期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Copper-coated Porous Polyimide as Ultralight and Safe Current Collectors for Advanced LIBs
1
作者 Cun-Sheng Liu Jun-Qi Hu +4 位作者 Ting-Ting Mao Song-Yi Liao Ru-Ming Feng Yi-Dong Liu Yong-Gang Min 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第4期521-531,共11页
Metallic copper is widely used as current collector(CC) for graphite anode of lithium-ion batteries(LIBs) due to its high electrical conductivity and electrochemical stability. However, the large volume density of com... Metallic copper is widely used as current collector(CC) for graphite anode of lithium-ion batteries(LIBs) due to its high electrical conductivity and electrochemical stability. However, the large volume density of commercial copper foil(~8.9 g·cm^(-3)) limits the increase of energy density of battery. Here, copper-coated porous polyimide(Cu@PPI) was prepared by vacuum evaporation as collector for the graphite anode. The sandwich structure connects the copper metal on both sides of the collector with excellent electrical conductivity. Compared to commercial Cu foil, Cu@PPI has lighter mass(≤3.9 mg for disc of 12 mm diameter versus 9.9 mg of ~10 μm Cu foil) and lower volume density(≤3.3 g·cm^(-3)). In addition, the porous structure allows of better adhesion of reactive substances and electrochemical properties than pure Cu foils. It is estimated that the energy density of Cu@PPI should be much higher than that of Cu foil. This strategy should be applicable for other current collectors. 展开更多
关键词 copper-coated Vacuum evaporation Porous polyimide(PPI) Current collector(CC) LIBS
原文传递
Hot-pressed sintering of W/Cu functionally graded materials prepared from copper-coated tungsten powders 被引量:1
2
作者 Pei Tian Yi Feng +4 位作者 Meng Xia Lan Zhao Cheng-Yu Cai Ke Liu Xiao-Chen Huang 《Rare Metals》 SCIE EI CAS CSCD 2020年第10期1229-1236,共8页
The three-layered(W-60 vol%Cu/W-40 vol%Cu/W-20 vol%Cu)W/Cu functionally graded material(FGM)containing a Cu network structure was fabricated at different temperatures by hot-pressed sintering produced from copper-coat... The three-layered(W-60 vol%Cu/W-40 vol%Cu/W-20 vol%Cu)W/Cu functionally graded material(FGM)containing a Cu network structure was fabricated at different temperatures by hot-pressed sintering produced from copper-coated tungsten powders.The effects of various sintering temperatures on relative density,microstructure,thermal conductivity,hardness and flexural strength were investigated.Scanning electron microscopy(SEM)and X-ray diffraction(XRD)analysis show that a Cu network extends throughout the W/Cu FGM specimens sintered at 1065℃and the graded structure can be retained perfectly,and W particles are distributed homogeneously.The low-temperature sintering densification of W/Cu FGM arises because the sintering mode of the copper-coated tungsten particles includes just sintering Cu to Cu,rather than Cu to W,Cu to Cu and W to W,as required for conventional powder particles.The relative density of W/Cu FGM sintered at 1065℃for 3 h under a load of25 MPa is 96.1%.The thermal conductivity is up to204 W·m^-1·K^-1 at normal temperature and 150 W·m^-1·K^-1at 800℃.And the Vickers hardness varies with the gradient of different layers from 3.34 to 4.05 GPa. 展开更多
关键词 copper-coated tungsten powders Hot-pressed sintering W/Cu functionally graded materials Microstructure Performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部