The Gejiu (个旧) deposit is a superlarge tin-copper polymetallic ore-forming concentration area characterized by excellent metallogenic geological settings and advantageous ore-controlling factors. The deposit displ...The Gejiu (个旧) deposit is a superlarge tin-copper polymetallic ore-forming concentration area characterized by excellent metallogenic geological settings and advantageous ore-controlling factors. The deposit displays diverse mineralization properties due to different minerals and mineral deposit types. Based on the principal metallogenic factors, metallogenic mechanisms, mineralized components, and occurrence of mineral deposits or ore bodies, the Gejiu mineral district can be divided into 2 combinations of metallogenic series, 4 metallogenic series, 8 subseries, and 27 mineral deposit types. Spatial zonality is evident. The distribution regularity of the elements in both plane and section is Be-W, Sn (Cu, Mo, Bi, Be)-Sn, Pb, Ag-Pb, Zn around a granitic intrusion. The metallogenic epoch is mainly concentrated in the late Yanshanian. During this period, large-scale metallogenic processes related to movement caused by tectonics and magmatism occurred, and a series of magmatic hydrothermal deposits formed. The ore-forming processes can be divided into 4 stages: the silicate stage, the oxide stage, the sulphide stage, and the carbonate stage. Based on the orderliness and diversity (in terms of time, space, and genesis) of the mineralization, the authors have developed a comprehensive spectrum of ore deposits in the Gejiu area. This newly proposed diversity of mineralization and the spectrum developed in this work are useful not only for interpreting the genesis of the Gejiu deposit but also for improving mineral exploration in the area, and in particular, for finding large deposits.展开更多
The Dongfengnanshan Cu polymetallic deposit is one representative deposit of the Tianbaoshan ore district in the Yanbian area, northeast(NE) China. There occur two types of ore bodies in this deposit, the stratiform o...The Dongfengnanshan Cu polymetallic deposit is one representative deposit of the Tianbaoshan ore district in the Yanbian area, northeast(NE) China. There occur two types of ore bodies in this deposit, the stratiform ore bodies and veintype ones, controlled by the Early Permian strata and the Late Hercynian diorite intrusion, respectively. Due to the ambiguous genetic type of the stratiform ore bodies, there has been controversy on the relationship between them and veintype ore bodies. To determine the genetic type of stratiform ore bodies, laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS) in situ trace elements and S–Pb isotope analysis have been carried on the sulfides in the stratiform ore bodies. Compared with that in skarn, Mississippi Valley-type(MVT), and epithermal deposits, sphalerite samples in the stratiform ore bodies of the Dongfengnanshan deposit are significantly enriched in Fe, Mn, and In, while depleted in Ga, Ge, and Cd, which is similar to the sphalerite in volcanic-associated massive sulfide(VMS) deposits. Co/Ni ratio of pyrrhotites in the stratiform ore bodies is similar to that in VMS-type deposits. The concentrations of Zn and Cd of chalcopyrites are similar to those of recrystallized VMS-type deposits. These characteristics also reflect the intermediate ore-forming temperature of the stratiform ore bodies in this deposit. Sulfur isotope compositions of sulfides are similar to those of VMS-type deposits, reflecting that sulfur originated from the Permian Miaoling Formation. Lead isotope compositions indicate mixed-source for lead. Moreover, the comparison of the Dongfengnanshan stratiform ore bodies with some VMStype deposits in China and abroad, on the trace elements and S–Pb isotope characteristics of the sulfides reveals that the stratiform ore bodies of the Dongfengnanshan deposit belong to the VMS-type, and have closely genetic relationship with the early Permian marine volcanic sedimentary rocks.展开更多
The Tongling ore district is one of the most economically important ore areas in the Middle–Lower Yangtze River Metallogenic Belt, eastern China. It contains hundreds of polymetallic copper–gold deposits and occurre...The Tongling ore district is one of the most economically important ore areas in the Middle–Lower Yangtze River Metallogenic Belt, eastern China. It contains hundreds of polymetallic copper–gold deposits and occurrences. Those deposits are mainly clustered(from west to east) within the Tongguanshan, Shizishan, Xinqiao, Fenghuangshan, and Shatanjiao orefields. Until recently, the majority of these deposits were thought to be skarn-or porphyry–skarn-type deposits; however there have been recent discoveries of numerous vein-type Au, Ag, and Pb-Zn deposits that do not fall into either of these categories. This indicates that there is some uncertainty over this classification. Here, we present the results of several systematic geological studies of representative deposits in the Tongling ore district. From investigation of the ore-controlling structures, lithology of the host rock, mineral assemblages, and the characteristics of the mineralization and alteration within these deposits, three genetic types of deposits(skarn-, porphyry-, and vein-type deposits) have been identified. The spatial and temporal relationships between the orebodies and Yanshanian intrusions combined with the sources of the ore-forming fluids and metals, as well as the geodynamic setting of this ore district, indicate that all three deposit types are genetically related each other and constitute a magmatic–hydrothermal system. This study outlines a model that relates the polymetallic copper–gold porphyry-, skarn-, and vein-type deposits within the Tongling ore district. This model provides a theoretical basis to guide exploration for deep-seated and concealed porphyry-type Cu(–Mo, –Au) deposits as well as shallow vein-type Au, Ag, and Pb–Zn deposits in this area and elsewhere.展开更多
The Yulong supper\|large copper deposit is situated within the well\|known S\|N striking Yulong copper\|molybdenum ore belt. The ore\|bearing biotite\|monogranitic porphyry was emplaced within clastic rocks (mainly sh...The Yulong supper\|large copper deposit is situated within the well\|known S\|N striking Yulong copper\|molybdenum ore belt. The ore\|bearing biotite\|monogranitic porphyry was emplaced within clastic rocks (mainly shales and siltstones) of the Jiapila Formation (T 3 j ) and carbonate rocks of the Bolila Formation (T 3 b ) of the Upper Triassic. Five mineralization patterns have been recognized in the deposit, i.e., ①veinlet\|disseminated Cu\|Mo ore in the porphyry; ②skarn\|type Cu ore at the contact zone with carbonates (T 3 b ); ③stratiform\|like oxidized Cu ore between T 3 b carbonate rocks and T 3 j hornstones; ④brecciated Cu ore at the local periphery of porphyry; and ⑤vein Pb\|Zn\|Ag ore in the outer contact zone. They constitute a unique integrated polymetal mineralization series of epigenetic intermediate\|acid magmatic hydrothermal system.Studies have shown that the Yulong deposit was the coupling product of sedimentation, magmatism, and tectonism. The Cu\|bearing sandstones in the Japila Formation have provided partial ore\|bearing materials for the porphyry mineralization during the Himalayan period. The mineralized porphyry mass was passively emplaced and controlled by a nose\|like anticlinal trap opening to the north. The interlayered fractured zone formed during folding between the Jiapila and Bolila Formations acted as favorable host space for stratiform\|like skarn and oxidized ores. A large number of cleavages and fissures developed during folding provided both conduits for the circulation of ore\|forming fluids and host spaces for Pb\|Zn\|Ag ore veins. The veinlet\|disseminated Cu\|Mo ore in the porphyry mass owns the characteristics of typical porphyry copper deposits in the world. The veinlet\|disseminated ore body and the stratiform\|like skarn\|type and/or oxidized ore body, the two main ore bodies in Yulong, are connected with each other and shown as “mushroom\|like" shape, in which the former occurs as “mushroom stem" and the latter as “mushroom cover".展开更多
The Mamupu skarn-type Cu-Au polymetallic deposit represents the first discovery of a medium deposit in the southern Yulong porphyry copper belt(YPCB),eastern Tibet.The Cu-Au mineralization mainly occurs as chalcopyrit...The Mamupu skarn-type Cu-Au polymetallic deposit represents the first discovery of a medium deposit in the southern Yulong porphyry copper belt(YPCB),eastern Tibet.The Cu-Au mineralization mainly occurs as chalcopyrite in breccia,within the plate-like carbonate interlayer,being closely related to chloritization(e.g.,chlorite,magnetite and epidote)and skarnization(e.g.,diopside,tremolite and garnet).The ore-related quartz syenite porphyry(QSP)and granodiorite porphyry(GP)were emplaced at 40.1±0.2 Ma and 39.9±0.3 Ma,respectively.The QSP of Mamupu is an alkaline-rich intrusion,relatively enriched in LREE,LILE,depleted in HFSE,with no significant negative Eu and Ce anomalies,slightly high(^(87)Sr/^(86)Sr)i,lowε_(Nd)(t),uniform(^(206)Pb/^(204)Pb)i andε_(Hf)(t)values,which indicates that the porphyry magma may be caused by both the mixing of metasomatized EM II enriched mantle and thickened juvenile lower crust.The QSP in the Mamupu deposit shares a similar genesis of petrology to other ore-related porphyries within the YPCB.High oxygen fugacity and water content of the magmas are essential for the formation of porphyry and skarn Cu deposits.The QSP has similar high magmatic oxidation states and water content to the Yulong deposit,which indicates that the Mamupu has a high prospecting potential.Differences in the geological characteristics and scale of mineralization between the Mamupu and other YPCB deposits may be due to the different emplacement depths of ore-related intrusions,as well as differences in the surrounding rocks.展开更多
The Wenyu copper polymetallic deposit, with proven reserves of about 0.23 Mt Cu, 394 t Ag and 0.04 Mt Pb, is located in the central part of the Lancangjiang volcanic rock belt (Fig. l a), which is one of the most po...The Wenyu copper polymetallic deposit, with proven reserves of about 0.23 Mt Cu, 394 t Ag and 0.04 Mt Pb, is located in the central part of the Lancangjiang volcanic rock belt (Fig. l a), which is one of the most potential copper polymetallic exploration areas in SW China.展开更多
1 Geology Daolundaba copper polymetallic deposit occurs in West Ujimqin Banner,the Xilin Gol League of Inner Mongolia,along the west side of South part of Daxinganling ore belt,whose tectonic position just lies at the...1 Geology Daolundaba copper polymetallic deposit occurs in West Ujimqin Banner,the Xilin Gol League of Inner Mongolia,along the west side of South part of Daxinganling ore belt,whose tectonic position just lies at the junction of Siberian Block in the south part,North China Block in the north and Songliao block in the east.The Daolundaba copper polymetallic deposit is hosted by the Lower Proterozoic Baoyintu group of biotite-plagioclase gneiss(Pt1by),upper Permian Linxi formation of sandy slate(P2l),and the Hercynian Qianjinchang pluton of biotite granite.展开更多
The South Narimalahei area is located on the north side of the Middle Kunlun fault in the eastern section of the East Kunlun composite orogenic belt. The ore body is veined and controlled by structures and se- condary...The South Narimalahei area is located on the north side of the Middle Kunlun fault in the eastern section of the East Kunlun composite orogenic belt. The ore body is veined and controlled by structures and se- condary fissures, which occurs in the structural alteration fracture zone in the Late Triassic granodiorite. In this deposit, copper mineralization is closely related to silicification and sericification. The formation process of the deposit includes hydrothermal mineralization and supergene oxidation. In this paper, the fluid inclusion minera- logy , microscopic temperature measurement and stable isotope studies have been carried out for ore of the main mineralization stage. The results show that the primary gas-liquid two-phase inclusions and a small amount of single-liquid inclusions are mainly developed in the quartz in the main mineralization stage. The results of microscopic temperature measurement show that the ore-forming fluid which has low temperature (151.7℃ -205.8 ℃), low salinity(2.06wt% - 4.94wt%NaCl), low density (0.86 -0.92 g/cm^( 3)) and shallow formation (1.5 -3.0 km) is a hydrothermal solution of NaCl-H_(2)O system. Hydrogen and oxygen isotope results show that the ore-forming fluids mainly come from atmospheric precipitation, with a small amount of magmatic fluids participating. It is preliminarily determined that the South Narimalahei copper polymetallic deposit is a low- temperature hydrothermal vein deposit.展开更多
The Lamasu copper polymetallic mineralized region lies in the south of Wenquan County, Xinjiang and in the Northwest lakeside of the Sailimu Lake. Seen from the geotectonic position, it belongs to North Tianshan geodo...The Lamasu copper polymetallic mineralized region lies in the south of Wenquan County, Xinjiang and in the Northwest lakeside of the Sailimu Lake. Seen from the geotectonic position, it belongs to North Tianshan geodome system, Tianshan diwa region, Central Asian crustobody. Copper and zinc polymetallic ore bodies had been formed in the skarn of the contact, between the metamophic carbonate rocks of the Kuximqiek Group, Jixian System and early mid Varisean acidic rockbodies. The formation of the ore deposit was the result of the successive activities of the crust and mantle and the tectonic and magmatic activities.展开更多
The paper discusses the tectonic setting of the fortnation of the Dexing giant copper-gold-lead-zinc deposit and its geological features and demonstrates in detail the polygenetic compound mechanism of its formation.
Jiama,with more than 11 Mt of copper metal,is the largest porphyry-skarn copper system in the Gangdese metallogenic belt,Tibet,China,creating ideal conditions for deciphering the origin of porphyry ores in a collision...Jiama,with more than 11 Mt of copper metal,is the largest porphyry-skarn copper system in the Gangdese metallogenic belt,Tibet,China,creating ideal conditions for deciphering the origin of porphyry ores in a collision setting.Despite massive studies of the geology,chronology,petrogenesis,and ore-related fluids and their sources in Jiama,there is a lack of systematic summaries and reviews of this system.In contrast to traditional porphyry copper systems in a subduction setting,recent studies and exploration suggest that the Jiama deposit includes porphyry-type Mo-Cu,skarn-type Cu polymetallic,vein-type Au and manto orebodies.This paper reviews the latest studies on the geology,chronology,petrogenesis,fluid inclusions,and isotopic geochemistry(hydrogen,oxygen,sulfur,and lead)of the Jiama deposit.Accordingly,a multi-center complex mineralization model was constructed,indicating that multi-phase intrusions from the same magma reservoir can form multiple hydrothermal centers.These centers are mutually independent and form various orebodies or are superimposed on each other and form thick,high-grade orebodies.Finally,a new comprehensive exploration model was established for the Jiama porphyry copper system.Both models established in this study help to refine the theories on continental-collision metallogeny and porphyry copper systems.展开更多
The Jiama porphyry copper deposit in Tibet is one of the proven supergiant copper deposits in the Qinghai-Tibet Plateau at present,with the reserves of geological resources equivalent to nearly 20×10^(6) t.Howeve...The Jiama porphyry copper deposit in Tibet is one of the proven supergiant copper deposits in the Qinghai-Tibet Plateau at present,with the reserves of geological resources equivalent to nearly 20×10^(6) t.However,it features wavy and steep terrain,leading to extremely difficult field operation and heavy interference.This study attempts to determine the effects of the tensor controlled-source audiomagnetotellurics(CSAMT)with high-power orthogonal signal sources(also referred to as the high-power tensor CSAMT)when it is applied to the deep geophysical exploration in plateaus with complex terrain and mining areas with strong interference.The test results show that the high current provided by the highpower tensor CSAMT not only greatly improved the signal-to-noise ratio but also guaranteed that effective signals were received in the case of a long transmitter-receiver distance.Meanwhile,the tensor data better described the anisotropy of deep geologic bodies.In addition,the tests also show that when the transmitting current reaches 60 A,it is still guaranteed that strong enough signals can be received in the case of the transmitter-receiver distance of about 25 km,sounding curves show no near field effect,and effective exploration depth can reach 3 km.The 2D inversion results are roughly consistent with drilling results,indicating that the high-power tensor CSAMT can be used to achieve nearly actual characteristics of underground electrical structures.Therefore,this method has great potential for application in deep geophysical exploration in plateaus and mining areas with complex terrain and strong interference,respectively.This study not only serves as important guidance on the prospecting in the Qinghai-Tibet Plateau but also can be used as positive references for deep mineral exploration in other areas.展开更多
The Dachang superlarge Sn-polymetal deposit in Guangxi, China, is one of the largest tin deposit all over the world. However, this deposit has long been in debate as to its origin. One of the opinions is that the Dach...The Dachang superlarge Sn-polymetal deposit in Guangxi, China, is one of the largest tin deposit all over the world. However, this deposit has long been in debate as to its origin. One of the opinions is that the Dachang deposit was formed by replacement of hydrothermal solution originating from Yanshanian granites, and the other is that this deposit was formed by submarine exhalation in the Devonian. This paper presents some new isotopic geochronology data obtained with the 40Ar-39Ar method for quartz and sanidine from massive ore in the No. 91 and No. 100 orebodies. Analytic results show that the No. 91 orebody was formed at 94.52±0.33 Ma (the plateau age obtained with the 40Ar-39Ar method for quartz) or 91.4±2.9 Ma (the plateau age obtained with the 40Ar-39Ar method for feldspar), while the No. 100 orebody was formed at 94.56±0.45 Ma (the plateau age obtained with the 40Ar-39Ar method for quartz), suggesting that both the No. 91 and the No. 100 orebodies were formed at the Late Yanshanian instead of the Devonian. The No. 100 orebody might be formed by filling of ore materials into caves in Devonian reef limestone. Because the ore-bearing solution released its pressure and lowered its temperature suddenly in a cave environment, ore minerals were formed concentratedly while water and other materials such as CO2 evaporated quickly, resulting less alteration of host rocks.展开更多
The Liwu stratiform copper deposit is located in the northwestern Jianglang dome,western China.Current studies mainly focus on the genetic type and mineralization of this deposit.Detailed fluid inclusion characteristi...The Liwu stratiform copper deposit is located in the northwestern Jianglang dome,western China.Current studies mainly focus on the genetic type and mineralization of this deposit.Detailed fluid inclusion characteristics of metallogenic period quartz veins were studied to reveal the ore-forming fluid features.Laser Raman analysis indicates that the ore-forming fluids is a H_(2)O-NaCl-CH_(4)(-CO_(2))system.Fluid inclusions microthermometry shows a homogenization temperature of 181-375°C and a salinity of 5.26%-16.99%for the disseminated-banded Cu-Zn mineralization;but a homogenization temperature of 142-343°C and a salinity of 5.41%-21.19%for the massive-veined Cu-Zn mineralization.These features suggest a medium-high temperature and a medium salinity for the ore-forming fluids.H-O isotopic data indicates that the ore-forming fluids were mainly from the metamorphic and magmatic water,plus minor formation water.And sulfur isotopic data indicates that sulfur was mainly derived from the formation and magmatic rocks.Metallogenesis of the disseminated-banded mineralization was mainly correlated with fluid mixing and water-rock reaction;whereas that of the massive-veined mineralization was mainly correlated with fluid boiling.The genetic type of the deposit is a medium-high temperature hydrothermal deposit related to magmatism and controlled by shear zones.This study is beneficial to understand the stratiform copper deposit.展开更多
Multistage tungsten mineralization was recently discovered in the Mamupu copper-polymetallic deposit in the southern Yulong porphyry copper belt(YPCB),Tibet.This study reports the results of cathodoluminescence,trace ...Multistage tungsten mineralization was recently discovered in the Mamupu copper-polymetallic deposit in the southern Yulong porphyry copper belt(YPCB),Tibet.This study reports the results of cathodoluminescence,trace element and Sr isotope analyses of Mamupu scheelite samples,undertaken in order to better constrain the mechanism of W mineralization and the sources of the ore-forming fluids.Three different types of scheelite are identified in the Mamupu deposit:scheelite A(Sch A)mainly occurs in breccias during the prograde stage,scheelite B(Sch B)forms in the chlorite-epidote alteration zone in the retrograde stage,while scheelite C(Sch C)occurs in distal quartz sulfide veins.The extremely high Mo content and negative Eu anomaly in Sch A represent high oxygen fugacity in the prograde stage.Compared with ore-related porphyries,Sch A has a similar REE pattern,but with higher ΣREE,more depleted HREE and slightly lower(^(87)Sr/^(86)Sr)i ratios.These features suggest that Sch A is genetically related to ore-related porphyries,but extensive interaction with carbonate surrounding rocks affects the final REE and Sr isotopic composition.Sch B shows dark(Sch B-I)and light(Sch B-II)domains under CL imaging.From Sch B-I to Sch B-II,LREEs are gradually depleted,with MREEs being gradually enriched.Sch C has the highest LREE/HREE ratio,which indicates that it inherited the geochemical characteristics of fluids after the precipitation of HREE-rich minerals,such as diopside and garnet,in the early prograde stage.The Mo content in Sch B and Sch C gradually decreased,indicating that the oxygen fugacity of the fluids changed from oxidative in the early stages to reductive in the later,the turbulent Eu anomaly in Sch B and Sch C indicating that the Eu anomaly in the Mamupu scheelite is not solely controlled by oxygen fugacity.The extensive interaction of magmatic-hydrothermal fluids and carbonate provides the necessary Ca^(2+)for the precipitation of scheelite in the Mamupu deposit.展开更多
The ore-forming material sources of the Baiyangping copper-cobalt-silver polymetallic deposit have been studied in view of the S, Pb, C, O and H isotopic characteristics and the ratio of Co/Ni of cobaltite. The result...The ore-forming material sources of the Baiyangping copper-cobalt-silver polymetallic deposit have been studied in view of the S, Pb, C, O and H isotopic characteristics and the ratio of Co/Ni of cobaltite. The results showed that sulfur in metallic sulfides may have come from a mixed sulfur-source consisting of the sulfur-source from metamorphic rocks in the basin basement with basic volcanic rocks and the sulfur-source from basin sulfates; lead in the ores was provided by the sedimentary rocks and basement rocks; CO2 in ore-forming fluids was derived from thermolysis of altered and normal marine facies carbonates and decarboxylation of sedimentary organic matter respectively; the ore-forming fluids belong to the SO4-Cl-Na-Ca-type basin thermal brines derived from paleo-meteoric waters; cobalt in the deposit may also be derived from the metamorphic rocks in the basin basement with basic volcanic rocks.展开更多
The L ancangjiang tectonic zone in Western Yunnan is an important magmatic,meta- morphic and tectonic mobile zone of Southwestern China,whose geotectonic location is very unique. It is characterized by complex geologi...The L ancangjiang tectonic zone in Western Yunnan is an important magmatic,meta- morphic and tectonic mobile zone of Southwestern China,whose geotectonic location is very unique. It is characterized by complex geological structures,perfectly developed strata,fre- quent magmatic activities,various degrees of metamorphism,rich ore resources and lots of metal deposits,thus formed a centralized zone of mineralization and also constituted one of the importantmetallogenicbelts of noble and nonferrousmetal deposits.Thatiswhy the re- searching on geology for this zone is of great展开更多
By means of multivariance analysis and finite element on the basis of the analysis of generation andevolution of structural systems and structural system of syn-metallogenesis in the orefield,the authorsmade a researc...By means of multivariance analysis and finite element on the basis of the analysis of generation andevolution of structural systems and structural system of syn-metallogenesis in the orefield,the authorsmade a research into the interrelation between tecto-geochemistry and structural stress field,revealedthe mechanism of metallogenesis by magma and ore-forming fluids driven under dynamic forces,andproposed a tecto-geochemistry model for the formation of the ore deposits,so as to suggest a basis oftheory for the prognoses of location and magnitude of hidden deposits.展开更多
In order to improve the lifespan of spot-welding electrodes used for welding zinc coated steel sheets, titanium diboride was deposited onto their surface after precoating nickel as an intermediate layer. The microstru...In order to improve the lifespan of spot-welding electrodes used for welding zinc coated steel sheets, titanium diboride was deposited onto their surface after precoating nickel as an intermediate layer. The microstructures and phase compositions of TiB2 and Ni coatings were characterized by SEM and XRD. The coating hardness was measured using a microhardness tester. The results indicate that a satisfactory TiB2 coating is obtained as a result of the intermediate nickel layer acting as a good binder between the TiB2 coating and the copper alloy substrate. Owing to its capacity of deforming, the precoated nickel layer is dense and crack free, while cracks and pores are observed in the TiB2 coating. The hardness of the TiB2/Ni coating decreases with the increase of voltage and capacitance because of the diffusion of copper and nickel and the oxidation of the coating materials. Because of the good thermal and electrical conductivities and high hardness properties of TiB2, the deformation of the electrode with TiB2/Ni coating is reduced and its spot-welding life is by far prolonged than that of the uncoated one.展开更多
Located in Lu-Zong ore concentration area, middle-lower Yangtze metallogenic belt, ShaXi porphyry copper deposit is a typical hydrothermal deposit. To investigate the distribution of deep ore bodies and spatial charac...Located in Lu-Zong ore concentration area, middle-lower Yangtze metallogenic belt, ShaXi porphyry copper deposit is a typical hydrothermal deposit. To investigate the distribution of deep ore bodies and spatial characteristics of host structures, an AMT survey was conducted in mining area. Eighteen pseudo-2D resistivity sections were constructed through careful processing and inversion. These sections clearly show resistivity difference between the Silurian sandstones formation and quartz diorite porphyry and this porphyry copper formation was controlled by the highly resistive anticlines. Using 3D block Kxiging interpolation method and 3D visualization techniques, we constructed a detailed 3D resistivity model of quartz diorite porphyry which shows the shape and spatial distribution of deep ore bodies. This case study can serve as a good example for future ore prospecting in and around this mining area.展开更多
文摘The Gejiu (个旧) deposit is a superlarge tin-copper polymetallic ore-forming concentration area characterized by excellent metallogenic geological settings and advantageous ore-controlling factors. The deposit displays diverse mineralization properties due to different minerals and mineral deposit types. Based on the principal metallogenic factors, metallogenic mechanisms, mineralized components, and occurrence of mineral deposits or ore bodies, the Gejiu mineral district can be divided into 2 combinations of metallogenic series, 4 metallogenic series, 8 subseries, and 27 mineral deposit types. Spatial zonality is evident. The distribution regularity of the elements in both plane and section is Be-W, Sn (Cu, Mo, Bi, Be)-Sn, Pb, Ag-Pb, Zn around a granitic intrusion. The metallogenic epoch is mainly concentrated in the late Yanshanian. During this period, large-scale metallogenic processes related to movement caused by tectonics and magmatism occurred, and a series of magmatic hydrothermal deposits formed. The ore-forming processes can be divided into 4 stages: the silicate stage, the oxide stage, the sulphide stage, and the carbonate stage. Based on the orderliness and diversity (in terms of time, space, and genesis) of the mineralization, the authors have developed a comprehensive spectrum of ore deposits in the Gejiu area. This newly proposed diversity of mineralization and the spectrum developed in this work are useful not only for interpreting the genesis of the Gejiu deposit but also for improving mineral exploration in the area, and in particular, for finding large deposits.
基金supported by the National Natural Science Foundation of China (NSFC) (No. 41772062)
文摘The Dongfengnanshan Cu polymetallic deposit is one representative deposit of the Tianbaoshan ore district in the Yanbian area, northeast(NE) China. There occur two types of ore bodies in this deposit, the stratiform ore bodies and veintype ones, controlled by the Early Permian strata and the Late Hercynian diorite intrusion, respectively. Due to the ambiguous genetic type of the stratiform ore bodies, there has been controversy on the relationship between them and veintype ore bodies. To determine the genetic type of stratiform ore bodies, laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS) in situ trace elements and S–Pb isotope analysis have been carried on the sulfides in the stratiform ore bodies. Compared with that in skarn, Mississippi Valley-type(MVT), and epithermal deposits, sphalerite samples in the stratiform ore bodies of the Dongfengnanshan deposit are significantly enriched in Fe, Mn, and In, while depleted in Ga, Ge, and Cd, which is similar to the sphalerite in volcanic-associated massive sulfide(VMS) deposits. Co/Ni ratio of pyrrhotites in the stratiform ore bodies is similar to that in VMS-type deposits. The concentrations of Zn and Cd of chalcopyrites are similar to those of recrystallized VMS-type deposits. These characteristics also reflect the intermediate ore-forming temperature of the stratiform ore bodies in this deposit. Sulfur isotope compositions of sulfides are similar to those of VMS-type deposits, reflecting that sulfur originated from the Permian Miaoling Formation. Lead isotope compositions indicate mixed-source for lead. Moreover, the comparison of the Dongfengnanshan stratiform ore bodies with some VMStype deposits in China and abroad, on the trace elements and S–Pb isotope characteristics of the sulfides reveals that the stratiform ore bodies of the Dongfengnanshan deposit belong to the VMS-type, and have closely genetic relationship with the early Permian marine volcanic sedimentary rocks.
基金funded by the National Natural Science Foundation of China(NSFC)(grant numbers 41472066,40972063 and 41672038)the Program of the Deep Exploration in China(SinoProb-03-05)+1 种基金the National KeyR&S Program of China(2016 YFC0600209)the Land and Resources Science and Techonolgy Foundation of Anhui Province(2016-K-03 and No.2014-K-03)
文摘The Tongling ore district is one of the most economically important ore areas in the Middle–Lower Yangtze River Metallogenic Belt, eastern China. It contains hundreds of polymetallic copper–gold deposits and occurrences. Those deposits are mainly clustered(from west to east) within the Tongguanshan, Shizishan, Xinqiao, Fenghuangshan, and Shatanjiao orefields. Until recently, the majority of these deposits were thought to be skarn-or porphyry–skarn-type deposits; however there have been recent discoveries of numerous vein-type Au, Ag, and Pb-Zn deposits that do not fall into either of these categories. This indicates that there is some uncertainty over this classification. Here, we present the results of several systematic geological studies of representative deposits in the Tongling ore district. From investigation of the ore-controlling structures, lithology of the host rock, mineral assemblages, and the characteristics of the mineralization and alteration within these deposits, three genetic types of deposits(skarn-, porphyry-, and vein-type deposits) have been identified. The spatial and temporal relationships between the orebodies and Yanshanian intrusions combined with the sources of the ore-forming fluids and metals, as well as the geodynamic setting of this ore district, indicate that all three deposit types are genetically related each other and constitute a magmatic–hydrothermal system. This study outlines a model that relates the polymetallic copper–gold porphyry-, skarn-, and vein-type deposits within the Tongling ore district. This model provides a theoretical basis to guide exploration for deep-seated and concealed porphyry-type Cu(–Mo, –Au) deposits as well as shallow vein-type Au, Ag, and Pb–Zn deposits in this area and elsewhere.
文摘The Yulong supper\|large copper deposit is situated within the well\|known S\|N striking Yulong copper\|molybdenum ore belt. The ore\|bearing biotite\|monogranitic porphyry was emplaced within clastic rocks (mainly shales and siltstones) of the Jiapila Formation (T 3 j ) and carbonate rocks of the Bolila Formation (T 3 b ) of the Upper Triassic. Five mineralization patterns have been recognized in the deposit, i.e., ①veinlet\|disseminated Cu\|Mo ore in the porphyry; ②skarn\|type Cu ore at the contact zone with carbonates (T 3 b ); ③stratiform\|like oxidized Cu ore between T 3 b carbonate rocks and T 3 j hornstones; ④brecciated Cu ore at the local periphery of porphyry; and ⑤vein Pb\|Zn\|Ag ore in the outer contact zone. They constitute a unique integrated polymetal mineralization series of epigenetic intermediate\|acid magmatic hydrothermal system.Studies have shown that the Yulong deposit was the coupling product of sedimentation, magmatism, and tectonism. The Cu\|bearing sandstones in the Japila Formation have provided partial ore\|bearing materials for the porphyry mineralization during the Himalayan period. The mineralized porphyry mass was passively emplaced and controlled by a nose\|like anticlinal trap opening to the north. The interlayered fractured zone formed during folding between the Jiapila and Bolila Formations acted as favorable host space for stratiform\|like skarn and oxidized ores. A large number of cleavages and fissures developed during folding provided both conduits for the circulation of ore\|forming fluids and host spaces for Pb\|Zn\|Ag ore veins. The veinlet\|disseminated Cu\|Mo ore in the porphyry mass owns the characteristics of typical porphyry copper deposits in the world. The veinlet\|disseminated ore body and the stratiform\|like skarn\|type and/or oxidized ore body, the two main ore bodies in Yulong, are connected with each other and shown as “mushroom\|like" shape, in which the former occurs as “mushroom stem" and the latter as “mushroom cover".
基金supported by the Research Project of Shengyuan Mining Group Co.Ltd,Tibet(Grant No.XZSYKYJT-JSFW-2019-001)the Basic Research Fund of Institute of mineral Resource,Chinese Academy of Geological Sciences(Grant Nos.KJ2102,KK2116,KK2017)+2 种基金the National Natural Science Foundation of China(Grant No.41902097)the Science and Technology Plan Project of the Tibetan Autonomous Region(Grant No.XZ201901-GB-24)Geological Survey project(Grant No.DD20190167)。
文摘The Mamupu skarn-type Cu-Au polymetallic deposit represents the first discovery of a medium deposit in the southern Yulong porphyry copper belt(YPCB),eastern Tibet.The Cu-Au mineralization mainly occurs as chalcopyrite in breccia,within the plate-like carbonate interlayer,being closely related to chloritization(e.g.,chlorite,magnetite and epidote)and skarnization(e.g.,diopside,tremolite and garnet).The ore-related quartz syenite porphyry(QSP)and granodiorite porphyry(GP)were emplaced at 40.1±0.2 Ma and 39.9±0.3 Ma,respectively.The QSP of Mamupu is an alkaline-rich intrusion,relatively enriched in LREE,LILE,depleted in HFSE,with no significant negative Eu and Ce anomalies,slightly high(^(87)Sr/^(86)Sr)i,lowε_(Nd)(t),uniform(^(206)Pb/^(204)Pb)i andε_(Hf)(t)values,which indicates that the porphyry magma may be caused by both the mixing of metasomatized EM II enriched mantle and thickened juvenile lower crust.The QSP in the Mamupu deposit shares a similar genesis of petrology to other ore-related porphyries within the YPCB.High oxygen fugacity and water content of the magmas are essential for the formation of porphyry and skarn Cu deposits.The QSP has similar high magmatic oxidation states and water content to the Yulong deposit,which indicates that the Mamupu has a high prospecting potential.Differences in the geological characteristics and scale of mineralization between the Mamupu and other YPCB deposits may be due to the different emplacement depths of ore-related intrusions,as well as differences in the surrounding rocks.
基金financially supported by the China State Mineral Resources Investigation Program (Grant No.12120114013701 and 1212011120608)
文摘The Wenyu copper polymetallic deposit, with proven reserves of about 0.23 Mt Cu, 394 t Ag and 0.04 Mt Pb, is located in the central part of the Lancangjiang volcanic rock belt (Fig. l a), which is one of the most potential copper polymetallic exploration areas in SW China.
文摘1 Geology Daolundaba copper polymetallic deposit occurs in West Ujimqin Banner,the Xilin Gol League of Inner Mongolia,along the west side of South part of Daxinganling ore belt,whose tectonic position just lies at the junction of Siberian Block in the south part,North China Block in the north and Songliao block in the east.The Daolundaba copper polymetallic deposit is hosted by the Lower Proterozoic Baoyintu group of biotite-plagioclase gneiss(Pt1by),upper Permian Linxi formation of sandy slate(P2l),and the Hercynian Qianjinchang pluton of biotite granite.
文摘The South Narimalahei area is located on the north side of the Middle Kunlun fault in the eastern section of the East Kunlun composite orogenic belt. The ore body is veined and controlled by structures and se- condary fissures, which occurs in the structural alteration fracture zone in the Late Triassic granodiorite. In this deposit, copper mineralization is closely related to silicification and sericification. The formation process of the deposit includes hydrothermal mineralization and supergene oxidation. In this paper, the fluid inclusion minera- logy , microscopic temperature measurement and stable isotope studies have been carried out for ore of the main mineralization stage. The results show that the primary gas-liquid two-phase inclusions and a small amount of single-liquid inclusions are mainly developed in the quartz in the main mineralization stage. The results of microscopic temperature measurement show that the ore-forming fluid which has low temperature (151.7℃ -205.8 ℃), low salinity(2.06wt% - 4.94wt%NaCl), low density (0.86 -0.92 g/cm^( 3)) and shallow formation (1.5 -3.0 km) is a hydrothermal solution of NaCl-H_(2)O system. Hydrogen and oxygen isotope results show that the ore-forming fluids mainly come from atmospheric precipitation, with a small amount of magmatic fluids participating. It is preliminarily determined that the South Narimalahei copper polymetallic deposit is a low- temperature hydrothermal vein deposit.
文摘The Lamasu copper polymetallic mineralized region lies in the south of Wenquan County, Xinjiang and in the Northwest lakeside of the Sailimu Lake. Seen from the geotectonic position, it belongs to North Tianshan geodome system, Tianshan diwa region, Central Asian crustobody. Copper and zinc polymetallic ore bodies had been formed in the skarn of the contact, between the metamophic carbonate rocks of the Kuximqiek Group, Jixian System and early mid Varisean acidic rockbodies. The formation of the ore deposit was the result of the successive activities of the crust and mantle and the tectonic and magmatic activities.
文摘The paper discusses the tectonic setting of the fortnation of the Dexing giant copper-gold-lead-zinc deposit and its geological features and demonstrates in detail the polygenetic compound mechanism of its formation.
基金supported by the National Key Research and Development Program of China (2022YFC2905001)the National Natural Science Foundation of China (42272093,42230813)+1 种基金China Scholarship Council projectthe Geological Survey project (DD20230054)
文摘Jiama,with more than 11 Mt of copper metal,is the largest porphyry-skarn copper system in the Gangdese metallogenic belt,Tibet,China,creating ideal conditions for deciphering the origin of porphyry ores in a collision setting.Despite massive studies of the geology,chronology,petrogenesis,and ore-related fluids and their sources in Jiama,there is a lack of systematic summaries and reviews of this system.In contrast to traditional porphyry copper systems in a subduction setting,recent studies and exploration suggest that the Jiama deposit includes porphyry-type Mo-Cu,skarn-type Cu polymetallic,vein-type Au and manto orebodies.This paper reviews the latest studies on the geology,chronology,petrogenesis,fluid inclusions,and isotopic geochemistry(hydrogen,oxygen,sulfur,and lead)of the Jiama deposit.Accordingly,a multi-center complex mineralization model was constructed,indicating that multi-phase intrusions from the same magma reservoir can form multiple hydrothermal centers.These centers are mutually independent and form various orebodies or are superimposed on each other and form thick,high-grade orebodies.Finally,a new comprehensive exploration model was established for the Jiama porphyry copper system.Both models established in this study help to refine the theories on continental-collision metallogeny and porphyry copper systems.
基金supported by the National Key Research and Development Program of China(2018YFC0604102)the project of China Geological Survey(DD20190015)。
文摘The Jiama porphyry copper deposit in Tibet is one of the proven supergiant copper deposits in the Qinghai-Tibet Plateau at present,with the reserves of geological resources equivalent to nearly 20×10^(6) t.However,it features wavy and steep terrain,leading to extremely difficult field operation and heavy interference.This study attempts to determine the effects of the tensor controlled-source audiomagnetotellurics(CSAMT)with high-power orthogonal signal sources(also referred to as the high-power tensor CSAMT)when it is applied to the deep geophysical exploration in plateaus with complex terrain and mining areas with strong interference.The test results show that the high current provided by the highpower tensor CSAMT not only greatly improved the signal-to-noise ratio but also guaranteed that effective signals were received in the case of a long transmitter-receiver distance.Meanwhile,the tensor data better described the anisotropy of deep geologic bodies.In addition,the tests also show that when the transmitting current reaches 60 A,it is still guaranteed that strong enough signals can be received in the case of the transmitter-receiver distance of about 25 km,sounding curves show no near field effect,and effective exploration depth can reach 3 km.The 2D inversion results are roughly consistent with drilling results,indicating that the high-power tensor CSAMT can be used to achieve nearly actual characteristics of underground electrical structures.Therefore,this method has great potential for application in deep geophysical exploration in plateaus and mining areas with complex terrain and strong interference,respectively.This study not only serves as important guidance on the prospecting in the Qinghai-Tibet Plateau but also can be used as positive references for deep mineral exploration in other areas.
基金the State Key BasicResearch Program ofChina(TG1999043203 ,TG1999043201) the Geological Survey Program(K1.4-3-4)under the Ministry of Land and Resources.
文摘The Dachang superlarge Sn-polymetal deposit in Guangxi, China, is one of the largest tin deposit all over the world. However, this deposit has long been in debate as to its origin. One of the opinions is that the Dachang deposit was formed by replacement of hydrothermal solution originating from Yanshanian granites, and the other is that this deposit was formed by submarine exhalation in the Devonian. This paper presents some new isotopic geochronology data obtained with the 40Ar-39Ar method for quartz and sanidine from massive ore in the No. 91 and No. 100 orebodies. Analytic results show that the No. 91 orebody was formed at 94.52±0.33 Ma (the plateau age obtained with the 40Ar-39Ar method for quartz) or 91.4±2.9 Ma (the plateau age obtained with the 40Ar-39Ar method for feldspar), while the No. 100 orebody was formed at 94.56±0.45 Ma (the plateau age obtained with the 40Ar-39Ar method for quartz), suggesting that both the No. 91 and the No. 100 orebodies were formed at the Late Yanshanian instead of the Devonian. The No. 100 orebody might be formed by filling of ore materials into caves in Devonian reef limestone. Because the ore-bearing solution released its pressure and lowered its temperature suddenly in a cave environment, ore minerals were formed concentratedly while water and other materials such as CO2 evaporated quickly, resulting less alteration of host rocks.
基金financially supported by National Natural Science Foundation of China(42272106,41202067)Open Fund of State Key Laboratory for Mineral Deposits Research,Nanjing University(2019-LAMD-K12)China Geological Survey(DD20211386,DD20211392,DD20179603).
文摘The Liwu stratiform copper deposit is located in the northwestern Jianglang dome,western China.Current studies mainly focus on the genetic type and mineralization of this deposit.Detailed fluid inclusion characteristics of metallogenic period quartz veins were studied to reveal the ore-forming fluid features.Laser Raman analysis indicates that the ore-forming fluids is a H_(2)O-NaCl-CH_(4)(-CO_(2))system.Fluid inclusions microthermometry shows a homogenization temperature of 181-375°C and a salinity of 5.26%-16.99%for the disseminated-banded Cu-Zn mineralization;but a homogenization temperature of 142-343°C and a salinity of 5.41%-21.19%for the massive-veined Cu-Zn mineralization.These features suggest a medium-high temperature and a medium salinity for the ore-forming fluids.H-O isotopic data indicates that the ore-forming fluids were mainly from the metamorphic and magmatic water,plus minor formation water.And sulfur isotopic data indicates that sulfur was mainly derived from the formation and magmatic rocks.Metallogenesis of the disseminated-banded mineralization was mainly correlated with fluid mixing and water-rock reaction;whereas that of the massive-veined mineralization was mainly correlated with fluid boiling.The genetic type of the deposit is a medium-high temperature hydrothermal deposit related to magmatism and controlled by shear zones.This study is beneficial to understand the stratiform copper deposit.
基金jointly supported by the National Key Research and Development Program of China(Grant No.2022YFC2905001)the Basic Research Fund of the Chinese Academy of Geological Sciences(Grant No.JKYZD202316)+2 种基金the National Natural Science Foundation of China(Grant Nos.42272093,42230813,42002097)the Research Project of the Shengyuan Mining Co.,Ltd.,Tibet(Grant No.XZSYKYJT-JSFW2019-001)the China Scholarship Council project and the Geological Survey project(Grant Nos.DD20230054,DD20221684,DD20221690,DD20230031,DD20230049,DD20230338)。
文摘Multistage tungsten mineralization was recently discovered in the Mamupu copper-polymetallic deposit in the southern Yulong porphyry copper belt(YPCB),Tibet.This study reports the results of cathodoluminescence,trace element and Sr isotope analyses of Mamupu scheelite samples,undertaken in order to better constrain the mechanism of W mineralization and the sources of the ore-forming fluids.Three different types of scheelite are identified in the Mamupu deposit:scheelite A(Sch A)mainly occurs in breccias during the prograde stage,scheelite B(Sch B)forms in the chlorite-epidote alteration zone in the retrograde stage,while scheelite C(Sch C)occurs in distal quartz sulfide veins.The extremely high Mo content and negative Eu anomaly in Sch A represent high oxygen fugacity in the prograde stage.Compared with ore-related porphyries,Sch A has a similar REE pattern,but with higher ΣREE,more depleted HREE and slightly lower(^(87)Sr/^(86)Sr)i ratios.These features suggest that Sch A is genetically related to ore-related porphyries,but extensive interaction with carbonate surrounding rocks affects the final REE and Sr isotopic composition.Sch B shows dark(Sch B-I)and light(Sch B-II)domains under CL imaging.From Sch B-I to Sch B-II,LREEs are gradually depleted,with MREEs being gradually enriched.Sch C has the highest LREE/HREE ratio,which indicates that it inherited the geochemical characteristics of fluids after the precipitation of HREE-rich minerals,such as diopside and garnet,in the early prograde stage.The Mo content in Sch B and Sch C gradually decreased,indicating that the oxygen fugacity of the fluids changed from oxidative in the early stages to reductive in the later,the turbulent Eu anomaly in Sch B and Sch C indicating that the Eu anomaly in the Mamupu scheelite is not solely controlled by oxygen fugacity.The extensive interaction of magmatic-hydrothermal fluids and carbonate provides the necessary Ca^(2+)for the precipitation of scheelite in the Mamupu deposit.
文摘The ore-forming material sources of the Baiyangping copper-cobalt-silver polymetallic deposit have been studied in view of the S, Pb, C, O and H isotopic characteristics and the ratio of Co/Ni of cobaltite. The results showed that sulfur in metallic sulfides may have come from a mixed sulfur-source consisting of the sulfur-source from metamorphic rocks in the basin basement with basic volcanic rocks and the sulfur-source from basin sulfates; lead in the ores was provided by the sedimentary rocks and basement rocks; CO2 in ore-forming fluids was derived from thermolysis of altered and normal marine facies carbonates and decarboxylation of sedimentary organic matter respectively; the ore-forming fluids belong to the SO4-Cl-Na-Ca-type basin thermal brines derived from paleo-meteoric waters; cobalt in the deposit may also be derived from the metamorphic rocks in the basin basement with basic volcanic rocks.
文摘The L ancangjiang tectonic zone in Western Yunnan is an important magmatic,meta- morphic and tectonic mobile zone of Southwestern China,whose geotectonic location is very unique. It is characterized by complex geological structures,perfectly developed strata,fre- quent magmatic activities,various degrees of metamorphism,rich ore resources and lots of metal deposits,thus formed a centralized zone of mineralization and also constituted one of the importantmetallogenicbelts of noble and nonferrousmetal deposits.Thatiswhy the re- searching on geology for this zone is of great
文摘By means of multivariance analysis and finite element on the basis of the analysis of generation andevolution of structural systems and structural system of syn-metallogenesis in the orefield,the authorsmade a research into the interrelation between tecto-geochemistry and structural stress field,revealedthe mechanism of metallogenesis by magma and ore-forming fluids driven under dynamic forces,andproposed a tecto-geochemistry model for the formation of the ore deposits,so as to suggest a basis oftheory for the prognoses of location and magnitude of hidden deposits.
基金Project (50575069) supported by the National Natural Science Foundation of China
文摘In order to improve the lifespan of spot-welding electrodes used for welding zinc coated steel sheets, titanium diboride was deposited onto their surface after precoating nickel as an intermediate layer. The microstructures and phase compositions of TiB2 and Ni coatings were characterized by SEM and XRD. The coating hardness was measured using a microhardness tester. The results indicate that a satisfactory TiB2 coating is obtained as a result of the intermediate nickel layer acting as a good binder between the TiB2 coating and the copper alloy substrate. Owing to its capacity of deforming, the precoated nickel layer is dense and crack free, while cracks and pores are observed in the TiB2 coating. The hardness of the TiB2/Ni coating decreases with the increase of voltage and capacitance because of the diffusion of copper and nickel and the oxidation of the coating materials. Because of the good thermal and electrical conductivities and high hardness properties of TiB2, the deformation of the electrode with TiB2/Ni coating is reduced and its spot-welding life is by far prolonged than that of the uncoated one.
基金supported jointly by the National Natural Science Foundation Fund of China(Grant No.40930418)ChineseGovernment-funded Scientific Programmed of SinoProbe Deep Exploration in China(SinoProbe-03)the Basic Scientific Research-fund of Institute of Mineral Resources,Chinese Academy of Geological Sciences(Grant No.K1008)
文摘Located in Lu-Zong ore concentration area, middle-lower Yangtze metallogenic belt, ShaXi porphyry copper deposit is a typical hydrothermal deposit. To investigate the distribution of deep ore bodies and spatial characteristics of host structures, an AMT survey was conducted in mining area. Eighteen pseudo-2D resistivity sections were constructed through careful processing and inversion. These sections clearly show resistivity difference between the Silurian sandstones formation and quartz diorite porphyry and this porphyry copper formation was controlled by the highly resistive anticlines. Using 3D block Kxiging interpolation method and 3D visualization techniques, we constructed a detailed 3D resistivity model of quartz diorite porphyry which shows the shape and spatial distribution of deep ore bodies. This case study can serve as a good example for future ore prospecting in and around this mining area.