Aluminium composites are inevitable in the manufacture of aircraft structural elements owing to less weight,superior corrosion resistance and higher specific properties.These composites reduce the weight of the aircra...Aluminium composites are inevitable in the manufacture of aircraft structural elements owing to less weight,superior corrosion resistance and higher specific properties.These composites reduce the weight of the aircraft,improve the fuel efficiency and enhance the maintenance duration.This study proposes the development of dissimilar grade aluminium(aluminium 1100-aluminium 5052)composites with different reinforcement’s viz.,stainless steel wire-mesh,silicon carbide(SiC)powders and SiC powder interspersed wire-mesh,by explosive cladding technique.Wire-mesh enhances the friction and restricts the movement of flyer plate to craft a defect free clad,while SiC particles form a band on the interface.Highest strength is obtained when SiC powder interspersed wire mesh is employed as reinforcement.The dissimilar aluminium explosive clad with SiC particle reinforcement results in lower strength,which is higher than that of the weaker parent alloy and that of the conventional dissimilar aluminium explosive clads without any reinforcement.展开更多
In this work,high-manganese aluminium bronze CuMn_(13)Al_(7)samples were prepared by arc additive manufacturing technology.The phase composition,microstructure,and crystal structure of the high-manganese aluminium bro...In this work,high-manganese aluminium bronze CuMn_(13)Al_(7)samples were prepared by arc additive manufacturing technology.The phase composition,microstructure,and crystal structure of the high-manganese aluminium bronze CuMn_(13)Al_(7)arc additive manufactured samples were analysed using direct-reading spectrometer,metallographic microscope,scanning electron microscope,and transmission electron microscope.The micro-hardness tester,tensile tester,impact tester,and electrochemical workstation were also used to test the performance of the CuMn_(13)Al_(7)samples.By studying the microstructure and properties of the CuMn_(13)Al_(7)samples,it was found that preparation of the samples by the arc additive manufacturing technology ensured good forming quality,almost no defects,and good metallurgical bonding inside the sample.The metallographic structure(α+β+point phase)mainly comprises the following:the metallographic structure in the equiaxed grain region has an obvious grain boundaryα;the metallographic structure in the remelting region has no obvious grain boundaryα;the thermal influence on the metallographic structure produced a weaker grain boundaryαthan the equiaxed grain region.The transverse and longitudinal cross sections of the sample had uniform microhardness distributions,and the average microhardness values were 190.5 HV0.1 and 192.7 HV0.1,respectively.The sample also had excellent mechanical properties:yield strength of 301 MPa,tensile strength of 633 MPa,elongation of 43.5%,reduction of area by 58%,Charpy impact value of 68 J/cm^(2)at–20℃,and dynamic potential polarisation curve test results.Further,it was shown that the average corrosion potential of the sample was–284.5 mV,and the average corrosion current density was 4.1×10–3 mA/cm^(2).展开更多
The influence of Ti-Si-Mg-AI wire on microstructure and mechanical properties of SiCp/A1 metal matrix composite joints produced by plasma arc in-situ weld-alloying was investigated. Argon-nitrogen mixture was used as ...The influence of Ti-Si-Mg-AI wire on microstructure and mechanical properties of SiCp/A1 metal matrix composite joints produced by plasma arc in-situ weld-alloying was investigated. Argon-nitrogen mixture was used as plasma gas and Ti-Si-Mg-A1 flux-cored wires as filled composites. Weldments were submitted to tensile test. Meanwhile, the macro morphology and microstructure of the joints were examined. The result shows that the formation ofneedie-like harmful phase A14C3 is effectively inhibited and the wettability of molten pool is improved by adding Ti-Si-Mg-A1 flux-cored wires. With 15Ti-5Si-5Mg-A1 flux-cored wire as filled composite, the maximum tensile strength of the welded joint is 267 MPa, which is up to 83% that of the matrix composites under annealed condition.展开更多
Cored wires for electric arc spraying of Al/Al 2 O 3 MMC coatings were developed, with Al 2 O 3 powder as the core material and commercial aluminium strip as the retaining sheath. The bond strength, ...Cored wires for electric arc spraying of Al/Al 2 O 3 MMC coatings were developed, with Al 2 O 3 powder as the core material and commercial aluminium strip as the retaining sheath. The bond strength, Al 2 O 3 content, microstructure, micro-hardness and wear resistance of coatings produced by arc spraying of the cored wires were experimentally investigated and were compared with those of pure aluminum coating.展开更多
7 xxx welding wire was self-made by spray forming ingots drawn to series welding wires products,and then TIG butt welding test is used for 5 mm thick 7075 high-strength aluminium alloy.After welding,the stress relief+...7 xxx welding wire was self-made by spray forming ingots drawn to series welding wires products,and then TIG butt welding test is used for 5 mm thick 7075 high-strength aluminium alloy.After welding,the stress relief+solid-solution aging heat treatment(T6)were performed to joints,and the mechanical properties and microstructure of the joints before and after heat treatment were comparative analyzed.The results show that the properties of the heat-affected zone(HAZ)of the joint before heat treatment decreas,and the joint is softened.The welded joints tensile strength is 271.8 MPa,the elongation is 5.6%,and the average hardness of the weld is 118.4 HV.The second phase particles such asη(Mg Zn2),S(Al2 Cu Mg),Al13 Fe4 are distributed in a network layer,with no apparent element segregation.After heat treatment,the structure of each area of the joint is coarsened,and a small amount of Fe-containing impurity phases are distributed.Theηand S phases are dissolved in the matrix.The hardness of each area of the joint is increased to 155 HV,and the softening zone is disappeared,this leads the joint elongation close to 16.9%.The tensile strength is increased to 511.8 MPa,reaching 94%of the base metal tensile strength.展开更多
The wire electrical discharge machining(EDM) of 6061 aluminium alloy in terms of material removal rate,kerf/slit width,surface finish and wear of electrode wire for different pulse on time and wire tension was studi...The wire electrical discharge machining(EDM) of 6061 aluminium alloy in terms of material removal rate,kerf/slit width,surface finish and wear of electrode wire for different pulse on time and wire tension was studied.Eight experiments were carried out in a wire EDM machine by varying pulse on time and wire tension.It is found that the material removal rate increases with the increase of pulse on time though the wire tension does not affect the material removal rate.It seems that the higher wire tension facilitates steady machining process,which generates low wear in wire electrode and better surface finish.The surface roughness does not change notably with the variation of pulse on time.The appearance of the machined surfaces is very similar under all the machining conditions.The machined surface contains solidified molten material,splash of materials and blisters.The increase of the pulse on time increases the wear of wire electrode due to the increase of heat input.The wear of wire electrode generates tapered slot which has higher kerf width at top side than that at bottom side.The higher electrode wear introduces higher taper.展开更多
We focused on Ti/Al composite materials fabricated by wire and arc addictive manufacturing,and the microstructure and interface characteristics of them before and after hot compression deformation were compared.After ...We focused on Ti/Al composite materials fabricated by wire and arc addictive manufacturing,and the microstructure and interface characteristics of them before and after hot compression deformation were compared.After compression deformation,allαstructures of titanium were compacted with the emergence of Widmanstatten structures.Coarsened coloniesαof titanium were elongated and waved along the original growth direction,resulting in anisotropy of grains.Pores and Ti/Al intermetallic compounds of aluminum are significantly decreased after hot compression.Meanwhile,a good bonding interface between titanium and aluminum is obtained after hot compression,and the element diffusion is more intense.In addition,the mechanical properties and fracture behaviors of Ti/Al composite material with different clad ratio that is defined as the ratio of the thickness of titanium to that of the Ti/Al composite material are investigated by uniaxial tensile test.The experimental results show that the ultimate tensile strength of Ti/Al composite material is between that of single deposited titanium and aluminum,while the elongation of Ti/Al composite material with low clad ratio is lower than that of single aluminum due to the metallurgical reaction.As the clad ratio increases,the two component layers are harder to separate during deformation,which is resulted from the decrease of the inward contraction stress of three-dimensional stress caused by necking of aluminum.This work may promote the engineering application of Ti/Al bimetallic structures.展开更多
文摘Aluminium composites are inevitable in the manufacture of aircraft structural elements owing to less weight,superior corrosion resistance and higher specific properties.These composites reduce the weight of the aircraft,improve the fuel efficiency and enhance the maintenance duration.This study proposes the development of dissimilar grade aluminium(aluminium 1100-aluminium 5052)composites with different reinforcement’s viz.,stainless steel wire-mesh,silicon carbide(SiC)powders and SiC powder interspersed wire-mesh,by explosive cladding technique.Wire-mesh enhances the friction and restricts the movement of flyer plate to craft a defect free clad,while SiC particles form a band on the interface.Highest strength is obtained when SiC powder interspersed wire mesh is employed as reinforcement.The dissimilar aluminium explosive clad with SiC particle reinforcement results in lower strength,which is higher than that of the weaker parent alloy and that of the conventional dissimilar aluminium explosive clads without any reinforcement.
基金University Synergy Innovation Program of Anhui Province(Grant No.GXXT-2019-022)Anhui Provincial Natural Science Foundation of China(Grant No.1908085QE174)the Talent Program of Anhui Science and Technology University(Grant No.RCYJ201905).
文摘In this work,high-manganese aluminium bronze CuMn_(13)Al_(7)samples were prepared by arc additive manufacturing technology.The phase composition,microstructure,and crystal structure of the high-manganese aluminium bronze CuMn_(13)Al_(7)arc additive manufactured samples were analysed using direct-reading spectrometer,metallographic microscope,scanning electron microscope,and transmission electron microscope.The micro-hardness tester,tensile tester,impact tester,and electrochemical workstation were also used to test the performance of the CuMn_(13)Al_(7)samples.By studying the microstructure and properties of the CuMn_(13)Al_(7)samples,it was found that preparation of the samples by the arc additive manufacturing technology ensured good forming quality,almost no defects,and good metallurgical bonding inside the sample.The metallographic structure(α+β+point phase)mainly comprises the following:the metallographic structure in the equiaxed grain region has an obvious grain boundaryα;the metallographic structure in the remelting region has no obvious grain boundaryα;the thermal influence on the metallographic structure produced a weaker grain boundaryαthan the equiaxed grain region.The transverse and longitudinal cross sections of the sample had uniform microhardness distributions,and the average microhardness values were 190.5 HV0.1 and 192.7 HV0.1,respectively.The sample also had excellent mechanical properties:yield strength of 301 MPa,tensile strength of 633 MPa,elongation of 43.5%,reduction of area by 58%,Charpy impact value of 68 J/cm^(2)at–20℃,and dynamic potential polarisation curve test results.Further,it was shown that the average corrosion potential of the sample was–284.5 mV,and the average corrosion current density was 4.1×10–3 mA/cm^(2).
基金Project (09003) supported by the Open-Fund Research of State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,ChinaProject (JD0805) supported by the Science and Technology Innovation Team,Jiangsu University,China
文摘The influence of Ti-Si-Mg-AI wire on microstructure and mechanical properties of SiCp/A1 metal matrix composite joints produced by plasma arc in-situ weld-alloying was investigated. Argon-nitrogen mixture was used as plasma gas and Ti-Si-Mg-A1 flux-cored wires as filled composites. Weldments were submitted to tensile test. Meanwhile, the macro morphology and microstructure of the joints were examined. The result shows that the formation ofneedie-like harmful phase A14C3 is effectively inhibited and the wettability of molten pool is improved by adding Ti-Si-Mg-A1 flux-cored wires. With 15Ti-5Si-5Mg-A1 flux-cored wire as filled composite, the maximum tensile strength of the welded joint is 267 MPa, which is up to 83% that of the matrix composites under annealed condition.
文摘Cored wires for electric arc spraying of Al/Al 2 O 3 MMC coatings were developed, with Al 2 O 3 powder as the core material and commercial aluminium strip as the retaining sheath. The bond strength, Al 2 O 3 content, microstructure, micro-hardness and wear resistance of coatings produced by arc spraying of the cored wires were experimentally investigated and were compared with those of pure aluminum coating.
文摘7 xxx welding wire was self-made by spray forming ingots drawn to series welding wires products,and then TIG butt welding test is used for 5 mm thick 7075 high-strength aluminium alloy.After welding,the stress relief+solid-solution aging heat treatment(T6)were performed to joints,and the mechanical properties and microstructure of the joints before and after heat treatment were comparative analyzed.The results show that the properties of the heat-affected zone(HAZ)of the joint before heat treatment decreas,and the joint is softened.The welded joints tensile strength is 271.8 MPa,the elongation is 5.6%,and the average hardness of the weld is 118.4 HV.The second phase particles such asη(Mg Zn2),S(Al2 Cu Mg),Al13 Fe4 are distributed in a network layer,with no apparent element segregation.After heat treatment,the structure of each area of the joint is coarsened,and a small amount of Fe-containing impurity phases are distributed.Theηand S phases are dissolved in the matrix.The hardness of each area of the joint is increased to 155 HV,and the softening zone is disappeared,this leads the joint elongation close to 16.9%.The tensile strength is increased to 511.8 MPa,reaching 94%of the base metal tensile strength.
文摘The wire electrical discharge machining(EDM) of 6061 aluminium alloy in terms of material removal rate,kerf/slit width,surface finish and wear of electrode wire for different pulse on time and wire tension was studied.Eight experiments were carried out in a wire EDM machine by varying pulse on time and wire tension.It is found that the material removal rate increases with the increase of pulse on time though the wire tension does not affect the material removal rate.It seems that the higher wire tension facilitates steady machining process,which generates low wear in wire electrode and better surface finish.The surface roughness does not change notably with the variation of pulse on time.The appearance of the machined surfaces is very similar under all the machining conditions.The machined surface contains solidified molten material,splash of materials and blisters.The increase of the pulse on time increases the wear of wire electrode due to the increase of heat input.The wear of wire electrode generates tapered slot which has higher kerf width at top side than that at bottom side.The higher electrode wear introduces higher taper.
基金Funded by the National Natural Science Foundation of China(No.51775068)。
文摘We focused on Ti/Al composite materials fabricated by wire and arc addictive manufacturing,and the microstructure and interface characteristics of them before and after hot compression deformation were compared.After compression deformation,allαstructures of titanium were compacted with the emergence of Widmanstatten structures.Coarsened coloniesαof titanium were elongated and waved along the original growth direction,resulting in anisotropy of grains.Pores and Ti/Al intermetallic compounds of aluminum are significantly decreased after hot compression.Meanwhile,a good bonding interface between titanium and aluminum is obtained after hot compression,and the element diffusion is more intense.In addition,the mechanical properties and fracture behaviors of Ti/Al composite material with different clad ratio that is defined as the ratio of the thickness of titanium to that of the Ti/Al composite material are investigated by uniaxial tensile test.The experimental results show that the ultimate tensile strength of Ti/Al composite material is between that of single deposited titanium and aluminum,while the elongation of Ti/Al composite material with low clad ratio is lower than that of single aluminum due to the metallurgical reaction.As the clad ratio increases,the two component layers are harder to separate during deformation,which is resulted from the decrease of the inward contraction stress of three-dimensional stress caused by necking of aluminum.This work may promote the engineering application of Ti/Al bimetallic structures.