Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesi...Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesized by the “bottle around ship” methodology in this research by regulating the dissolution rate of Cu2O and the generation rate of metal-organic framework(MOF) materials. Cu2O@HKUST-1 was carbonized to form a Cu O@porous carbon(CuO@PC) composite material. CuO@PC was synthesized into a copper azide(CA) @PC composite energetic material through a gas-solid phase in-situ azidation reaction.CA is encapsulated in PC framework, which acts as a nanoscale Faraday cage, and its excellent electrical conductivity prevents electrostatic charges from accumulating on the energetic material’s surface. The CA@PC composite energetic material has a CA content of 89.6%, and its electrostatic safety is nearly 30times that of pure CA(1.47 mJ compared to 0.05 mJ). CA@PC delivers an outstanding balance of safety and energy density compared to similar materials.展开更多
Two types of porcelain tiles with steel slag as the main raw material (steel slag ceramics) were synthesized based on the CaO-A1203-SiO2 and CaO--MgO-SiO2 systems, and their bending strengths up to 53.47 MPa and 99....Two types of porcelain tiles with steel slag as the main raw material (steel slag ceramics) were synthesized based on the CaO-A1203-SiO2 and CaO--MgO-SiO2 systems, and their bending strengths up to 53.47 MPa and 99.84 MPa, respectively, were obtained. The presence of anorthite, a-quartz, magnetite, and pyroxene crystals (augite and diopside) in the steel slag ceramics were very different from the composition of traditional ceramics. X-ray diffraction (XRD) and electron probe X-ray microanalysis (EPMA) results illustrated that the addition of steel slag reduced the temperature of extensive liquid generation and further decreased the firing temperature. The considerable contents of glass-modifying oxide liquids with rather low viscosities at high temperature in the steel slag ceramic adobes promoted element diffusion and crystallization. The results of this study demonstrated a new approach for extensive and effective recycling of steel slag.展开更多
Bimetallic composite material of bainitic steel and PD3 steel was produced with electroslag casting process, and element distribution of its composite interface was investigated by theoretical calculation and energy d...Bimetallic composite material of bainitic steel and PD3 steel was produced with electroslag casting process, and element distribution of its composite interface was investigated by theoretical calculation and energy dispersive spectrometer(EDS). Results show that the tensile strength(1,450 MPa), hardness(HRC 41-47) and impact toughness(94.7J·cm^(-2)) of bainitic steel were comparatively high, while its elongation was slightly low(4.0%). Tensile strength(1,100 MPa), hardness(>HRC 31) and elongation(7.72%) of the interface were also relatively high, but its impact toughness was low at 20.4 J·cm^(-2). Results of theoretical calculation of the element distribution in the interface region were basically consistent with that of EDS. Therefore, electroslag casting is a practical process to produce bimetallic composite material of bainitic steel and PD3 steel, and theoretical calculation also is a feasible method to study element distribution of their interface.展开更多
Using steel slag as a main raw material of ceramics is considered as a high value-added way. However, the relationship among the initial composition, ceramic microstructure, and macroscopic properties requires further...Using steel slag as a main raw material of ceramics is considered as a high value-added way. However, the relationship among the initial composition, ceramic microstructure, and macroscopic properties requires further study. In this paper, a series of ceramics with different slag ratios (0-70wt%) were designed, and the software FACTsage was introduced to simulate the formation of crystalline phases. The simulation results indicate that mullite is generated but drastically reduced at the slag ratios of 0-25wt%, and anorthite is the dominant crystalline phase in the slag content of 25wt%-45wt%. When the slag ratio is above 45wt%, pyroxene is generated more than anorthite. This is because increasing magnesium can promote the formation of pyroxene. Then, the formula with a slag content of 40wt% was selected and optimized. X-ray diffraction results were good consistent with the simulation results. Finally, the water absorption and bending strength of optimized samples were measured.展开更多
Copper/liquid microcapsule composite coatings with polyvinyl alcohol (PVA), gelatin or methyl cellulose (MC) as shell materials were prepared by electrodeposition. The influence of shell materials on the corrosion...Copper/liquid microcapsule composite coatings with polyvinyl alcohol (PVA), gelatin or methyl cellulose (MC) as shell materials were prepared by electrodeposition. The influence of shell materials on the corrosion resistance of the composite coatings in 0.1 M H2SO4 was investigated by means of electrochemical techniques, scanning electron microscopy (SEM), and energy dispersion spectrometry (EDS). The results show that the participation of microcapsules can enhance the corrosion resistance of the composite coatings compared with the traditional copper layer. Based on the analysis of electrochemical test results, the release ways of microcapsules were deduced. Gelatin and MC as the shell materials of microcapsules are easy to release quickly in the composite coating. On the contrary, the releasing speed of PVA microcapsules is relatively slow due to their characteristics.展开更多
The ever increasing demand for steel materials that have good combinations between strength and toughness urged all researchers working in the field of material science to find new alloys that can approach that requir...The ever increasing demand for steel materials that have good combinations between strength and toughness urged all researchers working in the field of material science to find new alloys that can approach that requirement.Unfortunately strength and toughness of materials are always counter acting properties.However,carbon contents in the steel define to a great extent its strength and toughness.In this research an effort is paid to produce steel alloy composites that can give higher strength together with good toughness without alloying with carbon.The mechanism of strengthening in Iron-Cobalt-Tungsten composite alloys with variations in Co and W contents is investigated.The fracture toughness and hardness,are measured for all alloy composites under investigation.The changes in microstructures after heat treatment are emphasized using metallurgical microscopy and SEM-aided with EDX analyzing unit.展开更多
To fabricate the metal-ceramics multi-layer hollow functionally gradient materials(FGMs) that might meet the requirement of repeated service and long working time of high temperature burners, such as spacecraft engine...To fabricate the metal-ceramics multi-layer hollow functionally gradient materials(FGMs) that might meet the requirement of repeated service and long working time of high temperature burners, such as spacecraft engine, the microstructure and properties of composite of stainless steel and partially stabilized zirconia were investigated. Samples of different proportions of stainless steel to partially yttria-stabilized zirconia were fabricated by powder extrusion and sintering method. Shrinkage, relative density, microstructure, micro-Vickers hardness, compression strength, bending strength, fractography morphology and electrical resistivity of sintered samples with different proportions of stainless steel were measured. The results show that threshold of metallic matrix composite(MMC) is approximately equal to 60%(volume fraction) stainless steel. The samples with 0 to 50%(volume fraction) stainless steel indicate ceramic brittleness and non-cutability, and the samples with 70% to 100%(volume fraction) stainless steel indicate metallic plasticity and cutability.展开更多
Diamond/Cu-xCr composites were fabricated by pressure infiltration process.The thermal conductivities of diamond/Cu-xCr(x = 0.1,0.5,0.8) composites were above 650 W/mK,higher than that of diamond/Cu composites.The t...Diamond/Cu-xCr composites were fabricated by pressure infiltration process.The thermal conductivities of diamond/Cu-xCr(x = 0.1,0.5,0.8) composites were above 650 W/mK,higher than that of diamond/Cu composites.The tensile strengths ranged from 186 to 225 MPa,and the bonding strengths ranged from 400 to 525 MPa.Influences of Cr element on the thermo-physical properties and interface structures were analyzed.The intermediate layer was confirmed as Cr3C2 and the amount of Cr3C2 increased with the increase of Cr concentration in Cu-xCr alloys.When the Cr concentration was up to 0.5 wt.%,the content of the Cr3C2 layer was constant.As the thickness of the Cr3C2 layer became larger,the composites showed a lower thermal conductivity but higher mechanical properties.The coefficients of thermal expansion(CTE) of diamond/Cu-xCr(x = 0.1,0.5,0.8) composites were in good agreement with the predictions of the Kerner' model.展开更多
Cu/Al composites are of vital importance in industrial applications because of their numerous advantages. The influence of bond-ing temperature and cooling rate on the microstructure and morphology of Cu/Al composites...Cu/Al composites are of vital importance in industrial applications because of their numerous advantages. The influence of bond-ing temperature and cooling rate on the microstructure and morphology of Cu/Al composites was investigated in this paper. The interfacial morphology and constituent phases at the Cu/Al interface were analyzed by optical microscopy and field-emission scanning electron mi-croscopy equipped with energy-dispersive X-ray spectroscopy. The results indicate that effective Cu-Al bonding requires a higher bonding temperature to facilitate interdiffusion between the two metals. The microstructural characteristics are associated with various bonding tem-peratures, which impact the driving force of interdiffusion. It is observed that cooling rate exerts a significant influence on the morphology and amount of the intermetallic compounds at the interfacial region. Meanwhile, microhardness measurements show that hardness varies with the bonding temperature and rate of cooling.展开更多
W/Cu functionally gradient material (FGM) has excellent mechanical properties since it can effectively relax interlayer thermal stresses caused by the mismatch between their thermal expansion coefficients. W/Cu FGM co...W/Cu functionally gradient material (FGM) has excellent mechanical properties since it can effectively relax interlayer thermal stresses caused by the mismatch between their thermal expansion coefficients. W/Cu FGM combines the advantages of tungsten such as high melting point and service strength, with heat conductivity and plasticity of copper at room temperature. Thus it demonstrates satisfactory heat corrosion and thermal shock resistance and will be a promising candidate as divertor component in thermonuclear device. Owing to the dramatic difference of melting point between tungsten and copper, conventional processes meet great difficulties in fabricating this kind of FGMs. A new approach termed graded sintering under ultra-high pressure (GSUHP) is proposed, with which a near 96% relative density of W/Cu FGM that contains a full distribution spectrum (0-100%W) has been successfully fabricated. Suitable amount of transition metals (such as nickel, zirconium, vanadium) is employed as additives to activate tungsten's sintering, enhance phase wettability and bonding strength between W and Cu. Densification effects of different layer of FGM were investigated. Microstructure morphology and interface elements distribution were observed and analyzed. The thermal shock performance of W/Cu FGM was also preliminarily tested.展开更多
Copper and copper-based materials are widely used in power electronics,auto-mobiles,mechanical manufacturing and high-tech manufacturing fields such as aerospace,telecommunications and integrated circuits owing to the...Copper and copper-based materials are widely used in power electronics,auto-mobiles,mechanical manufacturing and high-tech manufacturing fields such as aerospace,telecommunications and integrated circuits owing to their compre-hensive advantages in mechanical,electrical conductivity and processing prop-erties.With the rapid development of technology,many emerging technical fields have introduced more challenging requirements for the electrical conductivity of copper.This article reviews the research status of high-conductivity copper-based materials and introduces three methods to improve electrical conductivity,including purification,alloying and addition of nanocarbon materials.We sum-marise the advantages,disadvantages and future development trends of methods for improving copper conductivity.The key to producing high-conductivity copper-based materials is development of low-cost,continuous and stable processes.展开更多
The Tongchanghe native copper-chalcocite deposit at Ninglang occurs in low-Ti basalts of western Yunnan, and the mode of fault-filling & metasomatism metallogenesis indicates that this deposit is of late-stage hyd...The Tongchanghe native copper-chalcocite deposit at Ninglang occurs in low-Ti basalts of western Yunnan, and the mode of fault-filling & metasomatism metallogenesis indicates that this deposit is of late-stage hydrothermal origin. This makes it more complicated to define the source of ore-forming materials. This paper introduces the Pb isotope data of Himalayan alkali-rich porphyries, regional Early-Middle Proterozoic metamorphic rock basement and various types of rocks of the mining district in western Yunnan with an attempt to constrain the origin of the Tongchanghe native copper-chalcocite deposit at Ninglang. The results showed that the ores are relatively homogeneous in Pb isotopic composition, implying a simple ore-forming material source. The three sets of Pb isotopic ratios in the Himalayan alkali-rich porphyries are all higher than those of the ores; the regional basement metamorphic rocks show a wide range of variations in Pb isotopic ratio, quite different from the isotopic composition of ore lead; the Pb isotopic composition of the Triassic sedimentary rocks and mudstone and siltstone interbeds in the Late Permian Heinishao Formation (corresponding to the forth cycle of basaltic eruption) in the mining district has the characteristics of radiogenic lead and is significantly different from the isotopic composition of ore lead; like the ores, the Emeishan basalts in the mining district and those regionally distributed possess the same Pb isotopic composition, showing a complete overlap with respect to their distribution range. From the above, the possibilities can be ruled out that the ore-forming materials of the Tongchanghe deposit were derived from the basement, a variety of Himalayan magmatic activities, etc. It is thereby defined that the ore-forming materials were derived largely from the Emeishan basalts. From the data available it is deduced that the native cupper-chalcocite-type metallogenesis that occurred in the Emeishan basalt-distributed area has the same metal source as the Tongchanghe deposit.展开更多
Ordinary concrete presents short service life when used for building and repairing high-grade road with heavy traffic due to its large brittleness, poor bending flexibility and serious shrinkage on drying. In this pap...Ordinary concrete presents short service life when used for building and repairing high-grade road with heavy traffic due to its large brittleness, poor bending flexibility and serious shrinkage on drying. In this paper, a new kind of high performance concrete has been designed by means of combination of organic, inorganic material as well as metal material. The research and application have shown that this new concrete can significantly counteract the deficiency of ordinary concrete and give excellent mechanical properties and pavement performances. The application of this new kind of concrete is of great social and economic significance.展开更多
The road surface of cement concrete in highway is easily cracked and even destroyed due to inhomogeneous subsiding of the road foundation. In this work, a super-thin-coating material is prepared in order to repair the...The road surface of cement concrete in highway is easily cracked and even destroyed due to inhomogeneous subsiding of the road foundation. In this work, a super-thin-coating material is prepared in order to repair the destroyed thin road surface, in which polymers and steel-fiber are added into ordinary concrete to form a steel fiber reinforced polymer-cement-based composite, the composite was successfully used to repair road surface. Microstructure and mechanical properties of the composites are measured and analyzed.展开更多
基金the financial support by Postgraduate Research & Practice Innovation Program from Jiangsu Science and Technology Department under Grant number KYCX19_0320。
文摘Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesized by the “bottle around ship” methodology in this research by regulating the dissolution rate of Cu2O and the generation rate of metal-organic framework(MOF) materials. Cu2O@HKUST-1 was carbonized to form a Cu O@porous carbon(CuO@PC) composite material. CuO@PC was synthesized into a copper azide(CA) @PC composite energetic material through a gas-solid phase in-situ azidation reaction.CA is encapsulated in PC framework, which acts as a nanoscale Faraday cage, and its excellent electrical conductivity prevents electrostatic charges from accumulating on the energetic material’s surface. The CA@PC composite energetic material has a CA content of 89.6%, and its electrostatic safety is nearly 30times that of pure CA(1.47 mJ compared to 0.05 mJ). CA@PC delivers an outstanding balance of safety and energy density compared to similar materials.
文摘Two types of porcelain tiles with steel slag as the main raw material (steel slag ceramics) were synthesized based on the CaO-A1203-SiO2 and CaO--MgO-SiO2 systems, and their bending strengths up to 53.47 MPa and 99.84 MPa, respectively, were obtained. The presence of anorthite, a-quartz, magnetite, and pyroxene crystals (augite and diopside) in the steel slag ceramics were very different from the composition of traditional ceramics. X-ray diffraction (XRD) and electron probe X-ray microanalysis (EPMA) results illustrated that the addition of steel slag reduced the temperature of extensive liquid generation and further decreased the firing temperature. The considerable contents of glass-modifying oxide liquids with rather low viscosities at high temperature in the steel slag ceramic adobes promoted element diffusion and crystallization. The results of this study demonstrated a new approach for extensive and effective recycling of steel slag.
基金financially supported by the Hebei Province Science and Technology Support Program(No.14211007D)
文摘Bimetallic composite material of bainitic steel and PD3 steel was produced with electroslag casting process, and element distribution of its composite interface was investigated by theoretical calculation and energy dispersive spectrometer(EDS). Results show that the tensile strength(1,450 MPa), hardness(HRC 41-47) and impact toughness(94.7J·cm^(-2)) of bainitic steel were comparatively high, while its elongation was slightly low(4.0%). Tensile strength(1,100 MPa), hardness(>HRC 31) and elongation(7.72%) of the interface were also relatively high, but its impact toughness was low at 20.4 J·cm^(-2). Results of theoretical calculation of the element distribution in the interface region were basically consistent with that of EDS. Therefore, electroslag casting is a practical process to produce bimetallic composite material of bainitic steel and PD3 steel, and theoretical calculation also is a feasible method to study element distribution of their interface.
基金financially supported by the National Natural Science Foundation of China (Nos. 51034008 and 51004012)the National High Technology Research and Development Program of China (No. 2011AA06A105)
文摘Using steel slag as a main raw material of ceramics is considered as a high value-added way. However, the relationship among the initial composition, ceramic microstructure, and macroscopic properties requires further study. In this paper, a series of ceramics with different slag ratios (0-70wt%) were designed, and the software FACTsage was introduced to simulate the formation of crystalline phases. The simulation results indicate that mullite is generated but drastically reduced at the slag ratios of 0-25wt%, and anorthite is the dominant crystalline phase in the slag content of 25wt%-45wt%. When the slag ratio is above 45wt%, pyroxene is generated more than anorthite. This is because increasing magnesium can promote the formation of pyroxene. Then, the formula with a slag content of 40wt% was selected and optimized. X-ray diffraction results were good consistent with the simulation results. Finally, the water absorption and bending strength of optimized samples were measured.
基金supported by the National Natural Science Foundation of China (No. 50771010)
文摘Copper/liquid microcapsule composite coatings with polyvinyl alcohol (PVA), gelatin or methyl cellulose (MC) as shell materials were prepared by electrodeposition. The influence of shell materials on the corrosion resistance of the composite coatings in 0.1 M H2SO4 was investigated by means of electrochemical techniques, scanning electron microscopy (SEM), and energy dispersion spectrometry (EDS). The results show that the participation of microcapsules can enhance the corrosion resistance of the composite coatings compared with the traditional copper layer. Based on the analysis of electrochemical test results, the release ways of microcapsules were deduced. Gelatin and MC as the shell materials of microcapsules are easy to release quickly in the composite coating. On the contrary, the releasing speed of PVA microcapsules is relatively slow due to their characteristics.
文摘The ever increasing demand for steel materials that have good combinations between strength and toughness urged all researchers working in the field of material science to find new alloys that can approach that requirement.Unfortunately strength and toughness of materials are always counter acting properties.However,carbon contents in the steel define to a great extent its strength and toughness.In this research an effort is paid to produce steel alloy composites that can give higher strength together with good toughness without alloying with carbon.The mechanism of strengthening in Iron-Cobalt-Tungsten composite alloys with variations in Co and W contents is investigated.The fracture toughness and hardness,are measured for all alloy composites under investigation.The changes in microstructures after heat treatment are emphasized using metallurgical microscopy and SEM-aided with EDX analyzing unit.
文摘To fabricate the metal-ceramics multi-layer hollow functionally gradient materials(FGMs) that might meet the requirement of repeated service and long working time of high temperature burners, such as spacecraft engine, the microstructure and properties of composite of stainless steel and partially stabilized zirconia were investigated. Samples of different proportions of stainless steel to partially yttria-stabilized zirconia were fabricated by powder extrusion and sintering method. Shrinkage, relative density, microstructure, micro-Vickers hardness, compression strength, bending strength, fractography morphology and electrical resistivity of sintered samples with different proportions of stainless steel were measured. The results show that threshold of metallic matrix composite(MMC) is approximately equal to 60%(volume fraction) stainless steel. The samples with 0 to 50%(volume fraction) stainless steel indicate ceramic brittleness and non-cutability, and the samples with 70% to 100%(volume fraction) stainless steel indicate metallic plasticity and cutability.
基金supported by the High-Tech Research and Development Program of China (Nos.2006AA03A135 and 2008AA03Z505)
文摘Diamond/Cu-xCr composites were fabricated by pressure infiltration process.The thermal conductivities of diamond/Cu-xCr(x = 0.1,0.5,0.8) composites were above 650 W/mK,higher than that of diamond/Cu composites.The tensile strengths ranged from 186 to 225 MPa,and the bonding strengths ranged from 400 to 525 MPa.Influences of Cr element on the thermo-physical properties and interface structures were analyzed.The intermediate layer was confirmed as Cr3C2 and the amount of Cr3C2 increased with the increase of Cr concentration in Cu-xCr alloys.When the Cr concentration was up to 0.5 wt.%,the content of the Cr3C2 layer was constant.As the thickness of the Cr3C2 layer became larger,the composites showed a lower thermal conductivity but higher mechanical properties.The coefficients of thermal expansion(CTE) of diamond/Cu-xCr(x = 0.1,0.5,0.8) composites were in good agreement with the predictions of the Kerner' model.
基金supported by the National Science Foundation of China(No.51274038)
文摘Cu/Al composites are of vital importance in industrial applications because of their numerous advantages. The influence of bond-ing temperature and cooling rate on the microstructure and morphology of Cu/Al composites was investigated in this paper. The interfacial morphology and constituent phases at the Cu/Al interface were analyzed by optical microscopy and field-emission scanning electron mi-croscopy equipped with energy-dispersive X-ray spectroscopy. The results indicate that effective Cu-Al bonding requires a higher bonding temperature to facilitate interdiffusion between the two metals. The microstructural characteristics are associated with various bonding tem-peratures, which impact the driving force of interdiffusion. It is observed that cooling rate exerts a significant influence on the morphology and amount of the intermetallic compounds at the interfacial region. Meanwhile, microhardness measurements show that hardness varies with the bonding temperature and rate of cooling.
基金China National Committee of High Technology New Materials under grant No.863-715-011-0230.]
文摘W/Cu functionally gradient material (FGM) has excellent mechanical properties since it can effectively relax interlayer thermal stresses caused by the mismatch between their thermal expansion coefficients. W/Cu FGM combines the advantages of tungsten such as high melting point and service strength, with heat conductivity and plasticity of copper at room temperature. Thus it demonstrates satisfactory heat corrosion and thermal shock resistance and will be a promising candidate as divertor component in thermonuclear device. Owing to the dramatic difference of melting point between tungsten and copper, conventional processes meet great difficulties in fabricating this kind of FGMs. A new approach termed graded sintering under ultra-high pressure (GSUHP) is proposed, with which a near 96% relative density of W/Cu FGM that contains a full distribution spectrum (0-100%W) has been successfully fabricated. Suitable amount of transition metals (such as nickel, zirconium, vanadium) is employed as additives to activate tungsten's sintering, enhance phase wettability and bonding strength between W and Cu. Densification effects of different layer of FGM were investigated. Microstructure morphology and interface elements distribution were observed and analyzed. The thermal shock performance of W/Cu FGM was also preliminarily tested.
基金supported by the Beijing Nova Program(No.20230484371).
文摘Copper and copper-based materials are widely used in power electronics,auto-mobiles,mechanical manufacturing and high-tech manufacturing fields such as aerospace,telecommunications and integrated circuits owing to their compre-hensive advantages in mechanical,electrical conductivity and processing prop-erties.With the rapid development of technology,many emerging technical fields have introduced more challenging requirements for the electrical conductivity of copper.This article reviews the research status of high-conductivity copper-based materials and introduces three methods to improve electrical conductivity,including purification,alloying and addition of nanocarbon materials.We sum-marise the advantages,disadvantages and future development trends of methods for improving copper conductivity.The key to producing high-conductivity copper-based materials is development of low-cost,continuous and stable processes.
基金This study was financially supported by the Key Research OrientationProject of Chinese Academy of Sciences (KZCX3-SW-125).
文摘The Tongchanghe native copper-chalcocite deposit at Ninglang occurs in low-Ti basalts of western Yunnan, and the mode of fault-filling & metasomatism metallogenesis indicates that this deposit is of late-stage hydrothermal origin. This makes it more complicated to define the source of ore-forming materials. This paper introduces the Pb isotope data of Himalayan alkali-rich porphyries, regional Early-Middle Proterozoic metamorphic rock basement and various types of rocks of the mining district in western Yunnan with an attempt to constrain the origin of the Tongchanghe native copper-chalcocite deposit at Ninglang. The results showed that the ores are relatively homogeneous in Pb isotopic composition, implying a simple ore-forming material source. The three sets of Pb isotopic ratios in the Himalayan alkali-rich porphyries are all higher than those of the ores; the regional basement metamorphic rocks show a wide range of variations in Pb isotopic ratio, quite different from the isotopic composition of ore lead; the Pb isotopic composition of the Triassic sedimentary rocks and mudstone and siltstone interbeds in the Late Permian Heinishao Formation (corresponding to the forth cycle of basaltic eruption) in the mining district has the characteristics of radiogenic lead and is significantly different from the isotopic composition of ore lead; like the ores, the Emeishan basalts in the mining district and those regionally distributed possess the same Pb isotopic composition, showing a complete overlap with respect to their distribution range. From the above, the possibilities can be ruled out that the ore-forming materials of the Tongchanghe deposit were derived from the basement, a variety of Himalayan magmatic activities, etc. It is thereby defined that the ore-forming materials were derived largely from the Emeishan basalts. From the data available it is deduced that the native cupper-chalcocite-type metallogenesis that occurred in the Emeishan basalt-distributed area has the same metal source as the Tongchanghe deposit.
文摘Ordinary concrete presents short service life when used for building and repairing high-grade road with heavy traffic due to its large brittleness, poor bending flexibility and serious shrinkage on drying. In this paper, a new kind of high performance concrete has been designed by means of combination of organic, inorganic material as well as metal material. The research and application have shown that this new concrete can significantly counteract the deficiency of ordinary concrete and give excellent mechanical properties and pavement performances. The application of this new kind of concrete is of great social and economic significance.
文摘The road surface of cement concrete in highway is easily cracked and even destroyed due to inhomogeneous subsiding of the road foundation. In this work, a super-thin-coating material is prepared in order to repair the destroyed thin road surface, in which polymers and steel-fiber are added into ordinary concrete to form a steel fiber reinforced polymer-cement-based composite, the composite was successfully used to repair road surface. Microstructure and mechanical properties of the composites are measured and analyzed.
基金National Science Foundation for Young Scientists of China(Nos.12102427,12102202)Chinese Innovation and Entrepreneurship Training Program for College Students(No.202210288112X)。