期刊文献+
共找到3,240篇文章
< 1 2 162 >
每页显示 20 50 100
Catalytic effect in lithium metal batteries: From heterogeneous catalyst to homogenous catalyst 被引量:1
1
作者 Haining Fan Xuan-Wen Gao +3 位作者 Hailong Xu Yichun Ding Shi-Xue Dou Wen-Bin Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期305-326,I0008,共23页
Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-elec... Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy. 展开更多
关键词 Energy storage and conversion metal battery Sulfur battery Air battery Catalytic effect Heterogeneous catalyst Homogeneous catalyst
下载PDF
Catalytic combustion of methane over nano ZrO_2-supported copper-based catalysts 被引量:6
2
作者 Fen Fen Qua Wei Chu +2 位作者 Li Min Shi Mu Hua Chen Jin Yan Hu 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第8期993-996,共4页
The nano ZrO2-supported copper-based catalysts for methane combustion were investigated by means of N2 adsorption, TEM, XRD, H2-TPR techniques and the test of methane oxidation. Two kinds of ZrO2 were used as support,... The nano ZrO2-supported copper-based catalysts for methane combustion were investigated by means of N2 adsorption, TEM, XRD, H2-TPR techniques and the test of methane oxidation. Two kinds of ZrO2 were used as support, one (ZrO2-1) was obtained from the commercial ZrO2 and the other (ZrO2-2) was issued from the thermal decomposition of zirconium nitrate. It was found that the CuO/ZrO2-2 catalyst was more active than CuO/ZrO2-1. N2 adsorption, H2-TPR and XRD measurements showed that larger surface area, better reduction property, presence of tetragonal ZrO2 and higher dispersion of active component for CuO/ZrO2-2 than that of CuO/ZrO2-1. These factors could be the dominating reasons for its higher activity for methane combustion. 展开更多
关键词 Nano ZrO2 copper-based catalysts Catalytic combustion METHANE
下载PDF
Advancements in transition bimetal catalysts for electrochemical 5-hydroxymethylfurfural(HMF) oxidation
3
作者 Yuwei Li Huiting Huang +4 位作者 Mingkun Jiang Wanlong Xi Junyuan Duan Marina Ratova Dan Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期24-46,共23页
The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Tran... The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Transition metal catalysts offer a cost-effective alternative to precious metals for catalyzing HMF oxidation, with transition bimetallic catalysts emerging as particularly promising candidates. In this review, we delve into the intricate reaction pathways and electrochemical mechanisms underlying HMF oxidation, emphasizing the pivotal role of transition bimetallic catalysts in enhancing catalytic efficiency. Subsequently, various types of transition bimetallic catalysts are explored, detailing their synthesis methods and structural modulation strategies. By elucidating the mechanisms behind catalyst modification and performance enhancement, this review sets the stage for upcoming advancements in the field, ultimately advancing the electrochemical HMF conversion and facilitating the transition towards sustainable chemical production. 展开更多
关键词 HMF oxidation Transition metal catalysts Bimetallic catalysts Biomass valorization Electrocatalyst synthesis
下载PDF
A Review on Engineering Transition Metal Compound Catalysts to Accelerate the Redox Kinetics of Sulfur Cathodes for Lithium–Sulfur Batteries
4
作者 Liping Chen Guiqiang Cao +8 位作者 Yong Li Guannan Zu Ruixian Duan Yang Bai Kaiyu Xue Yonghong Fu Yunhua Xu Juan Wang Xifei Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期300-332,共33页
Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review f... Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review focuses on engineering TMCs catalysts by cation doping/anion doping/dual doping,bimetallic/bi-anionic TMCs,and TMCs-based heterostructure composites.It is obvious that introducing cations/anions to TMCs or constructing heterostructure can boost adsorption-catalytic capacity by regulating the electronic structure including energy band,d/p-band center,electron filling,and valence state.Moreover,the elec-tronic structure of doped/dual-ionic TMCs are adjusted by inducing ions with different electronegativity,electron filling,and ion radius,resulting in electron redistribution,bonds reconstruction,induced vacancies due to the electronic interaction and changed crystal structure such as lat-tice spacing and lattice distortion.Different from the aforementioned two strategies,heterostructures are constructed by two types of TMCs with different Fermi energy levels,which causes built-in electric field and electrons transfer through the interface,and induces electron redistribution and arranged local atoms to regulate the electronic structure.Additionally,the lacking studies of the three strategies to comprehensively regulate electronic structure for improving catalytic performance are pointed out.It is believed that this review can guide the design of advanced TMCs catalysts for boosting redox of lithium sulfur batteries. 展开更多
关键词 Lithium–sulfur battery Redox kinetic Transition metal compounds catalyst Multiple metals/anions
下载PDF
A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater 被引量:2
5
作者 Bingxiao Feng Lining Hao +6 位作者 Chaoting Deng Jiaqiang Wang Hongbing Song Meng Xiao Tingting Huang Quanhong Zhu Hengjun Gai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期338-348,共11页
Catalytic wet air oxidation(CWAO) can degrade some refractory pollutants at a low cost to improve the biodegradability of wastewater. However, in the presence of high temperature and high pressure and strong oxidizing... Catalytic wet air oxidation(CWAO) can degrade some refractory pollutants at a low cost to improve the biodegradability of wastewater. However, in the presence of high temperature and high pressure and strong oxidizing free radicals, the stability of catalysts is often insufficient, which has become a bottleneck in the application of CWAO. In this paper, a copper-based catalyst with excellent hydrothermal stability was designed and prepared. TiO_(2) with excellent stability was used as the carrier to ensure the longterm anchoring of copper and reduce the leaching of the catalyst. The one pot sol–gel method was used to ensure the super dispersion and uniform distribution of copper nanoparticles on the carrier, so as to ensure that more active centers could be retained in a longer period. Experiments show that the catalyst prepared by this method has good stability and catalytic activity, and the catalytic effect is not significantly reduced after 10 cycles of use. The oxidation degradation experiment of m-cresol with the strongest biological toxicity and the most difficult to degrade in coal chemical wastewater was carried out with this catalyst. The results showed that under the conditions of 140℃, 2 MPa and 2 h, m-cresol with a concentration of up to 1000 mg·L^(-1) could be completely degraded, and the COD removal rate could reach 79.15%. The biological toxicity of wastewater was significantly reduced. The development of the catalyst system has greatly improved the feasibility of CWAO in the treatment of refractory wastewater such as coal chemical wastewater. 展开更多
关键词 Hydrothermal stability Ultra-dispersed copper-based catalyst Catalytic wet air oxidation M-CRESOL Biological toxicity
下载PDF
Effect of preparation methods of aluminum emulsions on catalytic performance of copper-based catalysts for methanol synthesis from syngas 被引量:2
6
作者 Lili Wang Wen Ding +2 位作者 Yingwei Liu Weiping Fang Yiquan Yang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第5期487-492,共6页
Various Cu/ZnO/Al2O3 catalysts have been synthesized by different aluminum emulsions as aluminum sources and their pertormances tor methanol synthesis from syngas have been investigated. The influences of preparation ... Various Cu/ZnO/Al2O3 catalysts have been synthesized by different aluminum emulsions as aluminum sources and their pertormances tor methanol synthesis from syngas have been investigated. The influences of preparation methods of aluminum emulsions on physicochemical and catalytic properties of catalysts were studied by XRD, SEM, XPS,N2 adsorption-desorption techniques and methanol synthesis from syngas. The preparation methods of aluminum emulsions were found to influence the catalytic activity, CuO crystallite size, surface area and Cu0 surface area and reduction process. The results show that the catalyst CN using the aluminum source prepared by addition the ammonia into the aluminum nitrate (NP) exhibited the best catalytic performance for methanol synthesis from syngas. 展开更多
关键词 aluminum emulsion copper-based catalysts methanol synthesis Cu+/Cu0
下载PDF
Dynamic Kinetics of Methanol Synthesis over a Commercial Copper-Based Catalyst
7
作者 陈晓春 李成岳 饶国瑛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2000年第4期315-320,共6页
Adsorption, surface reaction and process dynamics on the surface of a commercial copper-based catalyst for methanol synthesis from CO/CO2/H2 were systematically studied by means of temperature programmed desorption (T... Adsorption, surface reaction and process dynamics on the surface of a commercial copper-based catalyst for methanol synthesis from CO/CO2/H2 were systematically studied by means of temperature programmed desorption (TPD), temperature programmed surface reaction (TPSR), in-situ Fourier transform-inferred spec-troscopy(FTIR) and stimulus-response techniques. As a part of results, an elementary step sequence was suggested and a group of ordinary differential equations (ODEs) for describing transient conversations relevant to all species on the catalyst surface and in the gas phase in a micro-fixed-bed reactor was derived. The values of the parameters referred to dynamic kinetics were estimated by fitting the solution of the ODEs with the transient response data obtained by the stimulus-response technique with a FTIR analyzer as an on-line detector. 展开更多
关键词 methanol synthesis copper-based catalyst dynamic kinetics elementary step sequence parameter estimation
下载PDF
Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts 被引量:27
8
作者 刘雨溪 邓积光 +2 位作者 谢少华 王治伟 戴洪兴 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1193-1205,共13页
Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalys... Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs. 展开更多
关键词 Volatile organic compound Catalytic combustion Porous transition metal oxide Perovskite-type oxide Supported noble metal catalyst
下载PDF
Methanol Tolerant Non-noble Metal Co-C-N Catalyst for Oxygen Reduction Reaction Using Urea as Nitrogen Source 被引量:3
9
作者 司玉军 陈昌国 +1 位作者 尹伟 蔡慧 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第3期331-334,I0002,共5页
A non-noble metal oxygen reduction reaction (ORR) catalyst labeled as Co-C-N(800) was synthesized by heat-treating a mixture of urea, cobalt chloride and acetylene black for 2 h at 800 ℃ in an inert nitrogen atmo... A non-noble metal oxygen reduction reaction (ORR) catalyst labeled as Co-C-N(800) was synthesized by heat-treating a mixture of urea, cobalt chloride and acetylene black for 2 h at 800 ℃ in an inert nitrogen atmosphere. X-ray diffraction pattern indicates that a metallic β-Co is generated after the heat-treating process. The results from cyclic voltammograms show that the obtained Co-C-N(800) catalyst has good ORR catalytic activity in 0.5 mol/L H2SO4 solution. The catalyst is also good at methanol tolerance and stability in the acidic solution. 展开更多
关键词 Direct methanol fuel ceil Oxygen reduction reaction catalyst Non-noble metal Methanol resistance
下载PDF
Influence of preparation method on performance of a metal supported perovskite catalyst for combustion of methane 被引量:10
10
作者 翟彦青 熊杰明 +2 位作者 李翠清 徐新 罗国华 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第1期54-58,共5页
A different method was employed for the preparation of a metal supported perovskite catalyst for the catalytic combustion of methane.The prepared metallic catalysts were characterized by means of X-ray diffractometer(... A different method was employed for the preparation of a metal supported perovskite catalyst for the catalytic combustion of methane.The prepared metallic catalysts were characterized by means of X-ray diffractometer(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and also by ultrasonic and thermal shock tests and catalytic activity.It was found that the process factors during the preparation,e.g.the preparation of the catalyst precursor and the coating slurry,the calcination te... 展开更多
关键词 methane combustion metallic monolith perovskite catalyst preparation method ADHESION catalytic activity rare earths
下载PDF
Efficient and Quick Inactivation of SARS Coronavirus and Other Microbes Exposed to the Surfaces of Some Metal Catalysts 被引量:5
11
作者 JUNHAN LANCHEN +6 位作者 SHU-MINDUAN QING-XIANGYANG MINYANG CHENGAO BAO-YUNZHANG HONGHE XIAO-PINGDONG 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2005年第3期176-180,共5页
Objective To study the two metal catalysts Ag/Al2O3 and Cu/Al2O3 that interdict the transmission pathway for SARS and other respiratory infectious diseases. Methods Two metal catalysts Ag/Al2O3 and Cu/Al2O3 were press... Objective To study the two metal catalysts Ag/Al2O3 and Cu/Al2O3 that interdict the transmission pathway for SARS and other respiratory infectious diseases. Methods Two metal catalysts Ag/Al2O3 and Cu/Al2O3 were pressed into wafers. One hundred μL 106 TCID50/mL SARS-CoV, 100 μL 106 PFU/mL recombinant baculovirus expressing hamster’s prion protein (haPrP) protein and roughly 106 E. coli were slowly dropped onto the surfaces of the catalyst wafers and exposed for 5 and 20 min, respectively. After eluted from the surfaces of wafers, the infectivity of viruses and propagation of bacteria were measured. The expression of PrP protein was determined by Western blot. The morphological changes of bacteria were observed by electronic microscopy. Results After exposure to the catalysts surfaces for 5 and 20 min, the infectivity of SARS-CoV in Vero cells and baculovirus in Sf9 cells dropped down to a very low and undetectable level, and no colony was detected using bacteria culture method. The expression of haPrP protein reduced to 21.8% in the preparation of Sf9 cells infected with recombinant baculovirus exposed for 5 min and was undetectable exposed for 20 min. Bacterial membranes seemed to be cracked and the cytoplasm seemed to be effluent from cell bodies. Conclusion Exposures to the surfaces of Ag/Al2O3 and Cu/Al2O3 destroy the replication and propagation abilities of SARS-CoV, baculovirus and E. coli. Inactivation ability of metal catalysts needs to interact with air, utilizing oxygen molecules in air. Efficiently killing viruses and bacteria on the surfaces of the two metal catalysts has a promising potential for air-disinfection in hospitals, communities, and households. 展开更多
关键词 metal catalysts INACTIVATION SARS-COV BACULOVIRUS E. coli Infectivity
下载PDF
Study on Relationship between Microstructure of Active Phase and HDS Performance of Sulfided Ni-Mo Catalysts: Effect of Metal Loading 被引量:21
12
作者 Guo Rong Shen Benxian +3 位作者 Fang Xiangchen Sun Jin Peng Chong Cui Xiaoli 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第2期12-19,共8页
Six Ni-Mo catalysts with different metal contents were prepared and characterized by N2 adsorption and X-ray diffi'actometry. The active phase microstructure of these catalysts was examined by the Raman spectroscopy,... Six Ni-Mo catalysts with different metal contents were prepared and characterized by N2 adsorption and X-ray diffi'actometry. The active phase microstructure of these catalysts was examined by the Raman spectroscopy, temperature- programmed reduction (TPR), X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. Hydrodesulfurization (HDS) activity of catalyst samples were analyzed in a flow fixed-bed microreactor. The sulfidation degree of Mo and the length of the MoS2 slab slightly increased with the amount of metal loaded following sulfidation. This small change is attributed to polymolybdate species observed in all the oxidized catalysts. Weak metal-support interactions, as determined by the TPR technique, increased the NiSx sulfidation phase and MoS2 slab stacking. The HDS activity of the catalyst samples increased with the number of active sites. For high metal loading catalysts, their HDS activity was nearly identical because the sulfur atoms cannot easily approach active sites. This change is caused by the large number of stacked layers in the MoS2 slabs as well as the decrease in the specific surface area and pore volume of the catalyst samples with an increasing metal loading. 展开更多
关键词 Ni-Mo catalysts HYDRODESULFURIZATION SULFIDATION MICROSTRUCTURE metal loading
下载PDF
Transition metal-based single-atom catalysts(TM-SACs);rising materials for electrochemical CO_(2) reduction 被引量:7
13
作者 Bishnupad Mohanty Suddhasatwa Basu Bikash Kumar Jena 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期444-471,I0012,共29页
The continuous increase of global atmospheric CO_(2) concentrations brutally damages our environment. A series of methods have been developed to convert CO_(2) to valuable fuels and value-added chemicals to maintain t... The continuous increase of global atmospheric CO_(2) concentrations brutally damages our environment. A series of methods have been developed to convert CO_(2) to valuable fuels and value-added chemicals to maintain the equilibrium of carbon cycles. The electrochemical CO_(2) reduction reaction(CO_(2)RR) is one of the promising methods to produce fuels and chemicals, and it could offer sustainable paths to decrease carbon intensity and support renewable energy. Thus, significant research efforts and highly efficient catalysts are essential for converting CO_(2) into other valuable chemicals and fuels. Transition metal-based single atoms catalysts(TM-SACs) have recently received much attention and offer outstanding electrochemical applications with high activity and selectivity opportunities. By taking advantage of both heterogeneous and homogeneous catalysts, TM-SACs are the new rising star for electrochemical conversion of CO_(2) to the value-added product with high selectivity. In recent years, enormous research effort has been made to synthesize different TM-SACs with different M–Nxsites and study the electrochemical conversion of CO_(2) to CO. This review has discussed the development and characterization of different TMSACs with various catalytic sites, fundamental understanding of the electrochemical process in CO_(2) RR,intrinsic catalytic activity, and molecular strategics of SACs responsible for CO_(2)RR. Furthermore, we extensively review previous studies on 1 st-row transition metals TM-SACs(Ni, Co, Fe, Cu, Zn, Sn) and dual-atom catalysts(DACs) utilized for electrochemical CO_(2) conversions and highlight the opportunities and challenges. 展开更多
关键词 CO_(2)RR Single-atom catalyst SACs Dual-atom catalyst DACs Transition metals Support catalysts
下载PDF
Selective Oxidation of CO in Excess H_2 over Ru/Al_2O_3 Catalysts Modified with Metal Oxide 被引量:4
14
作者 Xirong Chen Hanbo Zou +2 位作者 Shengzhou Chen Xinfa Dong Weiming Lin 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第4期409-414,共6页
The Ru/Al2O3 catalysts modified with metal oxide (K20 and La2O3) were prepared v/a incipient wetness impregnation method from RuCl3.nH2O mixed with nitrate loading on Al2O3 support. The activity of catalysts was eva... The Ru/Al2O3 catalysts modified with metal oxide (K20 and La2O3) were prepared v/a incipient wetness impregnation method from RuCl3.nH2O mixed with nitrate loading on Al2O3 support. The activity of catalysts was evaluated under simulative conditions for the preferential oxidation of CO (CO-PROX) from the hydrogen-rich gas streams produced by reforming gas, and the performances of catalysts were investigated by XRD and TPR. The results showed that the activity temperature of the modified catalysts Ru-K20/Al2O3 and Ru-La2O3/Al2O3 were lowered approximately 30℃ compared with pure Ru/Al2O3, and the activity temperature range was widened. The conversion of CO on Ru-K20/Al2O3 and Ru-La2O3/Al2O3 was above 99% at 140-160℃, suitable to remove CO in a hydrogen-rich gas and the selectivity of Ru-La2O3/Al2O3 was higher than that of Ru-K2O/Al2O3in the active temperature range. Slight methanation reaction was detected at 220℃ and above. 展开更多
关键词 hydrogen-rich gas ruthenium based catalysts CO removal selective oxidation metal oxide
下载PDF
Catalytic Reduction of CO2 to CO via Reverse Water Gas Shift Reaction:Recent Advances in the Design of Active and Selective Supported Metal Catalysts 被引量:14
15
作者 Min Zhu Qingfeng Ge Xinli Zhu 《Transactions of Tianjin University》 EI CAS 2020年第3期172-187,共16页
The catalytic conversion of CO2 to CO via a reverse water gas shift(RWGS)reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemical... The catalytic conversion of CO2 to CO via a reverse water gas shift(RWGS)reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemicals and fuels.However,this reaction is mildly endothermic and competed by a strongly exothermic CO2 methanation reaction at low temperatures.Therefore,the improvement in the low-temperature activities and selectivity of the RWGS reaction is a key challenge for catalyst designs.We reviewed recent advances in the design strategies of supported metal catalysts for enhancing the activity of CO2 conversion and its selectivity to CO.These strategies include varying support,tuning metal–support interactions,adding reducible transition metal oxide promoters,forming bimetallic alloys,adding alkali metals,and enveloping metal particles.These advances suggest that enhancing CO2 adsorption and facilitating CO desorption are key factors to enhance CO2 conversion and CO selectivity.This short review may provide insights into future RWGS catalyst designs and optimization. 展开更多
关键词 Carbon dioxide REVERSE water gas SHIFT reaction METHANATION SUPPORTED metal catalyst Mechanism
下载PDF
TiO_2-Supported Binary Metal Oxide Catalysts for Low-temperature Selective Catalytic Reduction of NO_x with NH_3 被引量:5
16
作者 WU Bi-jun LIU Xiao-qin +1 位作者 XIAO Ping WANG Shu-gang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第5期615-619,共5页
Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 sele... Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2〉Mn-Fe/TiO2〉Mn-Cr/TiO2〉Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2〉Mn-W/TiO2〉Mn-Mo/TiO2〉Mn-Cr/TiO2.In the presence of 0.01%SO2 and 6%H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8%and 94.2%, respectively,after 8 h at 120°C at GHSV 12600 h? 1 .As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR)spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3. 展开更多
关键词 Selective catalytic reduction of NO with NH3 Low-temperature selective catalytic reduction Binary metal oxide catalyst FTIR NH3-TPD
下载PDF
Influence of alkali metal doping on surface properties and catalytic activity/selectivity of CaO catalysts in oxidative coupling of methane 被引量:5
17
作者 V.H.Rane S.T.Chaudhari V.R.Choudhary 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第4期313-320,共8页
Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidat... Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process. 展开更多
关键词 oxidative coupling of methane alkali metal doped CaO catalysts basicity/base strength distribution catalytic activity/selectivity
下载PDF
Sodium-treated sepiolite-supported transition metal(Cu,Fe,Ni,Mn,or Co)catalysts for HCHO oxidation 被引量:5
18
作者 Ning Dong Qing Ye +3 位作者 Mengyue Chen Shuiyuan Cheng Tianfang Kang Hongxing Dai 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第11期1734-1744,共11页
Sodium-treated sepiolite(Na Sep)-supported transition metal catalysts(TM/Na Sep;TM = Cu, Fe, Ni, Mn, and Co) were synthesized via a rotary evaporation method. Physicochemical properties of the as-synthesized samples w... Sodium-treated sepiolite(Na Sep)-supported transition metal catalysts(TM/Na Sep;TM = Cu, Fe, Ni, Mn, and Co) were synthesized via a rotary evaporation method. Physicochemical properties of the as-synthesized samples were characterized by means of various techniques, and their catalytic activities for HCHO(0.2%) oxidation were evaluated. Among the samples, Cu/Na Sep exhibited superior performance, and complete HCHO conversion was achieved at 100 ℃(GHSV = 240000 m L/(g·h)). Additionally, the sample retained good catalytic activity during a 42 h stability test. A number of factors, including elevated acidity, the abundance of oxygen species, and favorable low-temperature reducibility, were responsible for the excellent catalytic activity of Cu/Na Sep. According to the results of the in-situ DRIFTS characterization, the HCHO oxidation mechanism was as follows:(i) HCHO was rapidly decomposed into dioxymethylene(DOM) species on the Cu/Na Sep surface;(ii) DOM was then immediately converted to formate species;(iii) the resultant formate species were further oxidized to carbonates;(iv) the carbonate species were eventually converted to CO2 and H2O. 展开更多
关键词 Sodium-treated sepiolite Transition metal loading Supported transition metal catalyst Volatile organic compound HCHO oxidation
下载PDF
Single‐atom catalysts on metal‐based supports for solar photoreduction catalysis 被引量:5
19
作者 Huayang Zhang Wenjie Tian +4 位作者 Xiaoguang Duan Hongqi Sun Yingping Huang Yanfen Fang Shaobin Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第9期2301-2315,共15页
Metal atoms atomically dispersed on an inorganic metal‐based support compose a unique category of single atom catalysts(SACs)and have important applications in catalytic photoreduction reactions,including H_(2) evolu... Metal atoms atomically dispersed on an inorganic metal‐based support compose a unique category of single atom catalysts(SACs)and have important applications in catalytic photoreduction reactions,including H_(2) evolution reaction,CO_(2) reduction reaction,and N_(2) reduction reaction.In this minreview,we summarized the typical metal‐support interaction(M‐SI)patterns for successful anchoring of single‐atom metals on metallic compound supports.Subsequently,the contribution of the dispersed single metal atoms and M‐SI to photocatalytic reactions with improved activity,selectivity,and stability are highlighted,such as by accelerating charge transfer,regulating band structure of the support,acting as the reductive sites,and/or increasing catalytic selectivity.Finally,some challenges and perspectives of future development are proposed.We anticipate that this minireview will be a beneficial supplement for a comprehensive perception of metal‐based material supported SACs and their application in heterogeneous photo‐reductive catalysis. 展开更多
关键词 Single atom catalyst metal‐based support metal‐support interaction PHOTOCATALYSIS Solar energy conversion
下载PDF
Importance, features and uses of metal oxide catalysts in heterogeneous catalysis 被引量:9
20
作者 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第11期1627-1636,共10页
This short review paper aims at assembling the present state of the art of the multiuses of metal oxides in heterogeneous catalysis, concerning liquid and gaseous phases of the reactant mixtures on solid catalysts. It... This short review paper aims at assembling the present state of the art of the multiuses of metal oxides in heterogeneous catalysis, concerning liquid and gaseous phases of the reactant mixtures on solid catalysts. It includes the description of the main types of metal oxide catalysts, of their various preparation procedures and of the main reactions catalysed by them (acid-base type, selective and total oxidations, bi-functional catalysis, photocatalysis, biomass treatments, environmental catalysis and some of the numerous industrial applications). Challenges and prospectives are also discussed. 展开更多
关键词 Heterogeneous catalysis metal oxide catalyst Preparation procedure Acid-base reaction Selective and total oxidation reaction PHOTOCATALYSIS Environmental catalysis Industrial process
下载PDF
上一页 1 2 162 下一页 到第
使用帮助 返回顶部