Bo-yu Ju Murid Hussain Wen-shu Yang Gao-hui Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第11期1821-1827,共7页
The microstructural evolution and performance of diamond/Al composites during thermal cycling has rarely been investigated.In the present work,the thermal stability of diamond/Al composites during thermal cycling for ... The microstructural evolution and performance of diamond/Al composites during thermal cycling has rarely been investigated.In the present work,the thermal stability of diamond/Al composites during thermal cycling for up to 200 cycles was explored.Specifically,the thermal conductivity(λ)of the composites was measured and scanning electron microscopy of specific areas in the same samples was carried out to achieve quasi-in situ observations.The interface between the(100)plane of diamond and the Al matrix was well bonded with a zigzag morphology and abundant needle-like Al4C3 phases.By contrast,the interface between the(111)plane of diamond and the Al matrix showed weak bonding and debonded during thermal cycling.The debonding length increased rapidly over the first 100 thermal cycles and then increased slowly in the following 100 cycles.Theλof the diamond/Al composites decreased abruptly over the initial 20 cycles,increased afterward,and then decreased monotonously once more with increasing number of thermal cycles.Decreases in theλof the Al matrix and the corresponding stress concentration at the diamond/Al interface caused by thermal mismatch,rather than interfacial debonding,may be the main factors influencing the decrease inλof the diamond/Al composites,especially in the initial stages of thermal cycling. 展开更多
关键词 metal-matrix composites diamond STABILITY thermal mismatch stress
下载PDF
Effect of sintering on the relative density of Cr-coated diamond/Cu composites prepared by spark plasma sintering 被引量:4
19
作者 Wei Cui Hui Xu +3 位作者 Jian-hao Chen Shu-bin Ren Xin-bo He Xuan-hui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第6期716-722,共7页
Cr-coated diamond/Cu composites were prepared by spark plasma sintering. The effects of sintering pressure, sintering temperature, sintering duration, and Cu powder particle size on the relative density and thermal co... Cr-coated diamond/Cu composites were prepared by spark plasma sintering. The effects of sintering pressure, sintering temperature, sintering duration, and Cu powder particle size on the relative density and thermal conductivity of the composites were investigated in this paper. The influence of these parameters on the properties and microstructures of the composites was also discussed. The results show that the relative density of Cr-coated diamond/Cu reaches ~100% when the composite is gradually compressed to 30 MPa during the heating process. The densification temperature increases from 880 to 915℃ when the diamond content is increased from 45vol% to 60vol%. The densification temperature does not increase further when the content reaches 65vol%. Cu powder particles in larger size are beneficial for increasing the relative density of the composite. 展开更多
关键词 metal matrix composites copper diamond relative density spark plasma sintering
下载PDF
Thermodynamic and kinetic study on interfacial reaction and diamond graphitization of Cu Fe-based diamond composite 被引量:1
20
作者 李文生 张杰 +4 位作者 董洪锋 禇克 王顺才 刘毅 李亚明 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期524-530,共7页
Cu-Fe based diamond composites used for saw-blade segments are directly fabricated by vacuum and pressureassisted sintering. The carbide forming elements Cr and Ti are added to improve interfacial bonding between diam... Cu-Fe based diamond composites used for saw-blade segments are directly fabricated by vacuum and pressureassisted sintering. The carbide forming elements Cr and Ti are added to improve interfacial bonding between diamond and the Cu-Fe matrix. The interfacial reactions between diamond/graphite and Cr or Ti, and diamond graphitization are investigated by thermodynamics/kinetics analyses and experimental methods. The results show that interfacial reactions and graphitization of diamond can automatically proceed thermodynamically. The Cr3C2, Cr7C3, Cr23C6, and TiC are formed at the interfaces of composites by reactions between diamond and Cr or Ti; diamond graphitization does not occur because of the kinetic difficulty at 1093 K under the pressure of 13 MPa. 展开更多
关键词 THERMODYNAMICS KINETICS diamond composites diamond graphitization
下载PDF
上一页 1 2 121 下一页 到第
使用帮助 返回顶部