The effect of tempering temperature on the microstructure and mechanical properties of ultra-high strength, copperbearing, low-carbon bainitic steel has been investigated in the experiment. The results showed that the...The effect of tempering temperature on the microstructure and mechanical properties of ultra-high strength, copperbearing, low-carbon bainitic steel has been investigated in the experiment. The results showed that the microstructure was mainly the laths of bainite in the as-quenched steel. The bainitic laths were restored and combined after the steel tempered at various tempera- tures. There were rnartensite/austenite (M/A) islands and numerous dislocations within and between the bainitic laths, while very t-me precipitates of ε-Cu were also observed within the laths. With increasing the tempered temperature from 400 to 600℃, the yield strength (YS) increased from 877 to 957 MPa, whereas the ultimate tensile strength (UTS) decreased from 1020 to 985 MPa. The Charpy V-notch (CVN) varied from 68.5 to 42 J, and the value was minimal for the steel tempered at 500℃. 2008 University of Science and Technology Beijing. All rights reserved.展开更多
The weldability of a low-carbon copper-bearing age hardening steel was evaluated using cracking suscepti- bility calculation, HAZ maximum hardness measurement, and Y-groove cracking evaluation test. The results show t...The weldability of a low-carbon copper-bearing age hardening steel was evaluated using cracking suscepti- bility calculation, HAZ maximum hardness measurement, and Y-groove cracking evaluation test. The results show that the hardenability characteristics and cold cracking susceptibility of the steel are very low. The results also indicate that a crack-free weldment can be obtained during the welding of this type of steel even at an ambient temperature as low as -5 ℃ as well as in an absolute humidity lower than 4 000 Pa without any preheat treatment. A slight preheat treatment can prevent the joint from cracking when welding is carried out at lower ambient temperature or higher absolute humidity.展开更多
The weldability of copper-bearing aging steel is evaluated using calculated cracking susceptibility index Pcm,oblique Y-groove cracking test,heat-affected zone (HAZ) maximum hardness measurement,submerged arc weldi...The weldability of copper-bearing aging steel is evaluated using calculated cracking susceptibility index Pcm,oblique Y-groove cracking test,heat-affected zone (HAZ) maximum hardness measurement,submerged arc welding (SAW) test and gas metal arc welding (GMAW) test.The results show that this copper-bearing aging steel has low hardenability and cold cracking susceptibility.SAW test of 40 mm thick plate with WS03 wire matched by CHF101 flux reveals that the welded joints obtain high strength and good impact toughness at low temperature.The HAZ has no hardening but there exists a slightly softening phenomenon.Thus,line energy should be limited or controlled strictly to avoid softening behavior in HAZ during SAW.GMAW tests of 12mm and 24mm thick plates using WER70NH wire show that the tensile strength of joints reaches 720MPa,higher than the stipulated strength requirement of base metal.The average impact energy at-40℃ in the welded joints is more than 140J exceeding minimum stipulated requirement by a wide margin.There are no hardening and softening behaviors in the heat-affected zones of GMAW.All weld metals exhibit acicular ferrite (AF) plus small amount of proeutectoid ferrite (PF) structure,of which the former can significantly improve impact toughness of weld metal.The predominant microstructure in coarse grain HAZ is bainite.展开更多
The burn-on sand is common surface defect encountered in CO2 -cured silicate-bonded sand casting of hydroturbine blade of ultra-low-carbon martensitic stainless steel,its feature,causes and prevention measures are pre...The burn-on sand is common surface defect encountered in CO2 -cured silicate-bonded sand casting of hydroturbine blade of ultra-low-carbon martensitic stainless steel,its feature,causes and prevention measures are presented in this paper.Experiments showed that the burn-on defect is caused by oxidization of chromium in the molten steel at high temperature and can be effectively eliminated by using chromium-corundum coating.展开更多
The kinetics of austenite formation in a new type of copper-bearing steel with initial microstructure composed of ferrite and bainite was investigated by using dilatometric analysis and measurement during continuous h...The kinetics of austenite formation in a new type of copper-bearing steel with initial microstructure composed of ferrite and bainite was investigated by using dilatometric analysis and measurement during continuous heating. The formation of austenite was observed to occur in two stages. The first stage is the dissolution of ferrite and most bainite, followed by the second stage of dissolution of bainite and formation of austenite. The first stage takes place through diffusion and the second stage through shear. The critical temperature of austenite formation during continuous heating increases with increasing heating rates, which therefore exerts a greater influence on the Ast temperature of the austenite formation. Kinetics calculation shows that the process is mainly controlled by diffusion when the heating rate is over 1℃/s.展开更多
The variation in microstructures and the mechanical properties of a Copper-bearing high strength ship-hull steel at different aging temperature was studied.The peak strength was obtained at the aging temperature of 4...The variation in microstructures and the mechanical properties of a Copper-bearing high strength ship-hull steel at different aging temperature was studied.The peak strength was obtained at the aging temperature of 450 ℃,which was attribute to the plentiful Cu precipitates and a bit of Nb(C,N).In the over-aged condition,both the partial recovery of matrix and the coarsening of Cu particles (10-60 nm) caused the loss of the yield strength (YS) and the improvement of toughness.The increase of the ultimate tensile strength (UTS) at aging temperature above 660℃ due to the formation of alloy-rich island structure transformed from the austenite phase upon cooling,and complied with the mixture law.The copper-bearing ship steel can exhibit an excellent combination of high strength and toughness while aging at 660 ℃ for 2 hours (UTS-818 MPa,YS-745 MPa,Akv-161 J at-40℃).展开更多
For ultra-low-carbon(ULC)steel production,the higher oxygen content before Ruhrstahl-Heraeus(RH)decarburization(de-C)treatment could shorten the de-C time in the RH degasser.However,this would lead to oxidation rates ...For ultra-low-carbon(ULC)steel production,the higher oxygen content before Ruhrstahl-Heraeus(RH)decarburization(de-C)treatment could shorten the de-C time in the RH degasser.However,this would lead to oxidation rates being exceeded by molten steel production,affecting ULC steel surface quality.In this work,a carbon powder addition(CPA)process was proposed to reduce the dissolved oxygen content at the end of RH de-C through addition of carbon powder to molten steel in the vacuum vessel.Carbon and oxygen behavior during the CPA and conventional process was then studied.The results demonstrated that the de-C rate with CPA was lower compared to the conventional process,but the carbon content at the end of de-C presented no difference.The de-C reaction for CPA process took place in the four reaction sites:(1)within the bulk steel where the spontaneous CO bubbles form;(2)splashing area on the liquid steel surface;(3)Ar bubble surface;(4)molten steel surface.The CPA process could significantly reduce the dissolved oxygen content at the end of de-C,the sum content of FeO and MnO in the slag,the aluminum consumption,and the defect rate of rolled products.This was beneficial in improving ULC steel cleanliness.展开更多
Hot rolling, cold rolling and continuous annealing processes of Ti bearing and Ti+ Nb stabilized ultra-low-carbon bake hardened steels were experimentally studied. The microstructure and texture evolution, as well as...Hot rolling, cold rolling and continuous annealing processes of Ti bearing and Ti+ Nb stabilized ultra-low-carbon bake hardened steels were experimentally studied. The microstructure and texture evolution, as well as the morphology, size and distribution of second phase precipitates during hot rolling, cold rolling and continuous annealing were also analyzed. The results showed that the size of NbC precipitates in Ti+Nb stabilized ultra-low-carbon bake hardened steel was smaller than that of TiC precipitates in Ti bearing ultra-low-carbon bake hardened steel, which made the average grain size of Ti+ Nb stabilized ultra-low-carbon bake hardened steel finer than that of Ti bearing ultra-low-carbon bake hardened steel; for the yield strength, the former was higher than the latter; but for the r value which reflects the deep-drawing performance, the former was lower than the latter.展开更多
The partitioning of nitrogen atoms and its effect on the retained austenite content(RAC)during quenching and partitioning(Q&P)process were investigated by dilatometry,X-ray diffraction,and field emission transmiss...The partitioning of nitrogen atoms and its effect on the retained austenite content(RAC)during quenching and partitioning(Q&P)process were investigated by dilatometry,X-ray diffraction,and field emission transmission electron microscopy with energy-dispersive spectrometer mapping in a 00Cr13Mn8N steel.Nitrogen partitioning by diffusion of N atoms from martensite to austenite occurred at 400℃after quenching.N atoms are enriched in austenite after partitioning,and the stability of these N-rich austenite is improved and retained at room temperature during subsequent cooling.The different quenching temperatures(QTs)result in different phase fractions after partitioning.With the increase in QT,RAC first increases and then decreases,and the maximum RAC is 28.5 vol.%after quenching at 80℃.A mathematical model was developed to rapidly and accurately characterize the phase fraction in Q&P process based on the relative length change of the samples partitioned after quenching at different QTs.展开更多
Spheroidizing annealing and torsion testing of 0.027 wt% carbon steel rod were conducted to evaluate spheroidization kinetic behavior at 943 K (670 ℃) under deformed and non-deformed states. Kinetic curves were als...Spheroidizing annealing and torsion testing of 0.027 wt% carbon steel rod were conducted to evaluate spheroidization kinetic behavior at 943 K (670 ℃) under deformed and non-deformed states. Kinetic curves were also predicted using the Johnson-Mehl-Avrami-Kolmogorov equation, and the results agree well with the experimental ones. After spheroidization was performed twice, the spherical cementite and precipitated carbides became smaller and the distribution was more uniform. Comparison of materials subjected to single and double spheroidizing annealing indicated a difference in grain size. Torsion performance was considerably improved under double spheroidization, especially the maximum torque with slight variations.展开更多
There are four types of Mg–Al–Si–O inclusions observed in the Mg-treated Al-deoxidized ultra-low-carbon steel con-taining trace Si,including SiO_(2),2MgO·SiO_(2),3Al_(2)O_(3)·2SiO_(2),and 2MgO·Al_(2)...There are four types of Mg–Al–Si–O inclusions observed in the Mg-treated Al-deoxidized ultra-low-carbon steel con-taining trace Si,including SiO_(2),2MgO·SiO_(2),3Al_(2)O_(3)·2SiO_(2),and 2MgO·Al_(2)O_(3)·5SiO_(2)and their composite inclusions.Using FactSage,the phase relationship of Mg–Al–Si–O system at 1473–2073 K was calculated using FactSage software,and the change in Si content can change the stable region range of different Mg–Al–Si–O-based inclusions.Based on the types of inclusions observed experimentally,the formation pathways of inclusions were predicted and a kinetic model was established to describe the formation process of the xMgO·yAl_(2)O_(3)–Mg–Al–Si–O and xAl_(2)O_(3)·ySiO_(2)–Mg–Al–Si–O inclusions.展开更多
文摘The effect of tempering temperature on the microstructure and mechanical properties of ultra-high strength, copperbearing, low-carbon bainitic steel has been investigated in the experiment. The results showed that the microstructure was mainly the laths of bainite in the as-quenched steel. The bainitic laths were restored and combined after the steel tempered at various tempera- tures. There were rnartensite/austenite (M/A) islands and numerous dislocations within and between the bainitic laths, while very t-me precipitates of ε-Cu were also observed within the laths. With increasing the tempered temperature from 400 to 600℃, the yield strength (YS) increased from 877 to 957 MPa, whereas the ultimate tensile strength (UTS) decreased from 1020 to 985 MPa. The Charpy V-notch (CVN) varied from 68.5 to 42 J, and the value was minimal for the steel tempered at 500℃. 2008 University of Science and Technology Beijing. All rights reserved.
文摘The weldability of a low-carbon copper-bearing age hardening steel was evaluated using cracking suscepti- bility calculation, HAZ maximum hardness measurement, and Y-groove cracking evaluation test. The results show that the hardenability characteristics and cold cracking susceptibility of the steel are very low. The results also indicate that a crack-free weldment can be obtained during the welding of this type of steel even at an ambient temperature as low as -5 ℃ as well as in an absolute humidity lower than 4 000 Pa without any preheat treatment. A slight preheat treatment can prevent the joint from cracking when welding is carried out at lower ambient temperature or higher absolute humidity.
文摘The weldability of copper-bearing aging steel is evaluated using calculated cracking susceptibility index Pcm,oblique Y-groove cracking test,heat-affected zone (HAZ) maximum hardness measurement,submerged arc welding (SAW) test and gas metal arc welding (GMAW) test.The results show that this copper-bearing aging steel has low hardenability and cold cracking susceptibility.SAW test of 40 mm thick plate with WS03 wire matched by CHF101 flux reveals that the welded joints obtain high strength and good impact toughness at low temperature.The HAZ has no hardening but there exists a slightly softening phenomenon.Thus,line energy should be limited or controlled strictly to avoid softening behavior in HAZ during SAW.GMAW tests of 12mm and 24mm thick plates using WER70NH wire show that the tensile strength of joints reaches 720MPa,higher than the stipulated strength requirement of base metal.The average impact energy at-40℃ in the welded joints is more than 140J exceeding minimum stipulated requirement by a wide margin.There are no hardening and softening behaviors in the heat-affected zones of GMAW.All weld metals exhibit acicular ferrite (AF) plus small amount of proeutectoid ferrite (PF) structure,of which the former can significantly improve impact toughness of weld metal.The predominant microstructure in coarse grain HAZ is bainite.
文摘The burn-on sand is common surface defect encountered in CO2 -cured silicate-bonded sand casting of hydroturbine blade of ultra-low-carbon martensitic stainless steel,its feature,causes and prevention measures are presented in this paper.Experiments showed that the burn-on defect is caused by oxidization of chromium in the molten steel at high temperature and can be effectively eliminated by using chromium-corundum coating.
基金Item Sponsored by 11th Five-Year National Technology Support Project of China (2007BAE51B04)
文摘The kinetics of austenite formation in a new type of copper-bearing steel with initial microstructure composed of ferrite and bainite was investigated by using dilatometric analysis and measurement during continuous heating. The formation of austenite was observed to occur in two stages. The first stage is the dissolution of ferrite and most bainite, followed by the second stage of dissolution of bainite and formation of austenite. The first stage takes place through diffusion and the second stage through shear. The critical temperature of austenite formation during continuous heating increases with increasing heating rates, which therefore exerts a greater influence on the Ast temperature of the austenite formation. Kinetics calculation shows that the process is mainly controlled by diffusion when the heating rate is over 1℃/s.
文摘The variation in microstructures and the mechanical properties of a Copper-bearing high strength ship-hull steel at different aging temperature was studied.The peak strength was obtained at the aging temperature of 450 ℃,which was attribute to the plentiful Cu precipitates and a bit of Nb(C,N).In the over-aged condition,both the partial recovery of matrix and the coarsening of Cu particles (10-60 nm) caused the loss of the yield strength (YS) and the improvement of toughness.The increase of the ultimate tensile strength (UTS) at aging temperature above 660℃ due to the formation of alloy-rich island structure transformed from the austenite phase upon cooling,and complied with the mixture law.The copper-bearing ship steel can exhibit an excellent combination of high strength and toughness while aging at 660 ℃ for 2 hours (UTS-818 MPa,YS-745 MPa,Akv-161 J at-40℃).
基金financially supported by the National Natural Science Foundation of China(No.51874021)Fundamental Research Funds for the Central Universities of China(No.FRF-IC-18-002)State Key Laboratory of Advanced Metallurgy Foundation of China(No.41618019)
文摘For ultra-low-carbon(ULC)steel production,the higher oxygen content before Ruhrstahl-Heraeus(RH)decarburization(de-C)treatment could shorten the de-C time in the RH degasser.However,this would lead to oxidation rates being exceeded by molten steel production,affecting ULC steel surface quality.In this work,a carbon powder addition(CPA)process was proposed to reduce the dissolved oxygen content at the end of RH de-C through addition of carbon powder to molten steel in the vacuum vessel.Carbon and oxygen behavior during the CPA and conventional process was then studied.The results demonstrated that the de-C rate with CPA was lower compared to the conventional process,but the carbon content at the end of de-C presented no difference.The de-C reaction for CPA process took place in the four reaction sites:(1)within the bulk steel where the spontaneous CO bubbles form;(2)splashing area on the liquid steel surface;(3)Ar bubble surface;(4)molten steel surface.The CPA process could significantly reduce the dissolved oxygen content at the end of de-C,the sum content of FeO and MnO in the slag,the aluminum consumption,and the defect rate of rolled products.This was beneficial in improving ULC steel cleanliness.
基金Item Sponsored by National Science and Technology Support 11th Five-Year Plan of China(2006BAE03A13)
文摘Hot rolling, cold rolling and continuous annealing processes of Ti bearing and Ti+ Nb stabilized ultra-low-carbon bake hardened steels were experimentally studied. The microstructure and texture evolution, as well as the morphology, size and distribution of second phase precipitates during hot rolling, cold rolling and continuous annealing were also analyzed. The results showed that the size of NbC precipitates in Ti+Nb stabilized ultra-low-carbon bake hardened steel was smaller than that of TiC precipitates in Ti bearing ultra-low-carbon bake hardened steel, which made the average grain size of Ti+ Nb stabilized ultra-low-carbon bake hardened steel finer than that of Ti bearing ultra-low-carbon bake hardened steel; for the yield strength, the former was higher than the latter; but for the r value which reflects the deep-drawing performance, the former was lower than the latter.
基金supported by the Shanghai Engineering Research Center of Hot Manufacturing(No.18DZ2253400)Natural Science Foundation-Steel and Iron Foundation of Hebei Province(No.E2020203195).
文摘The partitioning of nitrogen atoms and its effect on the retained austenite content(RAC)during quenching and partitioning(Q&P)process were investigated by dilatometry,X-ray diffraction,and field emission transmission electron microscopy with energy-dispersive spectrometer mapping in a 00Cr13Mn8N steel.Nitrogen partitioning by diffusion of N atoms from martensite to austenite occurred at 400℃after quenching.N atoms are enriched in austenite after partitioning,and the stability of these N-rich austenite is improved and retained at room temperature during subsequent cooling.The different quenching temperatures(QTs)result in different phase fractions after partitioning.With the increase in QT,RAC first increases and then decreases,and the maximum RAC is 28.5 vol.%after quenching at 80℃.A mathematical model was developed to rapidly and accurately characterize the phase fraction in Q&P process based on the relative length change of the samples partitioned after quenching at different QTs.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 51271035).
文摘Spheroidizing annealing and torsion testing of 0.027 wt% carbon steel rod were conducted to evaluate spheroidization kinetic behavior at 943 K (670 ℃) under deformed and non-deformed states. Kinetic curves were also predicted using the Johnson-Mehl-Avrami-Kolmogorov equation, and the results agree well with the experimental ones. After spheroidization was performed twice, the spherical cementite and precipitated carbides became smaller and the distribution was more uniform. Comparison of materials subjected to single and double spheroidizing annealing indicated a difference in grain size. Torsion performance was considerably improved under double spheroidization, especially the maximum torque with slight variations.
基金The authors are grateful to the National Natural Science Foundation of China(Grant No.51874170)the Union Foundation of State Key Laboratory of Marine Equipment and Applications-University of Science and Technology Liaoning(SKLMEA-USTL-201706)for supporting this work.
文摘There are four types of Mg–Al–Si–O inclusions observed in the Mg-treated Al-deoxidized ultra-low-carbon steel con-taining trace Si,including SiO_(2),2MgO·SiO_(2),3Al_(2)O_(3)·2SiO_(2),and 2MgO·Al_(2)O_(3)·5SiO_(2)and their composite inclusions.Using FactSage,the phase relationship of Mg–Al–Si–O system at 1473–2073 K was calculated using FactSage software,and the change in Si content can change the stable region range of different Mg–Al–Si–O-based inclusions.Based on the types of inclusions observed experimentally,the formation pathways of inclusions were predicted and a kinetic model was established to describe the formation process of the xMgO·yAl_(2)O_(3)–Mg–Al–Si–O and xAl_(2)O_(3)·ySiO_(2)–Mg–Al–Si–O inclusions.