期刊文献+
共找到96,140篇文章
< 1 2 250 >
每页显示 20 50 100
Predicting the probability distribution of Martian rocks mechanical property based on microscale rock mechanical experiments and accurate grain-based modeling 被引量:1
1
作者 Shuohui Yin Yingjie Wang Jingang Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第9期1327-1339,共13页
The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribut... The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples. 展开更多
关键词 Probability distribution Martian rocks Microscale rock mechanic experiment Nanoindentation Accurate grain-based modeling
下载PDF
Impact of effective stress on permeability for carbonate fractured-vuggy rocks 被引量:1
2
作者 Ke Sun Huiqing Liu +5 位作者 Juliana Y.Leung Jing Wang Yabin Feng Renjie Liu Zhijiang Kang Yun Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期942-960,共19页
To gain insight into the flow mechanisms and stress sensitivity for fractured-vuggy reservoirs,several core models with different structural characteristics were designed and fabricated to investigate the impact of ef... To gain insight into the flow mechanisms and stress sensitivity for fractured-vuggy reservoirs,several core models with different structural characteristics were designed and fabricated to investigate the impact of effective stress on permeability for carbonate fractured-vuggy rocks(CFVR).It shows that the permeability performance curves under different pore and confining pressures(i.e.altered stress conditions)for the fractured core models and the vuggy core models have similar change patterns.The ranges of permeability variation are significantly wider at high pore pressures,indicating that permeability reduction is the most significant during the early stage of development for fractured-vuggy reservoirs.Since each obtained effective stress coefficient for permeability(ESCP)varies with the changes in confining pressure and pore pressure,the effective stresses for permeability of four representative CFVR show obvious nonlinear characteristics,and the variation ranges of ESCP are all between 0 and 1.Meanwhile,a comprehensive ESCP mathematical model considering triple media,including matrix pores,fractures,and dissolved vugs,was proposed.It is proved theoretically that the ESCP of CFVR generally varies between 0 and 1.Additionally,the regression results showed that the power model ranked highest among the four empirical models mainly applied in stress sensitivity characterization,followed by the logarithmic model,exponential model,and binomial model.The concept of“permeability decline rate”was introduced to better evaluate the stress sensitivity performance for CFVR,in which the one-fracture rock is the strongest,followed by the fracture-vug rock and two-horizontalfracture rock;the through-hole rock is the weakest.In general,this study provides a theoretical basis to guide the design of development and adjustment programs for carbonate fractured-vuggy reservoirs. 展开更多
关键词 Effective stress PERMEABILITY Carbonate fractured-vuggy rocks Structure characteristics Stress sensitivity
下载PDF
Quantitative effect of kerogen type on the hydrocarbon generation potential of Paleogene lacustrine source rocks,Liaohe Western Depression,China 被引量:1
3
作者 Sha-Sha Hui Xiong-Qi Pang +7 位作者 Fu-Jie Jiang Chen-Xi Wang Shu-Xing Mei Tao Hu Hong Pang Min Li Xiao-Long Zhou Kan-Yuan Shi 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期14-30,共17页
Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organ... Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organic carbon(TOC)content,various kerogen types,and a wide range of thermal maturity.Consequently,their hydrocarbon generation potential and resource estimation can be misinterpreted.In this study,geochemical tests,numerical analysis,hydrocarbon generation kinetics,and basin modeling were integrated to investigate the differential effects of kerogen types on the hydrocarbon generation potential of lacustrine source rocks.Optimized hydrocarbon generation and expulsion(HGE)models of different kerogen types were established quantitatively upon abundant Rock-Eval/TOC/vitrinite reflectance(R_(o))datasets.Three sets of good-excellent source rocks deposited in the fourth(Es4),third(Es3),and first(Es1)members of Paleogene Shahejie Formation,are predominantly types I-II_(1),II_(1)-II_(2),and II-III,respectively.The activation energy of types I-II_(2)kerogen is concentrated(180-230 kcal/mol),whereas that of type III kerogen is widely distributed(150-280 kcal/mol).The original hydrocarbon generation potentials of types I,II_(1),II_(2),and III kerogens are 790,510,270,and 85 mg/g TOC,respectively.The Ro values of the hydrocarbon generation threshold for type I-III source rocks gradually increase from 0.42%to 0.74%,and Ro values of the hydrocarbon expulsion threshold increase from 0.49%to 0.87%.Types I and II_(1)source rocks are characterized by earlier hydrocarbon generation,more rapid hydrocarbon expulsion,and narrower hydrocarbon generation windows than types II_(2)and III source rocks.The kerogen types also affect the HGE history and resource potential.Three types(conventional,tight,and shale oil/gas)and three levels(realistic,expected,and prospective)of hydrocarbon resources of different members in the Liaohe Western Depression are evaluated.Findings suggest that the Es3 member has considerable conventional and unconventional hydrocarbon resources.This study can quantitatively characterize the hydrocarbon generation potential of source rocks with different kerogen types,and facilitate a quick and accurate assessment of hydrocarbon resources,providing strategies for future oil and gas exploration. 展开更多
关键词 Kerogen type Hydrocarbon generation potential Lacustrine source rocks Liaohe western depression
下载PDF
Multiscale modeling of gas-induced fracturing in anisotropic clayey rocks 被引量:1
4
作者 Jianxiong Yang Jianfeng Liu +2 位作者 Zhengyuan Qin Xuhai Tang Houquan Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2091-2110,共20页
In the context of repositories for nuclear waste,understanding the behavior of gas migration through clayey rocks with inherent anisotropy is crucial for assessing the safety of geological disposal facilities.The prim... In the context of repositories for nuclear waste,understanding the behavior of gas migration through clayey rocks with inherent anisotropy is crucial for assessing the safety of geological disposal facilities.The primary mechanism for gas breakthrough is the opening of micro-fractures due to high gas pressure.This occurs at gas pressures lower than the combined strength of the rock and its minimum principal stress under external loading conditions.To investigate the mechanism of microscale mode-I ruptures,it is essential to incorporate a multiscale approach that includes subcritical microcracks in the modeling framework.In this contribution,we derive the model from microstructures that contain periodically distributed microcracks within a porous material.The damage evolution law is coupled with the macroscopic poroelastic system by employing the asymptotic homogenization method and considering the inherent hydro-mechanical(HM)anisotropy at the microscale.The resulting permeability change induced by fracture opening is implicitly integrated into the gas flow equation.Verification examples are presented to validate the developed model step by step.An analysis of local macroscopic response is undertaken to underscore the influence of factors such as strain rate,initial damage,and applied stress,on the gas migration process.Numerical examples of direct tension tests are used to demonstrate the model’s efficacy in describing localized failure characteristics.Finally,the simulation results for preferential gas flow reveal the robustness of the two-scale model in explicitly depicting gas-induced fracturing in anisotropic clayey rocks.The model successfully captures the common behaviors observed in laboratory experiments,such as a sudden drop in gas injection pressure,rapid build-up of downstream gas pressure,and steady-state gas flow following gas breakthrough. 展开更多
关键词 Deep geological repositories Mode-I microcracks Time-dependent damage Fracturing process Anisotropic rock
下载PDF
A multifunctional shear apparatus for rocks subjected to true triaxial stress and high temperature in real-time 被引量:1
5
作者 Jun Zhao Xia-Ting Feng +2 位作者 Jia-Rong Wang Liang Hu Yue Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3524-3543,共20页
Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this devic... Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress. 展开更多
关键词 True-triaxial shear apparatus rocks Complete shear stress-deformation process CREEP Real-time high-temperature
下载PDF
Micromechanical testing and property upscaling of planetary rocks:A critical review 被引量:1
6
作者 Yiwei Liu Guoping Zhang +1 位作者 Jiangmei Qiao Xuhai Tang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第9期1217-1241,共25页
Knowledge of the mechanical behavior of planetary rocks is indispensable for space explorations.The scarcity of pristine samples and the irregular shapes of planetary meteorites make it difficult to obtain representat... Knowledge of the mechanical behavior of planetary rocks is indispensable for space explorations.The scarcity of pristine samples and the irregular shapes of planetary meteorites make it difficult to obtain representative samples for conventional macroscale rock mechanics experiments(macro-RMEs).This critical review discusses recent advances in microscale RMEs(micro-RMEs)techniques and the upscaling methods for extracting mechanical parameters.Methods of mineralogical and microstructural analyses,along with non-destructive mechanical techniques,have provided new opportunities for studying planetary rocks with unprecedented precision and capabilities.First,we summarize several mainstream methods for obtaining the mineralogy and microstructure of planetary rocks.Then,nondestructive micromechanical testing methods,nanoindentation and atomic force microscopy(AFM),are detailed reviewed,illustrating the principles,advantages,influencing factors,and available testing results from literature.Subsequently,several feasible upscaling methods that bridge the micro-measurements of meteorite pieces to the strength of the intact body are introduced.Finally,the potential applications of planetary rock mechanics research to guiding the design and execution of space missions are environed,ranging from sample return missions and planetary defense to extraterrestrial construction.These discussions are expected to broaden the understanding of the microscale mechanical properties of planetary rocks and their significant role in deep space exploration. 展开更多
关键词 METEORITES Planetary rock mechanics Non-destructive testing Upscaling method Extraterrestrial construction Space exploration
下载PDF
The coupling control of biological precursors and environmental factors onβ-carotane enrichment in alkaline lacustrine source rocks:A case study from the Fengcheng formation in the western Junggar Basin,NW China 被引量:1
7
作者 Mao-Guo Hou Ming Zha +5 位作者 Hua Liu Hai-Lei Liu Jiang-Xiu Qu Ablimit Imin Xiu-Jian Ding Zhong-Fa Jiang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期836-854,共19页
The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well... The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well acknowledged as an effective indicator of biological sources or depositional environments.However,the specific biological sources of β-carotane and the coupling control of biological sources and environmental factors on the enrichment of β-carotane in the Fengcheng Fm.remains obscure.Based on a comprehensive investigation of the bulk,molecular geochemistry,and organic petrology of sedimentary rocks and the biochemistry of phytoplankton in modern alkaline lakes,we proposed a new understanding of the biological precursors of β-carotane and elucidated the enrichment mechanism of β-carotane in the Fengcheng Fm.The results show that the biological precursors crucially control the enrichment of β-carotane in the Fengcheng Fm.The haloalkaliphilic cyanobacteria are the primary biological sources of β-carotane,which is suggested by a good positive correlation between the 2-methylhopane index,7-+8-methyl heptadecanes/C_(max),C_(29%),and β-carotane/C_(max)in sedimentary rocks and the predominance of cyanobacteria with abundantβ-carotene in modern alkaline lakes.The enrichment of β-carotane requires the reducing condition,and the paleoredox state that affects the enrichment of β-carotane appears to have a threshold.The paleoclimate conditions do not considerably impact the enrichment of β-carotane,but they have some influence on the water's paleosalinity by affecting evaporation and precipitation.While it does not directly affect the enrichment of β-carotane in the Fengcheng Fm.,paleosalinity does have an impact on the cyanobacterial precursor supply and the preservation conditions. 展开更多
关键词 β-carotane enrichment Cyanobacterial input Environmental impact Alkaline lacustrine source rocks The Fengcheng formation
下载PDF
Geochemical fingerprints and hydrocarbon potential of Paleocene mudrocks in the Tano Basin, Ghana: insights from biomarkers and stable carbon isotopes 被引量:1
8
作者 Kojo Amoako Nancy Pearl Osei-Boakye +5 位作者 Ningning Zhong N’Guessan Francois De Sales Konan Gordon Foli Prince Opoku Appau Clifford Fenyi Ebenezer Apesegah 《Acta Geochimica》 EI CAS CSCD 2024年第2期255-279,共25页
The Paleocene mudrocks in Ghana’s Tano Basin have received limited attention despite ongoing efforts to explore hydrocarbon resources.A thorough geochemical analysis is imperative to assess these mudrocks’petroleum ... The Paleocene mudrocks in Ghana’s Tano Basin have received limited attention despite ongoing efforts to explore hydrocarbon resources.A thorough geochemical analysis is imperative to assess these mudrocks’petroleum generation potential and formulate effective exploration strategies.In this study,a comprehensive geochemical analysis was carried out on ten Paleocene rock cuttings extracted from TP-1,a discovery well within the Tano Basin.Various analytical techniques,including total organic carbon(TOC)analysis,Rock–Eval pyrolysis,gas chromatography-mass spectrometry,and isotope ratio-mass spectrometry,were employed to elucidate their hydrocar-bon potential and organic facies.Thefindings in this study were subsequently compared to existing geochemical data on Paleocene source rocks in the South Atlantic marginal basins.The results indicated that the Paleocene samples have TOC content ranging from 0.68 to 2.93 wt%.The prevalent kerogen types identified in these samples were Type Ⅱ and Type Ⅲ.Molecular and isotope data suggest that the organic matter found in the Paleocene mudrocks can be traced back to land plants and lower aquatic organisms.These mudrocks were deposited in a transi-tional environment withfluctuating water salinity,charac-terized by sub-oxic redox conditions.Maturity indices,both bulk and molecular,indicated a spectrum of maturity levels within the Paleocene mudrocks,spanning from immature to marginally mature,with increasing maturity observed with greater depth.In comparison,the organic composition and depositional environments of Paleocene source rocks in the Tano Basin closely resemble those found in the Niger Delta Basin,Douala,and Kribi-Campo Basins,the Kwanza Formation in Angola,and certain Brazilian marginal basins.However,it is worth noting that Paleocene source rocks in some of the basins,such as the Niger Delta and Brazilian marginal basins,exhibit rela-tively higher thermal maturity levels compared to those observed in the current Paleocene samples from the Tano Basin.In conclusion,the comprehensive geochemical analysis of Paleocene mudrocks within Ghana’s Tano Basin has unveiled their marginal hydrocarbon generation potential.The shared geochemical characteristics between the Paleocene mudrocks in the Tano Basin and those in the nearby South Atlantic marginal basins offer valuable insights into source rock quality,which is crucial for shaping future strategies in petroleum exploration in this region. 展开更多
关键词 Paleocene source rocks Source input Depositional environment Thermal maturity Hydrocarbon potential Tano Basin West Africa
下载PDF
Method for evaluation of geological strength index of carbonate cliff rocks:Coupled hyperspectral-digital borehole image technique 被引量:1
9
作者 Haiqing Yang Guizhong Huang +3 位作者 Chiwei Chen Yong Yang Qi Wang Xionghui Dai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4204-4215,共12页
The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and chara... The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and characteristics of discontinuities.It ignores the influence of mineral composition and shows a deficiency in assessing the integrity coefficient.In this context,hyperspectral imaging and digital panoramic borehole camera technologies are applied to analyze the mineral content and integrity of rock mass.Based on the carbonate mineral content and fissure area ratio,the strength reduction factor and integrity coefficient are calculated to improve the GSI evaluation method.According to the results of mineral classification and fissure identification,the strength reduction factor and integrity coefficient increase with the depth of rock mass.The rock mass GSI calculated by the improved method is mainly concentrated between 40 and 60,which is close to the calculation results of the traditional method.The GSI error rates obtained by the two methods are mostly less than 10%,indicating the rationality of the hyperspectral-digital borehole image coupled evaluation method.Moreover,the sensitivity of the fissure area ratio(Sr)to GSI is greater than that of the strength reduction factor(a),which means the proposed GSI is suitable for rocks with significant fissure development.The improved method reduces the influence of subjective factors and provides a reliable index for the deterioration evaluation of rock mass. 展开更多
关键词 Hyperspectral image Digital panoramic borehole image Geological strength index Carbonate rock mass Quantitative evaluation
下载PDF
Development and application of novel high‐efficiency composite ultrafine cement grouts for roadway in fractured surrounding rocks 被引量:1
10
作者 Maolin Tian Shaojie Chen +1 位作者 Lijun Han Hongtian Xiao 《Deep Underground Science and Engineering》 2024年第1期53-69,共17页
The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of ... The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of this study is to develop highly efficient composite ultrafine cement(CUC)grouts to reinforce the roadway in fractured surrounding rocks.The materials used are ultrafine cement(UC),ultrafine fly ash(UF),ultrafine slag(US),and additives(superplasticizer[SUP],aluminate ultrafine expansion agent[AUA],gypsum,and retarder).The fluidity,bleeding,shrinkage,setting time,chemical composition,microstructure,degree of hydration,and mechanical property of grouting materials were evaluated in this study.Also,a suitable and effective CUC grout mixture was used to reinforce the roadway in the fractured surrounding rock.The results have shown that the addition of UF and US reduces the plastic viscosity of CUC,and the best fluidity can be obtained by adding 40%UF and 10%US.Since UC and UF particles are small,the pozzolanic effect of UF promotes the hydration reaction,which is conductive to the stability of CUC grouts.In addition,fine particles of UC,UF,and US can effectively fill the pores,while the volumetric expansion of AUA and gypsum decreases the pores and thus affects the microstructure of the solidified grout.The compressive test results have shown that the addition of specific amounts of UF and US can ameliorate the mechanical properties of CUC grouts.Finally,the CUC22‐8 grout was used to reinforce the No.20322 belt roadway.The results of numerical simulation and field monitoring have indicated that grouting can efficaciously reinforce the surrounding rock of the roadway.In this research,high‐performance CUC grouts were developed for surrounding rock reinforcement of underground engineering by utilizing UC and some additives. 展开更多
关键词 broken surrounding rock composite ultrafine cement(CUC)grouts grouting material grouting performance grouting reinforcement
下载PDF
Space Rocks-and Dust-Roll into Planetary Science Limelight
11
作者 Sean O’Neill 《Engineering》 SCIE EI CAS CSCD 2024年第8期3-6,共4页
Space sample retrieval is having a moment.On 24 September 2023,in a triumph of complex engineering,a US National Aeronau-tics and Space Administration(NASA)mission,OSIRUS-REx(short for origins,spectral interpretation,... Space sample retrieval is having a moment.On 24 September 2023,in a triumph of complex engineering,a US National Aeronau-tics and Space Administration(NASA)mission,OSIRUS-REx(short for origins,spectral interpretation,resource identification,and security-regolith explorer;regolith is the surface layer of uncon-solidated rocks and dust/soil covering bedrock),successfully deliv-ered to Earth a capsule containing the largest sample of asteroid material ever collected,captured from Bennu. 展开更多
关键词 rock EARTH ORIGIN
下载PDF
Occurrence of Mafic Rocks within Ediacaran Strata in the Aksu Region,NW Tarim Craton,and its Geological Implications
12
作者 XIE Hongzhe ZHU Xiangkun +2 位作者 WANG Xun HE Yuan SHEN Weibing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第5期1244-1254,共11页
The Tarim Craton is an ancient Precambrian continental block,and detailed knowledge of its thermo-tectonic history is crucial for understanding the early history of continental evolution.Abundant layered mafic rocks,w... The Tarim Craton is an ancient Precambrian continental block,and detailed knowledge of its thermo-tectonic history is crucial for understanding the early history of continental evolution.Abundant layered mafic rocks,which have commonly been regarded as basalts,occur within the Ediacaran Sugetbrak Formation(Fm.)in the Aksu region of the northwestern Tarim Craton.Clear intrusive features have now been discovered,including mafic rocks truncating Ediacaran sedimentary layers,exhibiting an intrusion-baked margin where they interact with both the overlying and bottom wall rocks,and displaying a fine-grained transition zone from their interior to their margins.The new findings demonstrate that these mafic rocks within the Aksu Ediacaran strata were not erupted basalts but instead are intrusive diabase dykes.Therefore,these mafic rocks cannot be used to constrain the timing of the Sugetbrak Fm.in the Aksu area,nor as marker layers for regional stratigraphic correlation.Furthermore,the Ediacaran thermo-tectonic evolution in this region,deduced from the assumption that the mafic rocks are lavas,needs to be revised. 展开更多
关键词 TECTONICS STRATIGRAPHY mafic rocks NEOPROTEROZOIC Tarim Craton
下载PDF
Development and applications of the quasi‐dynamic triaxial apparatus for deep rocks
13
作者 Jinzhi Luo Yanyan Cai +3 位作者 Jin Yu Jianzhi Zhang Yaoliang Zhu Yao Wei 《Deep Underground Science and Engineering》 2024年第1期70-90,共21页
The mechanical behaviors of deep rocks have always posed a challenge for the implementation and safe operation of major underground engineering projects.To this end,this study modified the existing mainstream rock mec... The mechanical behaviors of deep rocks have always posed a challenge for the implementation and safe operation of major underground engineering projects.To this end,this study modified the existing mainstream rock mechanics instruments equipped with a dynamic disturbance loading system and developed a second‐generation TFD‐2000/D triaxial instrument.The first‐generation device is equipped with an independent disturbance system and an advanced EDC‐580 all‐digital servo controller,which can apply disturbing load independently,implement the function of cyclic disturbance,and combine dynamic and static disturbances.The instrument was found to be reliable for use in analyzing the damage process of rocks in the disturbance test of marbles.The second‐generation instrument tackles three limitations of the first‐generation instrument:(i)it upgrades the strain measurement system and uses extensometers with linear variable differential transformers to accurately measure deformation;(ii)it uses the self‐balanced chamber to replace the Hoek–Franklin triaxial cell and auto‐balancing triaxial pressure chamber;and(iii)the loading rod is independently equipped with an EDC‐580 all‐digital servo controller,which measures precise loads.The experimental findings confirmed that the second‐generation instrument can be used for rock mechanics testing under cyclic disturbance loading,the disturbance–stress relaxation cycle,and the creep–fatigue cycle.In this sense,the second‐generation instrument can be a useful addition to deep rock mechanical instruments and provide a valuable reference. 展开更多
关键词 complex stress conditions deep rock disturbance loading modification of instrument rock mechanics
下载PDF
A universal direct tensile testing method for measuring the tensile strength of rocks
14
作者 Yang Wu Jianfeng Liu +5 位作者 Zhide Wu Junjie Liu Yonghui Zhao Huining Xu Jinbing Wei Wen Zhong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第10期1443-1451,共9页
There is limited applicability to the current method for testing the direct tensile strength of rocks because it places stringent requirements on the testing equipment.This work suggests a universal method based on th... There is limited applicability to the current method for testing the direct tensile strength of rocks because it places stringent requirements on the testing equipment.This work suggests a universal method based on the‘‘compression-to-tensiono idea in response to these difficulties.By applying pressure,this technique makes it possible to test the tensile strength of rocks directly with any conventional compression test machines.Granite was utilized as the test material in order to validate this suggested testing method,and the results showed what follows.Upon determining the true fracture area through digital reconstruction,an average calculated tensile strength of 5.97 MPa with a Cvof 0.04 was obtained.There is a positive correlation between tensile strength and the joint roughness coefficient(JRC)of the failure surface.The aggregation mode of AE events with the loading process conforms to the damage characteristics of rock tensile failure.The direct tensile testing method proposed in this study not only has high universality but also produces test results with outstanding consistency.Additionally,factors influencing the results of the tensile test are pointed out,and recommendations for optimizing the suggested testing method are offered. 展开更多
关键词 rocks Direct tensile strength GRANITE Acoustic emission JRC
下载PDF
A seismic elastic moduli module for the measurements of low-frequency wave dispersion and attenuation of fluid-saturated rocks under different pressures
15
作者 Yan-Xiao He Shang-Xu Wang +9 位作者 Gen-Yang Tang Chao Sun Hong-Bing Li San-Yi Yuan Xian Wei Li-Deng Gan Xiao-Feng Dai Qiang Ge Peng-Peng Wei Hui-Qing Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期162-181,共20页
Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and... Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion. 展开更多
关键词 Low-frequency measurements Dispersion and attenuation rock physics Fluid flow
下载PDF
Hydrothermal alteration of the surface volcanic rocks at the Acoculco geothermal field,Mexico:a multi-parametric approach
16
作者 America Yosiris García-Soto Kailasa Pandarinath +1 位作者 ESantoyo Eduardo Gonzalez-Partida 《Acta Geochimica》 EI CAS CSCD 2024年第6期1037-1053,共17页
The studies on hydrothermal alteration-induced eff ects in surface and subsurface rocks provide useful information in the characterization and exploitation of a geothermal reservoir.Generally,these studies are based o... The studies on hydrothermal alteration-induced eff ects in surface and subsurface rocks provide useful information in the characterization and exploitation of a geothermal reservoir.Generally,these studies are based on traditional,and reliable methods like petrography(primary and secondary minerals,and grade of alteration),and geochemistry(mobility of elements,changes in mass and concentration of elements,and fluid inclusions).Recently,apart from these established methods,some methods based on the geochemical(Chemical Index of Alteration,CIA;Weathering Index of Parkar,WIP;Loss on Ignition,LOI;and Sulfur,S)and rock magnetic properties(magnetic susceptibility,χlf;and percentage frequency-dependent susceptibility,χfd%)are also being applied in the identification of whether a rock is an altered or a fresh one.The Acoculco Geothermal Field(AGF),Mexico,is characterized by high temperature and very low permeability,and it is considered a promissory Enhanced Geothermal System.The following changes are observed in the rocks as a result of an increase in hydrothermal alteration:(1)an increase in CIA,LOI,and S values,and a decrease in WIP;(2)an increase in quartz and quartz polymorph minerals(silicification),and clay minerals(argillization);and(3)decrease inχlf values.At AGF,the most altered surface acid rocks are characterized by entirely quartz and its polymorphs,and clay minerals.The present study also indicates the applicability of the binary plots of major elements(felsic vs mafic component)and rock magnetic parameters(χlf vs.χfd%).The rock withχfd%value of 2-10 andχlf value<0.5×10^(-6)m^(3) kg^(-1)indicate the presence of single domain and stable single domain grains,which in turn suggests that it is an altered rock.These methods are simple to apply,rapid,reliable,and have the potential to become eff ective tools for the identifi cation of hydrothermally altered rocks during the initial stage of geothermal exploration. 展开更多
关键词 Geothermal fields Hydrothermal alteration Surface rocks Magnetic susceptibility Alteration indices
下载PDF
Experimental study of the damage characteristics of rocks containing non-penetrating cracks under cyclic loading
17
作者 Jun Xu Xiaochun Xiao +3 位作者 Lu Ma Sen Luo Jiaxu Jin Baijian Wu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期197-210,共14页
The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics ... The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures. 展开更多
关键词 Damage characteristics Constitutive model Fissured rocks Non-penetrating crack Cyclic loading
下载PDF
A new interacting capillary bundle model on the multiphase flow in micropores of tight rocks
18
作者 Wen-Quan Deng Tian-Bo Liang +3 位作者 Wen-Zhong Wang Hao Liu Jun-Lin Wu Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1099-1112,共14页
Surfactants are widely used in the fracturing fluid to enhance the imbibition and thus the oil recovery rate. However, current numerical models cannot capture the physics behind capillary imbibition during the wettabi... Surfactants are widely used in the fracturing fluid to enhance the imbibition and thus the oil recovery rate. However, current numerical models cannot capture the physics behind capillary imbibition during the wettability alteration by surfactants. Although the interacting capillary bundle(ICB) model shows potential in characterizing imbibition rates in different pores during wettability alteration, the existing ICB models neglect the influence of wettability and viscosity ratio on the imbibition behavior, making it difficult to accurately describe the oil-water imbibition behavior within the porous media. In this work,a new ICB mathematical model is established by introducing pressure balance without assuming the position of the leading front to comprehensively describe the imbibition behavior in a porous medium under different conditions, including gas-liquid spontaneous imbibition and oil-water imbibition.When the pore size distribution of a tight rock is known, this new model can predict the changes of water saturation during the displacement process in the tight rock, and also determine the imbibition rate in pores of different sizes. The water saturation profiles obtained from the new model are validated against the waterflooding simulation results from the CMG, while the imbibition rates calculated by the model are validated against the experimental observations of gas-liquid spontaneous imbibition. The good match above indicates the newly proposed model can show the water saturation profile at a macroscopic scale while capture the underlying physics of the multiphase flow in a porous medium at a microscopic scale. Simulation results obtained from this model indicate that both wettability and viscosity ratio can affect the sequence of fluid imbibition into pores of different sizes during the multiphase flow, where less-viscous wetting fluid is preferentially imbibed into larger pores while more-viscous wetting fluid tends to be imbibed into smaller pores. Furthermore, this model provides an avenue to calculate the imbibition rate in pores of different sizes during wettability alteration and capture the non-Darcy effect in micro-and nano-scale pores. 展开更多
关键词 Imbibition Multiphase flow Tight rock Interacting capillary bundle model Wettability
下载PDF
Temperature dependence of mechanical properties and damage evolution of hot dry rocks under rapid cooling
19
作者 Longjun Dong Yihan Zhang +2 位作者 Lichang Wang Lu Wang Shen Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期645-660,共16页
Understanding the differences in mechanical properties and damage characteristics of granitoid under high temperatures is crucial for exploring deep geothermal resources.This study analyzes the evolution of the acoust... Understanding the differences in mechanical properties and damage characteristics of granitoid under high temperatures is crucial for exploring deep geothermal resources.This study analyzes the evolution of the acoustic emission(AE)characteristics and mechanical parameters of granodiorite and granite after heating and water cooling by uniaxial compression and variable-angle shear tests under different temperature gradients.We identify their changes in mesostructure and mineral composition with electron probe microanalysis and scanning electron microscopy.Results show that these two hot dry rocks have similar diagenetic minerals and microstructure,but show significantly different mechanical and acoustic characteristics,and even opposing evolution trends in a certain temperature range.At the temperatures ranging from 100℃to 500℃,the compressive and shear mechanical properties of granodiorite switch repeatedly between weakening and strengthening,and those of granite show a continuous weakening trend.At 600℃,both rocks exhibit a deterioration of mechanical properties.The damage mode of granite is characterized by initiating at low stress,exponential evolutionary activity,and intensified energy release.In contrast,granodiorite exhibits the characteristics of initiating at high stress,volatile evolutionary activity,and intermittent energy release,due to its more stable microstructure and fewer thermal defects compared to granite.As the temperature increases,the initiation and propagation of secondary cracks in granodiorite are suppressed to a certain extent,and the seismicity and brittleness are enhanced.The subtle differences in grain size,microscopic heterogeneity,and mineral composition of the two hot dry rocks determine the different acoustic-mechanical characteristics under heating and cooling,and the evolution trends with temperature.These findings are of great significance for the scientific and efficient construction of rock mass engineering by rationally utilizing different rock strata properties. 展开更多
关键词 Hot dry rock Acoustic emission Mechanical properties High temperature DAMAGE
下载PDF
Progressive fragmentation of granular assemblies within rockslides: Insights from discrete-continuous numerical modeling
20
作者 JIANG Hui ZHOU Yuande +2 位作者 WANG Jinting DU Xiuli HUANG Hailong 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1174-1189,共16页
Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive... Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive disintegration and kinematics of multi-deformable rock blocks during rockslides.The present study proposes a discrete-continuous numerical model,based on a cohesive zone model,to explicitly incorporate the progressive fragmentation and intricate interparticle interactions inherent in rockslides.Breakable rock granular assemblies are released along an inclined plane and flow onto a horizontal plane.The numerical scenarios are established to incorporate variations in slope angle,initial height,friction coefficient,and particle number.The evolutions of fragmentation,kinematic,runout and depositional characteristics are quantitatively analyzed and compared with experimental and field data.A positive linear relationship between the equivalent friction coefficient and the apparent friction coefficient is identified.In general,the granular mass predominantly exhibits characteristics of a dense granular flow,with the Savage number exhibiting a decreasing trend as the volume of mass increases.The process of particle breakage gradually occurs in a bottom-up manner,leading to a significant increase in the angular velocities of the rock blocks with increasing depth.The simulation results reproduce the field observations of inverse grading and source stratigraphy preservation in the deposit.We propose a disintegration index that incorporates factors such as drop height,rock mass volume,and rock strength.Our findings demonstrate a consistent linear relationship between this index and the fragmentation degree in all tested scenarios. 展开更多
关键词 rock fragmentation rocksLIDE Numerical modelling Discrete-continuous modelling RUNOUT Cohesive zone model
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部