Quasi-NPR(negative Poisson’s ratio)steel is a new type of super bolt material with high strength,high ductility,and a micro-negative Poisson’s effect.This material overcomes the contrasting characteristics of the hi...Quasi-NPR(negative Poisson’s ratio)steel is a new type of super bolt material with high strength,high ductility,and a micro-negative Poisson’s effect.This material overcomes the contrasting characteristics of the high strength and high ductility of steel and it has significant energy-absorbing characteristics,which is of high value in deep rock and soil support engineering.However,research on the shear resistance of quasi-NPR steel has not been carried out.To study the shear performance of quasi-NPR steel bolted rock joints,indoor shear tests of bolted rock joints under different normal stress conditions were carried out.Q235 steel and#45 steel,two representative ordinary bolt steels,were set up as a control group for comparative tests to compare and analyze the shear strength,deformation and instability mode,shear energy absorption characteristics,and bolting contribution of different types of bolts.The results show that the jointed rock masses without bolt reinforcement undergo brittle failure under shear load,while the bolted jointed rock masses show obvious ductile failure characteristics.The shear deformation ca-pacity of quasi-NPR steel is more than 3.5 times that of Q235 steel and#45 steel.No fracture occurs in the quasi-NPR steel during large shear deformation and it can provide stable shear resistance.However,the other two types of control bolts become fractured under the same conditions.Quasi-NPR steel has significant energy-absorbing characteristics under shear load and has obvious advantages in terms of absorbing the energy released by shear deformation of jointed rock masses as compared with ordinary steel.In particular,the shear force plays a major role in resisting the shear deformation of Q235 steel and#45 steel,therefore,fracture failure occurs under small bolt deformation.However,the axial force of quasi-NPR steel can be fully exerted when resisting joint shear deformation;the steel itself does not break when large shear deformation occurs,and the supporting effect of the jointed rock mass is effectively guaranteed.展开更多
The aim of this study was to optimize the geometry and the design of metallic/composite single bolted joints subjected to tension-compression loading. For this purpose, it was necessary to evaluate the stress state in...The aim of this study was to optimize the geometry and the design of metallic/composite single bolted joints subjected to tension-compression loading. For this purpose, it was necessary to evaluate the stress state in each component of the bolted join. The multi-material assembly was based on the principle of double lap bolted joint. It was composed of a symmetrical balanced woven glass-epoxy composite material plate fastened to two stainless sheets using a stainless pre-stressed bolt. In order to optimize the design and the geometry of the assembly, ten configurations were proposed and studied: a classical simple bolted joint, two joints with an insert (a BigHead<sup>R</sup> insert and a stair one) embedded in the composite, two “waved” solutions, three symmetrical configurations composed of a succession of metallic and composites layers, without a sleeve, with one and with two sleeves, and two non-symmetrical constituted of metallic and composites layers associated with a stair-insert (one with a sleeve and one without). A tridimensional Finite Element Method (FEM) was used to model each configuration mentioned above. The FE models taked into account the different materials, the effects of contact between the different sheets of the assembly and the pre-stress in the bolt. The stress state was analyzed in the composite part. The concept of stress concentration factor was used in order to evaluate the stress increase in the highly stressed regions and to compare the ten configurations studied. For this purpose, three stress concentration factors were defined: one for a monotonic loading in tension, another for a monotonic loading in compression, and the third for a tension-compression cyclic loading. The results of the FEM computations showed that the use of alternative metallic and composite layers associated with two sleeves gived low values of stress concentration factors, smaller than 1.4. In this case, there was no contact between the bolt and the composite part and the most stressed region was not the vicinity of the hole but the end of the longest layers of the metallic inserts.展开更多
The effect of laser beam welding(LBW) process on the microstructure-mechanical property relationship of a dissimilar weld between the copper(Cu) and stainless steel(SS) was investigated.Backscattered electron(BSE) bas...The effect of laser beam welding(LBW) process on the microstructure-mechanical property relationship of a dissimilar weld between the copper(Cu) and stainless steel(SS) was investigated.Backscattered electron(BSE) based scanning electron microscopy(SEM) imaging was used to characterize the highly heterogeneous microstructural features across the LBW(Cu-SS) weld.The BSE analysis thoroughly evidenced the complex microstructures produced at dissimilar weld interfaces and fusion zone along with the compositional information.Widely different grain growths from coarse columnar grains to equiaxed ultrafine grains were also evident along the Cu-weld interface.A highresolution electron backscattered diffraction(EBSD) analysis confirmed the existence of the grain refinement mechanism at the Cu-weld interface.Both tensile and impact properties of the dissimilar weld were found to be closely aligned with the property of Cu base metal.Microhardness gradients were spatially evident in the non-homogeneous material composition zones such as fusion zone and the Cu-weld interface regions.The heterogeneous nucleation spots across the weld sub-regions were clearly identified and interlinked with their microhardness measurements for a holistic understanding of structure-property relationships of the local weld sub-regions.The findings were effectively correlated to achieve an insight into the local microstructural gradients across the weld.展开更多
An attempt was made to optimize friction welding parameters to attain a minimum hardness at the interface and a maximum tensile strength of the dissimilar joints of AISI 304 austenitic stainless steel (ASS) and copp...An attempt was made to optimize friction welding parameters to attain a minimum hardness at the interface and a maximum tensile strength of the dissimilar joints of AISI 304 austenitic stainless steel (ASS) and copper (Cu) alloy using response surface methodology (RSM). Three-factor, five-level central composite design matrix was used to specify experimental conditions. Twenty joints were fabricated using ASS and Cu alloy. Tensile strength and interface hardness were measured experimentally. Analysis of variance (ANOVA) method was used to find out significant main and interaction parameters and empirical relationships were developed using regression analysis. The friction welding parameters were optimized by constructing response graphs and contour plots using design expert software. The developed empirical relationships can be effectively used to predict tensile strength and interface hardness of friction welded ASS-Cu joints at 95% confidence level. The developed contour plots can be used to attain required level of optimum conditions to join ASS-Cu alloy by friction welding process.展开更多
Joints of copper and stainless steels are used in a er ospace applications. Production of these joints by fusion welding faces many dif ficulties. This may be due to the differences in their physical, metallurgical a ...Joints of copper and stainless steels are used in a er ospace applications. Production of these joints by fusion welding faces many dif ficulties. This may be due to the differences in their physical, metallurgical a nd mechanical properties. Electron Beam Welding (EBW) process has been found to be especially well suited in this area. Selection of the appropriate welding par ameters needs thorough investigations. These parameters include: preheat tempera ture (℃), welding current (I w), focusing current (I F), welding spee d (V), height between the gun and workpiece surface (H), scan width (S w) and shift distance (S). The present work aims firstly, setting the pr oper welding conditions to get sound joint between commercially pure copper (C10 200) and AISI 316 stainless steel plates 8 mm thickness. Secondly, investigate t he effect of Electron Beam (EB) shift, single-sided and double-sided welds on the mechanical, metallurgical and chemical properties of the weld bead. Due to t he high difference in thermal conductivity between copper and stainless steel, E lectron Beam (EB) was shifted towards copper with different values. These values were ranged from 0.3 to 0.9 mm in welding without preheating of copper plate an d from 0.1 to 0.4 mm with preheating. Number of joints were welded using variabl e EBW parameters in view to obtain the sound weld bead. These parameters are as follows: gradual reduction I w=51 to 49 mA, I F=845 mA, V=8 mm/sec , H=130 mm, S w=500 μm and S=0.4 mm. The investigation has shown t hat, the copper (C10200) plate must be preheated to get sound welded joint with AISI 316 stainless steel using the EBW process. The tensile fracture in all wel ded samples occurred in copper plate away from the weld bead. This reflects that the weld bead tensile strength is greater than the copper strength. The EB shif t has slight effect on hardness distribution through weld bead. The hardness val ue (H v) reduces in gradual manner from stainless steel hardness to copper one. The EB shift distance has no significant effect on the impact toughness.展开更多
A continuous wave diode laser with an output power of 2.8 kW was used to join pure copper and 304 stainless steel with a thickness of 1 mm. The focused laser beam with a diameter of O. 8 mm was irradiated on the coppe...A continuous wave diode laser with an output power of 2.8 kW was used to join pure copper and 304 stainless steel with a thickness of 1 mm. The focused laser beam with a diameter of O. 8 mm was irradiated on the copper side of the butt joints. In process of laser welding, effects of processing primary parameters on tensile strength of the joints were investigated. The interfacial characterizations of the joints were investigated by metallographic microscope, scanning electron microscope (SEM) and energy dispersive X-ray spectroscope (EDS). The results showed that the element diffusion and solution occur and metallurgical bonding was achieved between pure copper and 304 stainless steel. The maximum tensile strength of the joints was 209 MPa when the laser power of welding was 2. 4 kW and welding speed was 12 mm/s.展开更多
Electron beam welding was carried out between aluminum alloy and steel with Ag interlayer. Seam morphology, structure and mechanical properties of the joints were investigated with different action positions of the el...Electron beam welding was carried out between aluminum alloy and steel with Ag interlayer. Seam morphology, structure and mechanical properties of the joints were investigated with different action positions of the electron beam spot. The results show that with the increment of the beam offset to the silver side from the interface between silver and steel, the seam morphology was improved, and the porosity in the Ag interlayer vanished. A transition layer mainly composed of Ag2Al and Al eutectic was formed at the interface between silver and aluminum, and became thin and spiccato as the beam offset increased. When the beam offset was too large, two IMC layers composed of FeAl and FeAl3 respectively were formed at the interface between steel and Ag interlayer. The optimal beam offset was 0.2 mm, and the maximum tensile strength of the joint was 193 MPa, 88.9% that of the aluminum alloy, and the fracture occurred at the interface between steel and Ag interlayer.展开更多
The welded joints of 3Cr pipeline steel were fabricated with commercial welding wire using the gas tungsten arc welding (GTAW) technique. Potentiodynamic polarization curves, linear polarization resistance (LPR), ...The welded joints of 3Cr pipeline steel were fabricated with commercial welding wire using the gas tungsten arc welding (GTAW) technique. Potentiodynamic polarization curves, linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), scan- ning electron microscopy (SEM), and energy-dispersive spectrometry (EDS) were used to investigate the corrosion resistance and the growth of a corrosion film on the weld zone (WZ). The changes in electrochemical characteristics of the film were obtained through fitting of the EIS data. The results showed that the average corrosion rate of the WZ in CO2 environments first increased, then fluctuated, and finally de- creased gradually. The formation of the film on the WZ was divided into three stages: dynamic adsorption, incomplete-coverage layer forma- tion, and integral layer formation.展开更多
The surfaces of X80 pipeline steel welded joints were processed with a CO2 laser, and the effects of laser heat treatment (LHT) on H2S stress corrosion in the National Association of Corrosion Engineers (NACE) sol...The surfaces of X80 pipeline steel welded joints were processed with a CO2 laser, and the effects of laser heat treatment (LHT) on H2S stress corrosion in the National Association of Corrosion Engineers (NACE) solution were analyzed by a slow strain rate test. The fracture morphologies and chemical components of corrosive products before and after LHT were analyzed by scanning electron microscopy and energy-dispersive spectroscopy, respectively, and the mechanism of LHT on stress corrosion cracking was discussed. Results showed that the fracture for welded joints was brittle in its original state, while it was transformed to a ductile fracture after LHT. The tendencies of hydrogen-induced corrosion were reduced, and the stress corrosion sensitivity index decreased from 35.2% to 25.3%, indicating that the stress corrosion resistance of X80 pipeline steel welded joints has been improved by LHT.展开更多
In the present study, the dynamic and fatigue characteristics of two types of stress joints are investigated under ocean environmental condition. Connected with the riser and the platform, stress joint at the vessel h...In the present study, the dynamic and fatigue characteristics of two types of stress joints are investigated under ocean environmental condition. Connected with the riser and the platform, stress joint at the vessel hang-off position should be one of the main critical design challenges for a steel catenary riser (SCR) in deepwater. When the riser is under a high pressure and deepwater working condition, the stress state for the joint is more complex, and the fatigue damage is easy to occur at this position. Stress joint discussed in this paper includes two types: Tapered Stress Joint (TSJ) and Sleeved Stress Joint (SSJ), and multiaxial fatigue analysis results are given for comparison. Global dynamic analysis for an SCR is performed first, and then the local boundary conditions obtained from the previous analysis are applied to the stress joint FE model for the later dynamic and multiaxial fatigue analysis. Results indicate that the stress level is far lower than the yield limit of material and the damage induced by fatigue needs more attention. Besides, the damage character of the two types of stress joints differs: for TSJ, the place where the stress joint connects with the riser is easy to occur fatigue damage; for SSJ, the most probable position is at the place where the end of the inner sleeve pipe contacts with the riser body. Compared with SSJ, TSJ shows a higher stress level but better fatigue performance, and it will have a higher material cost. In consideration of various factors, designers should choose the most suitable type and also geometric parameters.展开更多
To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens...To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.展开更多
Thermal fatigue performance of copper/stainless steel explosive welding joint was investigated by using a highly effective thermal fatigue test device. The testing device adopted induction coil to heat and carry out t...Thermal fatigue performance of copper/stainless steel explosive welding joint was investigated by using a highly effective thermal fatigue test device. The testing device adopted induction coil to heat and carry out two groups of thermal fatigue test at the same time. Metallurgical microscope and scanning electron microscope were used to respectively measure the surface crack and cross-section crack propagation morphology of the explosive welding joint specimen that were conducted thermal cycling for different upper limit temperatures and different cycle time.Experimental results indicated that the cyclic thermal stress and oxidation corrosion was the major factors for fatigue damage behavior of explosive welding joints, where the oxidation corrosion of the interface has become more serious with the increasing the upper limit temperature or the number of cycles rising. Thermal fatigue cracks initiation was mainly beginning from the wavy interface between copper and stainless steel, the vortex-like cast microstructure formed by explosive welding can prevent the crack from propagating along the interface edge and change the direction of crack propagation.The initiation and expansionof thermal fatigue cracks were observed in the copper matrix.展开更多
Contrast tests were carried out to study the fatigue performance of the butt joints treated by ultrasonic peening, aiming at the improvement of ultrasonic peening treatment(UPT) on welded joints of a new material. The...Contrast tests were carried out to study the fatigue performance of the butt joints treated by ultrasonic peening, aiming at the improvement of ultrasonic peening treatment(UPT) on welded joints of a new material. The material is a new generation of fine grain and high purity SS400 steel that has the same ingredients as the traditional low carbon steel. The specimens are in two different states:welded and ultrasonic peening conditions. The corresponding fatigue testing data were analyzed according to the regulation of the statistical method for fatigue life of the welded joints established by International Institute of Welding(IIW). Welding residual stress was considered in two different ways: the constant stress ratio R=0.5 and the Ohta method. The nominal stress-number (σ-N)curves were corrected because of the different plate thickness compared to the standard and because there was no mismatch or angular deformation. The results indicated that: 1) Compared with the welded specimens, when the stress range was 200 MPa, the fatigue life of the SS400 steel specimens treated by ultrasonic peening is prolonged by over 58 times, and the fatigue strength FAT corresponding to 106 cycles is increased by about 66%; 2) As for the SS400 butt joint (single side welding double sides molding), after being treated by UPT, the nominal S-N curve (m=10) of FAT 100 MPa(R=0.5) should be used for fatigue design. The standard S-N curves of FAT 100 MPa(R=0.5, m=10) could be used for fatigue design of the SS400 steel butt joints treated by ultrasonic peening.展开更多
SRUHSC⁃RC(Steel Reinforced Ultra High Strength Concrete⁃Reinforced Concrete)structures are used extensively in super high⁃rise buildings.However,it has obvious brittleness.Wrapping structural steel inside is a good wa...SRUHSC⁃RC(Steel Reinforced Ultra High Strength Concrete⁃Reinforced Concrete)structures are used extensively in super high⁃rise buildings.However,it has obvious brittleness.Wrapping structural steel inside is a good way to alleviate the brittleness problem.The purpose of this study is to investigate seismic behavior of SRUHSC⁃RC exterior joints on the basis of experimental results of eleven specimens under the reversed cyclic loading.The relationship among the force⁃displacement curve,ductility,energy dissipation property,strength degradation,stiffness degradation,the strains of steel bone and stirrup at the core area of the joint were analyzed based on the test results.It is shown that axial compression ratio and stirrup volumetric ratio have significant effects on the shear behavior of SRUHSC⁃RC frame exterior joints.The general requirement on the axial⁃load level and the amount of confinement stirrup for the joints in the design is suggested.展开更多
This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper...This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper/brass plates were welded with two dissimilar heat inputs(low and high)during the welding procedure.The high and low heat inputs were conducted with 710 r/min,16 mm/min and 450 r/min,25 mm/min,respectively.Using open circuit potential(OCP)measurements,electrochemical impedance spectroscopy(EIS)and Tafel polarization tests,the electrochemical behavior of the specimens in borate buffer solution was assessed.With the help of scanning electron microscope(SEM),the morphology of welded specimen surfaces was examined after immersion in the test solution.According to the results,the NZ grain size and resistance improvement reduced due to the nugget zone corrosion with a decreased heat input.The results obtained from Tafel polarization and EIS indicated the improved corrosion behavior of the welded specimen NZ with a decrease in the heat input during the welding process unlike the copper and brass metals.Furthermore,an increased heat input during the welding process shows a reduction in the conditions for forming the passive films with higher protection behavior.展开更多
The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments...The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments. The microstructures, phases, residual stresses and retained austenite content of 1Cr5 Mo steel welding joint before and after LHT were analyzed with optical microscope and X-ray diffraction, respectively. The cracking morphologies and chemical compositions of corrosion products after salt spray corrosion were analyzed with field emission scanning electron microscopy(FESEM) and energy disperse spectroscopy(EDS), respectively, the polarization curves were measured on a PS-268 A type electrochemical workstation, and the mechanism of corrosion resistance by LHT was investigated as well. The results show that the passive film of original sample is destroyed owing to the corrosive media penetrating into the subsurface, resulting in the redox reaction. The content of residual austenite in the surface and the self-corrosion potential are increased by LHT, which is contributed to improving the capability of salt spray corrosion resistance.展开更多
A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is locate...A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.展开更多
Fracture toughness property is of significant importance when evaluating structural safety.The current research of fracture toughness mainly focused on crack in homogeneous material and experimental results.When the c...Fracture toughness property is of significant importance when evaluating structural safety.The current research of fracture toughness mainly focused on crack in homogeneous material and experimental results.When the crack is located in a welded joint with high-gradient microstructure and mechanical property distribution,it becomes difficult to evaluate the fracture toughness behavior since the stress distribution may be affected by various factors.In recent years,numerical method has become an ideal approach to reveal the essence and mechanism of fracture toughness behavior.This study focuses on the crack initiation behavior and driving force at different interfaces in dissimilar steel welded joints.The stress and strain fields around the crack tip lying at the interfaces of ductile-ductile,ductile-brittle and brittle-brittle materials are analyzed by the numerical simulation.For the interface of ductile-ductile materials,the strain concentration on the softer material side is responsible for ductile fracture initiation.For the ductile-brittle interface,the shielding effect of the ductile material plays an important role in decreasing the fracture driving force on the brittle material side.In the case of brittle-brittle interface,a careful matching is required,because the strength mismatch decreases the fracture driving force in one side,whereas the driving force in another side is increased.The results are deemed to offer support for the safety assessment of welded structures.展开更多
The fatigue life evaluation of the girth butt weld within the welded cast steel joint was studied based on the extrapolation notch stress method.Firstly,the mesh sensitivity of the finite element model of the welded c...The fatigue life evaluation of the girth butt weld within the welded cast steel joint was studied based on the extrapolation notch stress method.Firstly,the mesh sensitivity of the finite element model of the welded cast steel joint was analyzed to determine the optimal mesh size.Based on the stress field analysis of the finite element model of the welded cast steel joint at the weld toe and weld root,the sharp model of the extrapolation notch stress method was applied to derive the effective notch stress of the rounded model belonging to the effective notch stress method,in which the key problem is to calculate the extrapolation point C,and the extrapolation point C has an exponential function relationship with the geometric parameters of the welded cast steel joint.By setting different values of geometric parameters,the corresponding value of parameter C is calculated,and then the functional relationship between the extrapolation point C and the geometric parameters can be obtained by the multiple linear regression analysis.Meanwhile,the fatigue life evaluation of the girth butt weld within welded cast steel joints based on the effective notch stress was performed according to the guideline recommended by the IIW(International Institute of Welding).The results indicate that the extrapolation notch stress method can effectively simplify the process of calculating the effective notch stress and accurately evaluate the fatigue life of the girth butt weld within welded cast steel joints.展开更多
基金This study has been funded by the National Natural Science Foundation of China(Grant No.41941018)and the Second Tibetan Plateau Scientific Expedition and Research Grant(Grant No.2019QZKK0708).
文摘Quasi-NPR(negative Poisson’s ratio)steel is a new type of super bolt material with high strength,high ductility,and a micro-negative Poisson’s effect.This material overcomes the contrasting characteristics of the high strength and high ductility of steel and it has significant energy-absorbing characteristics,which is of high value in deep rock and soil support engineering.However,research on the shear resistance of quasi-NPR steel has not been carried out.To study the shear performance of quasi-NPR steel bolted rock joints,indoor shear tests of bolted rock joints under different normal stress conditions were carried out.Q235 steel and#45 steel,two representative ordinary bolt steels,were set up as a control group for comparative tests to compare and analyze the shear strength,deformation and instability mode,shear energy absorption characteristics,and bolting contribution of different types of bolts.The results show that the jointed rock masses without bolt reinforcement undergo brittle failure under shear load,while the bolted jointed rock masses show obvious ductile failure characteristics.The shear deformation ca-pacity of quasi-NPR steel is more than 3.5 times that of Q235 steel and#45 steel.No fracture occurs in the quasi-NPR steel during large shear deformation and it can provide stable shear resistance.However,the other two types of control bolts become fractured under the same conditions.Quasi-NPR steel has significant energy-absorbing characteristics under shear load and has obvious advantages in terms of absorbing the energy released by shear deformation of jointed rock masses as compared with ordinary steel.In particular,the shear force plays a major role in resisting the shear deformation of Q235 steel and#45 steel,therefore,fracture failure occurs under small bolt deformation.However,the axial force of quasi-NPR steel can be fully exerted when resisting joint shear deformation;the steel itself does not break when large shear deformation occurs,and the supporting effect of the jointed rock mass is effectively guaranteed.
文摘The aim of this study was to optimize the geometry and the design of metallic/composite single bolted joints subjected to tension-compression loading. For this purpose, it was necessary to evaluate the stress state in each component of the bolted join. The multi-material assembly was based on the principle of double lap bolted joint. It was composed of a symmetrical balanced woven glass-epoxy composite material plate fastened to two stainless sheets using a stainless pre-stressed bolt. In order to optimize the design and the geometry of the assembly, ten configurations were proposed and studied: a classical simple bolted joint, two joints with an insert (a BigHead<sup>R</sup> insert and a stair one) embedded in the composite, two “waved” solutions, three symmetrical configurations composed of a succession of metallic and composites layers, without a sleeve, with one and with two sleeves, and two non-symmetrical constituted of metallic and composites layers associated with a stair-insert (one with a sleeve and one without). A tridimensional Finite Element Method (FEM) was used to model each configuration mentioned above. The FE models taked into account the different materials, the effects of contact between the different sheets of the assembly and the pre-stress in the bolt. The stress state was analyzed in the composite part. The concept of stress concentration factor was used in order to evaluate the stress increase in the highly stressed regions and to compare the ten configurations studied. For this purpose, three stress concentration factors were defined: one for a monotonic loading in tension, another for a monotonic loading in compression, and the third for a tension-compression cyclic loading. The results of the FEM computations showed that the use of alternative metallic and composite layers associated with two sleeves gived low values of stress concentration factors, smaller than 1.4. In this case, there was no contact between the bolt and the composite part and the most stressed region was not the vicinity of the hole but the end of the longest layers of the metallic inserts.
文摘The effect of laser beam welding(LBW) process on the microstructure-mechanical property relationship of a dissimilar weld between the copper(Cu) and stainless steel(SS) was investigated.Backscattered electron(BSE) based scanning electron microscopy(SEM) imaging was used to characterize the highly heterogeneous microstructural features across the LBW(Cu-SS) weld.The BSE analysis thoroughly evidenced the complex microstructures produced at dissimilar weld interfaces and fusion zone along with the compositional information.Widely different grain growths from coarse columnar grains to equiaxed ultrafine grains were also evident along the Cu-weld interface.A highresolution electron backscattered diffraction(EBSD) analysis confirmed the existence of the grain refinement mechanism at the Cu-weld interface.Both tensile and impact properties of the dissimilar weld were found to be closely aligned with the property of Cu base metal.Microhardness gradients were spatially evident in the non-homogeneous material composition zones such as fusion zone and the Cu-weld interface regions.The heterogeneous nucleation spots across the weld sub-regions were clearly identified and interlinked with their microhardness measurements for a holistic understanding of structure-property relationships of the local weld sub-regions.The findings were effectively correlated to achieve an insight into the local microstructural gradients across the weld.
文摘An attempt was made to optimize friction welding parameters to attain a minimum hardness at the interface and a maximum tensile strength of the dissimilar joints of AISI 304 austenitic stainless steel (ASS) and copper (Cu) alloy using response surface methodology (RSM). Three-factor, five-level central composite design matrix was used to specify experimental conditions. Twenty joints were fabricated using ASS and Cu alloy. Tensile strength and interface hardness were measured experimentally. Analysis of variance (ANOVA) method was used to find out significant main and interaction parameters and empirical relationships were developed using regression analysis. The friction welding parameters were optimized by constructing response graphs and contour plots using design expert software. The developed empirical relationships can be effectively used to predict tensile strength and interface hardness of friction welded ASS-Cu joints at 95% confidence level. The developed contour plots can be used to attain required level of optimum conditions to join ASS-Cu alloy by friction welding process.
文摘Joints of copper and stainless steels are used in a er ospace applications. Production of these joints by fusion welding faces many dif ficulties. This may be due to the differences in their physical, metallurgical a nd mechanical properties. Electron Beam Welding (EBW) process has been found to be especially well suited in this area. Selection of the appropriate welding par ameters needs thorough investigations. These parameters include: preheat tempera ture (℃), welding current (I w), focusing current (I F), welding spee d (V), height between the gun and workpiece surface (H), scan width (S w) and shift distance (S). The present work aims firstly, setting the pr oper welding conditions to get sound joint between commercially pure copper (C10 200) and AISI 316 stainless steel plates 8 mm thickness. Secondly, investigate t he effect of Electron Beam (EB) shift, single-sided and double-sided welds on the mechanical, metallurgical and chemical properties of the weld bead. Due to t he high difference in thermal conductivity between copper and stainless steel, E lectron Beam (EB) was shifted towards copper with different values. These values were ranged from 0.3 to 0.9 mm in welding without preheating of copper plate an d from 0.1 to 0.4 mm with preheating. Number of joints were welded using variabl e EBW parameters in view to obtain the sound weld bead. These parameters are as follows: gradual reduction I w=51 to 49 mA, I F=845 mA, V=8 mm/sec , H=130 mm, S w=500 μm and S=0.4 mm. The investigation has shown t hat, the copper (C10200) plate must be preheated to get sound welded joint with AISI 316 stainless steel using the EBW process. The tensile fracture in all wel ded samples occurred in copper plate away from the weld bead. This reflects that the weld bead tensile strength is greater than the copper strength. The EB shif t has slight effect on hardness distribution through weld bead. The hardness val ue (H v) reduces in gradual manner from stainless steel hardness to copper one. The EB shift distance has no significant effect on the impact toughness.
文摘A continuous wave diode laser with an output power of 2.8 kW was used to join pure copper and 304 stainless steel with a thickness of 1 mm. The focused laser beam with a diameter of O. 8 mm was irradiated on the copper side of the butt joints. In process of laser welding, effects of processing primary parameters on tensile strength of the joints were investigated. The interfacial characterizations of the joints were investigated by metallographic microscope, scanning electron microscope (SEM) and energy dispersive X-ray spectroscope (EDS). The results showed that the element diffusion and solution occur and metallurgical bonding was achieved between pure copper and 304 stainless steel. The maximum tensile strength of the joints was 209 MPa when the laser power of welding was 2. 4 kW and welding speed was 12 mm/s.
基金Project (2010CB731704) supported by the National Basic Research Program of ChinaProject (51075089) supported by the National Natural Science Foundation of china
文摘Electron beam welding was carried out between aluminum alloy and steel with Ag interlayer. Seam morphology, structure and mechanical properties of the joints were investigated with different action positions of the electron beam spot. The results show that with the increment of the beam offset to the silver side from the interface between silver and steel, the seam morphology was improved, and the porosity in the Ag interlayer vanished. A transition layer mainly composed of Ag2Al and Al eutectic was formed at the interface between silver and aluminum, and became thin and spiccato as the beam offset increased. When the beam offset was too large, two IMC layers composed of FeAl and FeAl3 respectively were formed at the interface between steel and Ag interlayer. The optimal beam offset was 0.2 mm, and the maximum tensile strength of the joint was 193 MPa, 88.9% that of the aluminum alloy, and the fracture occurred at the interface between steel and Ag interlayer.
基金financial support from the Natural Science Foundation of China (No. 51371034)
文摘The welded joints of 3Cr pipeline steel were fabricated with commercial welding wire using the gas tungsten arc welding (GTAW) technique. Potentiodynamic polarization curves, linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), scan- ning electron microscopy (SEM), and energy-dispersive spectrometry (EDS) were used to investigate the corrosion resistance and the growth of a corrosion film on the weld zone (WZ). The changes in electrochemical characteristics of the film were obtained through fitting of the EIS data. The results showed that the average corrosion rate of the WZ in CO2 environments first increased, then fluctuated, and finally de- creased gradually. The formation of the film on the WZ was divided into three stages: dynamic adsorption, incomplete-coverage layer forma- tion, and integral layer formation.
基金financially supported by the National Natural Science Foundation of China(No.51365014)the Industrial Support Key Project of Jiangxi Province,China(No.20161BBE50072)
基金financially supported by the Chief Expert (Engineer) Project of Jiangsu Provincial Association for Science (No. 2012-09)
文摘The surfaces of X80 pipeline steel welded joints were processed with a CO2 laser, and the effects of laser heat treatment (LHT) on H2S stress corrosion in the National Association of Corrosion Engineers (NACE) solution were analyzed by a slow strain rate test. The fracture morphologies and chemical components of corrosive products before and after LHT were analyzed by scanning electron microscopy and energy-dispersive spectroscopy, respectively, and the mechanism of LHT on stress corrosion cracking was discussed. Results showed that the fracture for welded joints was brittle in its original state, while it was transformed to a ductile fracture after LHT. The tendencies of hydrogen-induced corrosion were reduced, and the stress corrosion sensitivity index decreased from 35.2% to 25.3%, indicating that the stress corrosion resistance of X80 pipeline steel welded joints has been improved by LHT.
基金supported by the National Natural Science Foundation of China(Grant No.51009093)
文摘In the present study, the dynamic and fatigue characteristics of two types of stress joints are investigated under ocean environmental condition. Connected with the riser and the platform, stress joint at the vessel hang-off position should be one of the main critical design challenges for a steel catenary riser (SCR) in deepwater. When the riser is under a high pressure and deepwater working condition, the stress state for the joint is more complex, and the fatigue damage is easy to occur at this position. Stress joint discussed in this paper includes two types: Tapered Stress Joint (TSJ) and Sleeved Stress Joint (SSJ), and multiaxial fatigue analysis results are given for comparison. Global dynamic analysis for an SCR is performed first, and then the local boundary conditions obtained from the previous analysis are applied to the stress joint FE model for the later dynamic and multiaxial fatigue analysis. Results indicate that the stress level is far lower than the yield limit of material and the damage induced by fatigue needs more attention. Besides, the damage character of the two types of stress joints differs: for TSJ, the place where the stress joint connects with the riser is easy to occur fatigue damage; for SSJ, the most probable position is at the place where the end of the inner sleeve pipe contacts with the riser body. Compared with SSJ, TSJ shows a higher stress level but better fatigue performance, and it will have a higher material cost. In consideration of various factors, designers should choose the most suitable type and also geometric parameters.
基金National Natural Science Foundation of China Under Grant No.50878037
文摘To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.
基金supported by the 2020 Ningbo“3315 Talent Introduction Plan”Innovative Team(C-Class)the major project of Ningbo“Scientific and Technological Innovation 2025”(Grant No.2020Z111)。
文摘Thermal fatigue performance of copper/stainless steel explosive welding joint was investigated by using a highly effective thermal fatigue test device. The testing device adopted induction coil to heat and carry out two groups of thermal fatigue test at the same time. Metallurgical microscope and scanning electron microscope were used to respectively measure the surface crack and cross-section crack propagation morphology of the explosive welding joint specimen that were conducted thermal cycling for different upper limit temperatures and different cycle time.Experimental results indicated that the cyclic thermal stress and oxidation corrosion was the major factors for fatigue damage behavior of explosive welding joints, where the oxidation corrosion of the interface has become more serious with the increasing the upper limit temperature or the number of cycles rising. Thermal fatigue cracks initiation was mainly beginning from the wavy interface between copper and stainless steel, the vortex-like cast microstructure formed by explosive welding can prevent the crack from propagating along the interface edge and change the direction of crack propagation.The initiation and expansionof thermal fatigue cracks were observed in the copper matrix.
文摘Contrast tests were carried out to study the fatigue performance of the butt joints treated by ultrasonic peening, aiming at the improvement of ultrasonic peening treatment(UPT) on welded joints of a new material. The material is a new generation of fine grain and high purity SS400 steel that has the same ingredients as the traditional low carbon steel. The specimens are in two different states:welded and ultrasonic peening conditions. The corresponding fatigue testing data were analyzed according to the regulation of the statistical method for fatigue life of the welded joints established by International Institute of Welding(IIW). Welding residual stress was considered in two different ways: the constant stress ratio R=0.5 and the Ohta method. The nominal stress-number (σ-N)curves were corrected because of the different plate thickness compared to the standard and because there was no mismatch or angular deformation. The results indicated that: 1) Compared with the welded specimens, when the stress range was 200 MPa, the fatigue life of the SS400 steel specimens treated by ultrasonic peening is prolonged by over 58 times, and the fatigue strength FAT corresponding to 106 cycles is increased by about 66%; 2) As for the SS400 butt joint (single side welding double sides molding), after being treated by UPT, the nominal S-N curve (m=10) of FAT 100 MPa(R=0.5) should be used for fatigue design. The standard S-N curves of FAT 100 MPa(R=0.5, m=10) could be used for fatigue design of the SS400 steel butt joints treated by ultrasonic peening.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51178078)the 863 Project of the Ministry of Science and Technology of the People's Republic of China(Grant No.2007AA11Z133)+1 种基金the Natural Science Foundation of Science Department of Liaoning Province(Grant No.2020⁃BS⁃215)the Scientific Research Program of Education Department of Liaoning Province(Grant No.LJKZ0721).
文摘SRUHSC⁃RC(Steel Reinforced Ultra High Strength Concrete⁃Reinforced Concrete)structures are used extensively in super high⁃rise buildings.However,it has obvious brittleness.Wrapping structural steel inside is a good way to alleviate the brittleness problem.The purpose of this study is to investigate seismic behavior of SRUHSC⁃RC exterior joints on the basis of experimental results of eleven specimens under the reversed cyclic loading.The relationship among the force⁃displacement curve,ductility,energy dissipation property,strength degradation,stiffness degradation,the strains of steel bone and stirrup at the core area of the joint were analyzed based on the test results.It is shown that axial compression ratio and stirrup volumetric ratio have significant effects on the shear behavior of SRUHSC⁃RC frame exterior joints.The general requirement on the axial⁃load level and the amount of confinement stirrup for the joints in the design is suggested.
文摘This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper/brass plates were welded with two dissimilar heat inputs(low and high)during the welding procedure.The high and low heat inputs were conducted with 710 r/min,16 mm/min and 450 r/min,25 mm/min,respectively.Using open circuit potential(OCP)measurements,electrochemical impedance spectroscopy(EIS)and Tafel polarization tests,the electrochemical behavior of the specimens in borate buffer solution was assessed.With the help of scanning electron microscope(SEM),the morphology of welded specimen surfaces was examined after immersion in the test solution.According to the results,the NZ grain size and resistance improvement reduced due to the nugget zone corrosion with a decreased heat input.The results obtained from Tafel polarization and EIS indicated the improved corrosion behavior of the welded specimen NZ with a decrease in the heat input during the welding process unlike the copper and brass metals.Furthermore,an increased heat input during the welding process shows a reduction in the conditions for forming the passive films with higher protection behavior.
基金Project(CXLX14-1098)supported by Jiangsu Province Postgraduate Scientific Research Innovation Program,China
文摘The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments. The microstructures, phases, residual stresses and retained austenite content of 1Cr5 Mo steel welding joint before and after LHT were analyzed with optical microscope and X-ray diffraction, respectively. The cracking morphologies and chemical compositions of corrosion products after salt spray corrosion were analyzed with field emission scanning electron microscopy(FESEM) and energy disperse spectroscopy(EDS), respectively, the polarization curves were measured on a PS-268 A type electrochemical workstation, and the mechanism of corrosion resistance by LHT was investigated as well. The results show that the passive film of original sample is destroyed owing to the corrosive media penetrating into the subsurface, resulting in the redox reaction. The content of residual austenite in the surface and the self-corrosion potential are increased by LHT, which is contributed to improving the capability of salt spray corrosion resistance.
文摘A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.
基金Supported by National Natural Science Foundation of China(Grant Nos.51675336,U1660101).
文摘Fracture toughness property is of significant importance when evaluating structural safety.The current research of fracture toughness mainly focused on crack in homogeneous material and experimental results.When the crack is located in a welded joint with high-gradient microstructure and mechanical property distribution,it becomes difficult to evaluate the fracture toughness behavior since the stress distribution may be affected by various factors.In recent years,numerical method has become an ideal approach to reveal the essence and mechanism of fracture toughness behavior.This study focuses on the crack initiation behavior and driving force at different interfaces in dissimilar steel welded joints.The stress and strain fields around the crack tip lying at the interfaces of ductile-ductile,ductile-brittle and brittle-brittle materials are analyzed by the numerical simulation.For the interface of ductile-ductile materials,the strain concentration on the softer material side is responsible for ductile fracture initiation.For the ductile-brittle interface,the shielding effect of the ductile material plays an important role in decreasing the fracture driving force on the brittle material side.In the case of brittle-brittle interface,a careful matching is required,because the strength mismatch decreases the fracture driving force in one side,whereas the driving force in another side is increased.The results are deemed to offer support for the safety assessment of welded structures.
基金The National Key Research and Development Program of China(No.2017YFC0805100),the National Natural Science Foundation of China(No.51578137)the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Open Research Fund Program of Jiangsu Key Laboratory of Engineering Mechanics.
文摘The fatigue life evaluation of the girth butt weld within the welded cast steel joint was studied based on the extrapolation notch stress method.Firstly,the mesh sensitivity of the finite element model of the welded cast steel joint was analyzed to determine the optimal mesh size.Based on the stress field analysis of the finite element model of the welded cast steel joint at the weld toe and weld root,the sharp model of the extrapolation notch stress method was applied to derive the effective notch stress of the rounded model belonging to the effective notch stress method,in which the key problem is to calculate the extrapolation point C,and the extrapolation point C has an exponential function relationship with the geometric parameters of the welded cast steel joint.By setting different values of geometric parameters,the corresponding value of parameter C is calculated,and then the functional relationship between the extrapolation point C and the geometric parameters can be obtained by the multiple linear regression analysis.Meanwhile,the fatigue life evaluation of the girth butt weld within welded cast steel joints based on the effective notch stress was performed according to the guideline recommended by the IIW(International Institute of Welding).The results indicate that the extrapolation notch stress method can effectively simplify the process of calculating the effective notch stress and accurately evaluate the fatigue life of the girth butt weld within welded cast steel joints.