Oil and organic solvent contamination, derived from oil spills and organic solvent leakage, has been recognized as one of the major environmental issues imposing a serious threat to both human and ecosystem health. Am...Oil and organic solvent contamination, derived from oil spills and organic solvent leakage, has been recognized as one of the major environmental issues imposing a serious threat to both human and ecosystem health. Among the various presented technologies applied for oil/water separation, oil absorption process has been explored widely and offers satisfactory results especially with surface modified oil-absorbing material and/or hybrid absorbents. In this review, we summarize the recent research activities involved in the designing strategies of oil-absorbing absorbents and their application in oil absorption. Then, an extensive list of various oil-absorbing materials from literature, including polymer materials, porous inorganic materials and biomass materials, has been compiled and the oil adsorption capacities toward various types of oils and organic solvents as available in the literature are presented along with highlighting and discussing the various factors involved in the designing of oil-absorbing absorbents tested so far for oil/water separation. Finally, some future trends and perspectives in oil-absorbing material are outlined.展开更多
The aim of this study is to explore the heterogeneous ice nucleation behavior based on controllable micro-cubic array structure surfaces from the statistic perspective.To this end,we firstly constructed a group of mi...The aim of this study is to explore the heterogeneous ice nucleation behavior based on controllable micro-cubic array structure surfaces from the statistic perspective.To this end,we firstly constructed a group of micro-cubic array structures on silicon substrates by a selective plasma etching technique.After grafting low-free-energy substance,the as-constructed micro-cubic array structure surfaces exhibited higher non-wettability with the water contact angle being up to 150°.On this basis,500 cycles of freezing and melting processes were accurately recorded to analyze the instantaneous ice nucleation behavior according to the statistical results of freezing temperature.As a consequence,the statistical freezing temperature of the sample with micro-spacing distance of 40μm is as low as−17.13°C.This microstructure configuration(conforming to Cassie-Baxter wetting regime)not only could entrap more air pockets,but also achieved lower solid-liquid contact area,resulting in lower ice nucleation rate(~2–3 orders of magnitude less than that on the flat substrate).Furthermore,the gradually increasing micro-spacing distance to 60μm would induce the transition from CassieBaxter to Wenzel wetting state,leading to higher freezing probability and ice nucleation rate.The complete understanding on microstructure configuration improving the ice nucleation will lay the foundation stone for the microstructure design of ice-repellent materials.展开更多
Plastic waste is an underutilized resource that has the potential to be transformed into value-added materials.However,its chemical diversity leads to cost-intensive sorting techniques,limiting recycling and upcycling...Plastic waste is an underutilized resource that has the potential to be transformed into value-added materials.However,its chemical diversity leads to cost-intensive sorting techniques,limiting recycling and upcycling opportunities.Herein,we report an open-loop recycling method to produce graded feedstock from mixed polyolefins waste,which makes up 60%of total plastic waste.The method uses heat flow scanning to quantify the composition of plastic waste and resolves its compatibility through controlled dissolution.The resulting feedstock is then used to synthesize blended pellets,porous sorbents,and superhydrophobic coatings via thermally induced phase separation and spin-casting.The hybrid approach broadens the opportunities for reusing plastic waste,which is a step towards creating a more circular economy and better waste management practices.展开更多
基金Supported by the National Natural Science Foundation of China(21706100 and U1507115)Natural Science Foundation of Jiangsu Province(BK20160500,BK20161362and BK20160491)+4 种基金the China Postdoctoral Science Foundation(2016M600373,2018T110452 and 2017M621649)China Postdoctoral Science Foundation of Jiangsu Province(1601016A,1701067C and 1701073C)Scientific Research Foundation for Advanced Talents,Jiangsu University(15JDG142)High-Level Personnel Training Project of Jiangsu Province(BRA2016142)Key Research and Development Program of Jiangxi Province(20171BBH80008)
文摘Oil and organic solvent contamination, derived from oil spills and organic solvent leakage, has been recognized as one of the major environmental issues imposing a serious threat to both human and ecosystem health. Among the various presented technologies applied for oil/water separation, oil absorption process has been explored widely and offers satisfactory results especially with surface modified oil-absorbing material and/or hybrid absorbents. In this review, we summarize the recent research activities involved in the designing strategies of oil-absorbing absorbents and their application in oil absorption. Then, an extensive list of various oil-absorbing materials from literature, including polymer materials, porous inorganic materials and biomass materials, has been compiled and the oil adsorption capacities toward various types of oils and organic solvents as available in the literature are presented along with highlighting and discussing the various factors involved in the designing of oil-absorbing absorbents tested so far for oil/water separation. Finally, some future trends and perspectives in oil-absorbing material are outlined.
基金This work was supported by the National Natural Science Foundation of China(No.51671105,51705244)Natural Science Foundation of Jiangsu Province(No.BK20170790)+2 种基金the Project Funded by China Postdoctoral Science Foundation(No.2019M661826)Fund of State Key Laboratory of Aerodynamics(SKLA2019020401)Open Fund of Key Laboratory of Icing and Anti/De-icing(No.IADL20190202).
文摘The aim of this study is to explore the heterogeneous ice nucleation behavior based on controllable micro-cubic array structure surfaces from the statistic perspective.To this end,we firstly constructed a group of micro-cubic array structures on silicon substrates by a selective plasma etching technique.After grafting low-free-energy substance,the as-constructed micro-cubic array structure surfaces exhibited higher non-wettability with the water contact angle being up to 150°.On this basis,500 cycles of freezing and melting processes were accurately recorded to analyze the instantaneous ice nucleation behavior according to the statistical results of freezing temperature.As a consequence,the statistical freezing temperature of the sample with micro-spacing distance of 40μm is as low as−17.13°C.This microstructure configuration(conforming to Cassie-Baxter wetting regime)not only could entrap more air pockets,but also achieved lower solid-liquid contact area,resulting in lower ice nucleation rate(~2–3 orders of magnitude less than that on the flat substrate).Furthermore,the gradually increasing micro-spacing distance to 60μm would induce the transition from CassieBaxter to Wenzel wetting state,leading to higher freezing probability and ice nucleation rate.The complete understanding on microstructure configuration improving the ice nucleation will lay the foundation stone for the microstructure design of ice-repellent materials.
基金NPRP grant number NPRP12S-0325-190443 from the Qatar National Research Fund (a member of the Qatar Foundation)
文摘Plastic waste is an underutilized resource that has the potential to be transformed into value-added materials.However,its chemical diversity leads to cost-intensive sorting techniques,limiting recycling and upcycling opportunities.Herein,we report an open-loop recycling method to produce graded feedstock from mixed polyolefins waste,which makes up 60%of total plastic waste.The method uses heat flow scanning to quantify the composition of plastic waste and resolves its compatibility through controlled dissolution.The resulting feedstock is then used to synthesize blended pellets,porous sorbents,and superhydrophobic coatings via thermally induced phase separation and spin-casting.The hybrid approach broadens the opportunities for reusing plastic waste,which is a step towards creating a more circular economy and better waste management practices.