期刊文献+
共找到192篇文章
< 1 2 10 >
每页显示 20 50 100
High Fe^(LS)(C)electrochemical activity of an iron hexacyanoferrate cathode boosts superior sodium ion storage 被引量:1
1
作者 Junhong Guo Fan Feng +7 位作者 Shiqiang Zhao Zhenhai Shi Rui Wang Meng Yang Fangfang Chen Suli Chen Zi-Feng Ma Tianxi Liu 《Carbon Energy》 SCIE CSCD 2023年第5期67-77,共11页
Sodium iron hexacyanoferrate(FeHCF)is one of the most promising cathode materials for sodium-ion batteries(SIBs)due to its low cost theoretical capacity.However,the low electrochemical activity of Fe^(LS)(C)in FeHCF d... Sodium iron hexacyanoferrate(FeHCF)is one of the most promising cathode materials for sodium-ion batteries(SIBs)due to its low cost theoretical capacity.However,the low electrochemical activity of Fe^(LS)(C)in FeHCF drags down its practical capacity and potential plateau.Herein,FeHCF with high Fe^(LS)(C)electrochemical activity(C-FeHCF)is synthesized via a facile citric acid-assisted solvothermal method.As the cathode of SIBs,C-FeHCF shows superior cycling stability(ca.87.3%capacity retention for 1000 cycles at 10 C)and outstanding rate performance(ca.68.5%capacity retention at 50 C).Importantly,the contribution of Fe^(LS)(C)to the whole capacity was quantitatively analyzed via combining dQ/dV and discharge curve for the first time,and the index reaches 44.53%for C-FeHCF,close to the theoretical value.In-situ X-ray diffraction proves the structure stability of C-FeHCF during charge-discharge process,ensuring its superior cycling performance.Furthermore,the application feasibility of the C-FeHCF cathode in quasi-solid SIBs is also evaluated.The quasi-solid SIBs with the C-FeHCF cathode exhibit excellent electrochemical performance,delivering an initial discharge capacity of 106.5 mAh g^(−1) at 5 C and high capacity retention of 89.8%over 1200 cycles.This work opens new insights into the design and development of advanced cathode materials for SIBs and the beyond. 展开更多
关键词 cathode material electrochemical activity sodium-ion batteries sodium iron hexacyanoferrate structural evolution
下载PDF
Post-Synthetic and In Situ Vacancy Repairing of Iron Hexacyanoferrate Toward Highly Stable Cathodes for Sodium-Ion Batteries 被引量:6
2
作者 Min Wan Rui Zeng +5 位作者 Jingtao Meng Zexiao Cheng Weilun Chen Jiayu Peng Wuxing Zhang Yunhui Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第1期182-193,共12页
Iron hexacyanoferrate(FeHCF)is a promising cathode material for sodium-ion batteries.However,FeHCF always suffers from a poor cycling stability,which is closely related to the abundant vacancy defects in its framework... Iron hexacyanoferrate(FeHCF)is a promising cathode material for sodium-ion batteries.However,FeHCF always suffers from a poor cycling stability,which is closely related to the abundant vacancy defects in its framework.Herein,post-synthetic and in-situ vacancy repairing strategies are proposed for the synthesis of highquality FeHCF in a highly concentrated Na_(4)Fe(CN)_(6) solution.Both the post-synthetic and in-situ vacancy repaired FeHCF products(FeHCF-P and FeHCF-I)show the significant decrease in the number of vacancy defects and the reinforced structure,which can suppress the side reactions and activate the capacity from low-spin Fe in FeHCF.In particular,FeHCF-P delivers a reversible discharge capacity of 131 mAh g^(−1) at 1 C and remains 109 mAh g^(−1) after 500 cycles,with a capacity retention of 83%.FeHCF-I can deliver a high discharge capacity of 158.5 mAh g^(−1) at 1 C.Even at 10 C,the FeHCF-I electrode still maintains a discharge specific capacity of 103 mAh g^(−1) and retains 75% after 800 cycles.This work provides a new vacancy repairing strategy for the solution synthesis of high-quality FeHCF. 展开更多
关键词 Iron hexacyanoferrate CATHODE Vacancy repairing Sodium-ion batteries
下载PDF
In-Situ Microscopic FTIR Spectroelectrochemistry of Ascorbic Acid in Poly(ethylene glycol)/LiClO_4 Electrolyte Paste and in the Presence of Dispersed Cobalt Hexacyanoferrate Microcrystalline Powder 被引量:1
3
作者 GUO Li-ping LIN Xiang-qin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 1999年第1期12-18,共7页
In-situ microscopic FTIR spectroelectrochemical technique(MFTIRs) was applied to studying the electrochemical oxidation of ascorbic acid(AA) in poly(ethylene glycol)(PEG) paste at a 100 μm diameter Pt disk electrod... In-situ microscopic FTIR spectroelectrochemical technique(MFTIRs) was applied to studying the electrochemical oxidation of ascorbic acid(AA) in poly(ethylene glycol)(PEG) paste at a 100 μm diameter Pt disk electrode. Using this technique, the catalytic ability of cobalt hexacyanoferrate(CoHCF) microcrystalline toward AA oxidation was also studied. It was found that the dispersed CoHCF powder in the PEG paste can generate well shaped thin layer cyclic voltammetric waves with the peak height proportional to the scan rate, corresponding to the Fe centered redox reactions. This oxidation step catalyzed the AA oxidation. Also, this pasted CoHCF powder generated well resolved in situ MFTIRs spectra, by which a chemical interaction between CC bond of AA ring and CoHCF lattice was revealed. A corresponding surface docking mechanism for the catalytic reaction has been proposed. 展开更多
关键词 In SITU MFTIRs Ascorbic acid Cobalt hexacyanoferrate Polymer ELECTROLYTE MICROCRYSTALLINE DOCKING mechanism
下载PDF
Electrochemically switched ion exchange performances of capillary deposited nickel hexacyanoferrate thin films 被引量:13
4
作者 郝晓刚 郭金霞 +1 位作者 刘世斌 孙彦平 《中国有色金属学会会刊:英文版》 EI CSCD 2006年第3期556-561,共6页
Thin films of capillary deposited nickel hexacyanoferrate(NiHCF) were investigated as electrochemically switched ion exchange(ESIX) materials. The films were generated on platinum and graphite substrates based on the ... Thin films of capillary deposited nickel hexacyanoferrate(NiHCF) were investigated as electrochemically switched ion exchange(ESIX) materials. The films were generated on platinum and graphite substrates based on the ternary reagent diagram. In 1 mol/L KNO3 solution, cyclic voltammetry(CV) combined with energy-dispersive X-ray spectroscopy(EDS) was used to determine the influence of experimental conditions on the electroactivity of the NiHCF thin film on Pt substrates. The ion selectivity, ion-exchange capacity and the regenerability of NiHCF films on Pt and graphite substrates were investigated. The experiment results show that the NiHCF thin films from Ni2+-poor growth conditions have double peaks CV curves and contain relatively larger amount of potassium; while those from Ni2+-rich growth conditions are single peak CV curves and contain relatively smaller amount of potassium. It is demonstrated that the NiHCF thin films of capillary chemical deposition have good ESIX performances. 展开更多
关键词 离子交换 薄膜 毛细管化学沉积 表面化学
下载PDF
Molecular dynamics simulation of ion selectivity traits of nickel hexacyanoferrate thin films 被引量:8
5
作者 郝晓刚 YU Qiu-ming +1 位作者 JIANG Shao-yi D. T. SCHWARTZ 《中国有色金属学会会刊:英文版》 EI CSCD 2006年第4期897-902,共6页
The ion selectivity of nickel hexacyanoferrate thin film to alkali cations in ESIX (electrochemically switched ion exchange) processes was investigated using molecular dynamics(MD) techniques; water and cation (Na+ an... The ion selectivity of nickel hexacyanoferrate thin film to alkali cations in ESIX (electrochemically switched ion exchange) processes was investigated using molecular dynamics(MD) techniques; water and cation (Na+ and Cs+) intercalation, configuration, and dynamics in reduced nickel hexacyanoferrate structures with different cation combinations were studied and compared with the experimental results. In the simulations, water was represented by an extended simple point-charge(SPC/E) model, and all other atomic interactions were represented by a universal force field(UFF). The potential energies of various cations combination (Cs+ and Na+) in reduced i-NiHCF and 1 mol/L Cs/NaCl mixed solution were obtained. In most cases, the total potential energy of the solid is reduced when water is intercalated into the various reduced NiHCF structures. Combining the solid and the solution simulation results, it is shown that the solid composition of 3Cs+/1Na+ is the stablest structure form (NaCs3Ni4[Fe(CN)6]3) over a range of solution compositions. 展开更多
关键词 分子动力学模拟 离子选择性 薄膜 离子交换
下载PDF
Characterization of porous cobalt hexacyanoferrate and activated carbon electrodes under dynamic polarization conditions in a sodium-ion pseudocapacitor 被引量:1
6
作者 Bruno Morandi Pires Willian Goncalves Nunes +5 位作者 Bruno Guilherme Freitas Francisca Elenice Rodrigues Oliveira Vera Katic Cristiane Barbieri Rodella Leonardo Morais Da Silva Hudson Zanin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期53-62,共10页
We report here the activated carbon and cobalt hexacyanoferrate composite,which is applied as the electrode materials in symmetric supercapacitors containing a 1.0 M Na_(2)SO_(4) aqueous electrolyte.This novel materia... We report here the activated carbon and cobalt hexacyanoferrate composite,which is applied as the electrode materials in symmetric supercapacitors containing a 1.0 M Na_(2)SO_(4) aqueous electrolyte.This novel material combines high specific surface area and electrochemical stability of activated carbon with the redox properties of cobalt hexacyanoferrate,resulting in maximum specific capacitance of 329 F g^(-1) with large voltage working window of 2.0 V.Electrochemical studies indicated that cobalt hexacyanoferrate introduces important pseudocapacitive properties accounting for the overall charge-storage process,especially when I<0.5 A g^(-1).At lower gravimetric currents(e.g.,0.05 A g^(-1))and up to 1.0 V,the presence of cobalt hexacyanoferrate improves the specific energy for more than 300%.In addition,to better understanding the energy storage process we also provided a careful investigation of the electrode materials under dynamic polarization conditions using the in situ Raman spectroscopy and synchrotron light Xray diffraction techniques.Interesting complementary findings were obtained in these studies.We believe that this novel electrode material is promising for applications regarding the energy-storage process in pseudocapacitors with long lifespan properties. 展开更多
关键词 Operando studies RAMAN XRD synchrotron light Cobalt hexacyanoferrate Activated carbon High specific capacitance
下载PDF
Thermal Decomposition of Potassium Titanium Hexacyanoferrate(Ⅱ) Loaded with Cesium in a Fixed Bed Calciner 被引量:1
7
作者 冯孝贵 景山 +2 位作者 吴秋林 陈靖 宋崇立 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第2期184-189,共6页
The thermal decomposition of potassium titanium hexacyanoferrate( Ⅱ ) (KTiFC) loaded with cesium (referred to as Used Exchanger,or UE) was-studied at different flow rate of air in a fixed bed calciner. The calc... The thermal decomposition of potassium titanium hexacyanoferrate( Ⅱ ) (KTiFC) loaded with cesium (referred to as Used Exchanger,or UE) was-studied at different flow rate of air in a fixed bed calciner. The calcina t ign processconsisted of four stages:ambient temperature- 180℃ (stageⅠ ), 180-250℃(stage Ⅱ), 250-400℃ (stage Ⅲ), and constant 400℃ (stage Ⅳ).The most intense reaction occurred in stage .Ⅱ. The rate of thermal decomposition was controlled, depending on the O2 flux, by O2 or CN concentration in ditterent stages. Results from differential thermal analysis (DTA) showed that the calcination reaction of the anhydrous UE was exothermic, with an approximate heat output of 4.6kJ·g^-1, which was so large to cause the possible agglomeration of calcined residues. The agglomeration could be avoided by enhancing heat transfer and controlling the O2 flux. It was found that there was no cyanides in the calcined residues and no CN-bearing gases such as HCN and (CN)2 in the off-gas. It seemed that the catalytic oxidation furnace behind the fixed bed calciner could be cancelled. 展开更多
关键词 thermal decomposition fixed bed calciner potassium titanium hexacyanoferrate (Ⅱ) (KTiFC) AGGLOMERATE
下载PDF
Electrochemical oxidation of polyethylene glycol in electroplating solution using paraffin composite copper hexacyanoferrate modified (PCCHM) anode
8
作者 Rajesh S. Bejankiwar Abir Basu Max Cementi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第5期851-855,共5页
Electrochemical oxidation of polyethylene glycol(PEG) in an acidic(pH 0.18 to 0.42) and high ionic strength electroplating solution was investigated. The electroplating solution is a major source of wastewater in the ... Electrochemical oxidation of polyethylene glycol(PEG) in an acidic(pH 0.18 to 0.42) and high ionic strength electroplating solution was investigated. The electroplating solution is a major source of wastewater in the printing wiring board industry. A paraffin composite copper hexacyanoferrate modified(PCCHM) electrode was used as the anode and a bare graphite electrode was used as the cathode. The changes in PEG and total organic carbon(TOC) concentrations during the course of the reaction were monitored. The efficiency of the PCCHM anode was compared with bare graphite anode and it was found that the former showed significant electrocatalytic property for PEG and TOC removal. Chlorides present in the solution were found to contribute significantly in the overall organic removal process. Short chain organic compounds like acetic acid, oxalic acid, formic acid and ethylene glycol formed during electrolysis were identified by HPLC method. Anode surface area and applied current density were found to influence the electro-oxidation process, in which the former was found to be dominating. Investigations of the kinetics for the present electrochemical reaction suggested that the two stage first-order kinetic model provides a much better representation of the overall mechanism of the process if compared to the generalized kinetic model. 展开更多
关键词 polyethylene glycol(PEG) paraffin composite copper hexacyanoferrate modified(PCCHM) electrode electroplating solution two stage first-order kinetic model generalized kinetic model
下载PDF
Low-strain binary hexacyanoferrate nanocuboids with concentration-gradient structure towards fast and durable energy storage
9
作者 Yutong Lin Bing Han +6 位作者 Donglan Zhang Xueya Liu Zili Wang Zhengyu Wang Liang Si Sen Zhang Chao Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期72-84,I0004,共14页
The exploration of low-strain and high-performance electrode is a crucial issue for aqueous potassiumion battery(AKIB).Herein,a novel potassium mediated iron/manganese binary hexacyanoferrate nanocuboid,i.e.,K_(x)Fe_(... The exploration of low-strain and high-performance electrode is a crucial issue for aqueous potassiumion battery(AKIB).Herein,a novel potassium mediated iron/manganese binary hexacyanoferrate nanocuboid,i.e.,K_(x)Fe_(y)Mn_(1-y)[Fe(CN)_(6)]·nH_(2)O(KFeMnHCF)nanocuboid,with the concentration-gradient(CG)structure is designed as a high-performance cathode for AKIB.Internal the CG-KFeMnHCF nanocuboids,the manganese content gradually decreases from the interior to the surface and the iron content changes reverse,resulting in the concentration-gradient structure.Both experimental and finite element simulation(FEA)results demonstrate the lower internal stress and better mechanical characteristics of CG structured nanocuboid than the homogenous structured one upon ion intercalation/deintercalation processes.Meanwhile,the electrochemical testing and theoretical calculation(DFT)results disclose the substitution of Fe to Mn in the KMnHCF crystal results in the enhanced electronic conductivity,potassium migration and electrochemical kinetics.Taken both advantages from the well-designed architecture and optimized crystal structure,the CG-KFeMnHCF achieves the superior rate capability and ultrahigh stability in aqueous potassium ion system.In particular,the CG-KFe_(0.31)Mn_(0.69)HCF achieves the best comprehensive properties among all the samples.The full AKIBs based on CG-KFe_(0.31)Mn_(0.69)HCF cathode achieves the high energy density(83 Wh kg^(-1)),superior power density,high capacity retention(83%)over high-rate long-term cycles,good adaptation to a wide temperature range(-20 to 40℃)and high reliability even under outside deformations.Therefore,this work not only provides a new clue to design the highperformance cathode,but also promotes the applications of AKIBs for diverse electronics and wide working environments. 展开更多
关键词 Concentration-gradient structure Binary hexacyanoferrate nanocuboid AKIBs Low-strain FEA modeling
下载PDF
Antifungal Potential of Transition Metal Hexacyanoferrates against Fungal Diseases of Mushroom
10
作者 Charu Arora Chugh Dipti Bharti 《Open Journal of Synthesis Theory and Applications》 2012年第3期23-30,共8页
Ferrocyanides of Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) were synthesized and characterized by IR spectra, magnetic susceptibility, thermal gravimetric analysis, elemental analysis and X ray diffraction studies. Ant... Ferrocyanides of Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) were synthesized and characterized by IR spectra, magnetic susceptibility, thermal gravimetric analysis, elemental analysis and X ray diffraction studies. Antimicrobial potential of these complexes have been evaluated. Antifungal screening of these complexes has been carried out against Mycogone perniciosa and Verticillium fungicola causing wet and dry bubble diseases of button mushroom respectively. Nickel ferrocyanide has been found to be most effective against Mycogone perniciosa with 60% inhibitory effect while cadmium ferrocyanide has exhibited significant potential of 85% against Verticillium fungicola. 展开更多
关键词 Verticilium fungicola Mycogone perniciosa Biocidal POTENTIAL TRANSITION METAL hexacyanoferrates
下载PDF
Enhanced stability and rate performance of zinc-doped cobalt hexacyanoferrate (CoZnHCF) by the limited crystal growth and reduced distortion
11
作者 Jihwan Kim Seong-Hoon Yi +1 位作者 Li Li Sang-Eun Chun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期649-658,I0018,共11页
Cobalt hexacyanoferrate (CoHCF) is a potential cathode for aqueous Na-ion batteries due to its high theoretical specific capacity (170 m Ah g^(-1));however,its lower rate capability and cyclability limit its applicati... Cobalt hexacyanoferrate (CoHCF) is a potential cathode for aqueous Na-ion batteries due to its high theoretical specific capacity (170 m Ah g^(-1));however,its lower rate capability and cyclability limit its applications.Structural distortion at a weak N-coordinated crystal field during cycling disintegrates Co,yielding an irreversible reaction.Different Zn amounts ranging 0–1 were added to the Co site to suppress the structural irreversibility of CoHCF,yielding Co_(1-x)Zn_(x)HCF powder;this Zn (x≤0.09) addition reduced the powder’s dimension because the lower four coordination of Zn–N,not the six coordination of Co–N,limits the powder growth.Simultaneously,a small lattice parameter and interaxial angle (~90°) are obtained,implying that a narrower Co_(1-x)Zn_(x)HCF inner structure is formed to accommodate Na ions.Moreover,the electronic conductivity of Co_(1-x)Zn_(x)HCF gradually increased within 0–0.09 range.A smaller particle size with a high surface area leads to a near-surface-limited redox process,similar to a capacitive reaction.Both the surface-limited reaction and electronic conductivity enhances the reversibility due to the smaller charge transfer resistance at the electrode/electrolyte interface caused by Zn addition.Replacing redox-active Co with non-active Zn amount of 0.07 (Co_(1-x)Zn_(x)HCF) slightly reduces the specific capacity from 127 to 119 mAh g^(-1)at 0.1 A g^(-1)due to the shrunken Co charging sites.Rate performance is enhanced by compromising the capacity and reduced distortion,resulting in 81%retention at a 20-times-faster charging rate.Notably,the Co_(1-x)Zn_(x)HCF sample exhibited the good stability while preserving 74%of the initial capacity at 0.5 A g^(-1)after 200 cycles. 展开更多
关键词 Cobalt hexacyanoferrate Rate capability STABILITY Growth limitation Structural distortion Near-surface-limited redox process
下载PDF
Electrochemical Properties of Modified Carbon Paste with Copper Hexacyanoferrate Film on Nitric Oxide Reduction
12
作者 Liridon Berisha Arsim Maloku +1 位作者 Eduard Andoni Tahir Arbneshi 《American Journal of Analytical Chemistry》 2014年第5期308-315,共8页
Copper hexacyanoferate film was prepared electrochemically on carbon paste electrode and was tested for detection of nitric (II) oxide in comparison with unmodified electrodes. Modified electrode could be operated und... Copper hexacyanoferate film was prepared electrochemically on carbon paste electrode and was tested for detection of nitric (II) oxide in comparison with unmodified electrodes. Modified electrode could be operated under physiological conditions (pH 7.5, 0.1 M phosphate buffer), with an operating potential of ﹣400 mV (vs. Ag/AgCl) in hydrodynamic amperometry. The amperometric response of the electrode showed good linearity up to 250 μM with a detection limit (3σ) of 8.32 μM. The relative standard deviation for the repeatability of measurements for 100 μM nitric (II) oxide was 4.1% (n = 10 measurements) and the corresponding reproducibility was 14% (n = 5 electrodes). The effect of investigated interferences (nitrite and nitrate ion) was not fatal and could be eliminated using the standard addition method. The modified electrode also seems promising to detect NO in car exhaust fumes. 展开更多
关键词 Sensor NITRIC OXIDE Copper-hexacyanoferrate ELECTROCATALYTIC Carbon PASTE Electrode
下载PDF
In-situ FTIR Spectroelectrochemical Study of Chromium Hexacyanoferrate on Glassy Carbon Electrode
13
作者 Ai Li BO (Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, ChineseAcademy of Sciences, Changchun 130022) Xiang Qin LIN (Department of Chemistry, University of Science and Technology of China, Hefei 230026) 《Chinese Chemical Letters》 SCIE CAS CSCD 1998年第9期851-854,共4页
Chromium hexacyanoferrate (CrHCF) modified grassy carbon electrode (GC) in different electrolytes was studied by cyclic voltammetry and in situ FTIR spectroelectrochemistry. The results indicate that the behavior of C... Chromium hexacyanoferrate (CrHCF) modified grassy carbon electrode (GC) in different electrolytes was studied by cyclic voltammetry and in situ FTIR spectroelectrochemistry. The results indicate that the behavior of CrHCF firm can be understood in term of two structures: Cr1/3Cr(III)Fe(II)(CN), and MCr(III)Fe(II)(CN)(6). Besides,the film exists in amorphous state: the outer layer is porous film, while the inner layer is relatively compact. According to the electrochemical reaction of CrHCF, the lattice can contract and expand with the cations' diffusion. 展开更多
关键词 chromium hexacyanoferrate grassy carbon electrode ELECTROCHEMISTRY in situ FTIR spectroelectrochemistry
全文增补中
Cu-substituted nickel hexacyanoferrate with tunable reaction potentials for superior ammonium ion storage
14
作者 Leiyu Fan Guangchang Shu +4 位作者 Yiwen Liu Haoxiang Yu Lei Yan Liyuan Zhang Jie Shu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第2期19-27,共9页
In this work,a variety of Cu_(x)Ni_(2-x)Fe(CN)_(6)(x=0,0.4,0.8,1.2,1.6,2)cathodes for ammonium ion batteries are prepared and their electrochemical performances are investigated.During the introduction of copper in ni... In this work,a variety of Cu_(x)Ni_(2-x)Fe(CN)_(6)(x=0,0.4,0.8,1.2,1.6,2)cathodes for ammonium ion batteries are prepared and their electrochemical performances are investigated.During the introduction of copper in nickel hexacyanoferrate,the electrochemical performance varies without changing the structure of nickel hexacyanoferrate.The increase of Cu content in nickel hexacyanoferrate leads to the enhancement of reaction potential and capacity.Electrochemical results suggest that the substitution of Cu for Ni has a positive effect on improving the cycling stability and rate capacity of nickel hexacyanoferrate when x in Cu_(x)Ni_(2-x)Fe(CN)_(6)is less than 0.4.Therefore,Cu_(0.4)Ni_(1.6)Fe(CN)_(6)exhibits the best cycling per-formance(capacity retention of 97.54%at 0.3 C)and the highest rate capacity(41.4 mAh g^(-1)at 10 C)in Cu_(x)Ni_(2-x)Fe(CN)_(6).Additionally,the X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS)tests also reveal that the structural evolution of Cu_(0.4)Ni_(1.6)Fe(CN)_(6)is highly reversible upon NH_(4)^(+)storage.Therefore,this work proposes a candidate material for ammoniumion batteries and offers a novel avenue for adjusting the operating potential of the material. 展开更多
关键词 Nickel hexacyanoferrate Copper hexacyanoferrate NH_(4)^(+)storage Ammonium ion batteries Aqueous batteries
原文传递
Extraction and recycling technologies of cobalt from primary and secondary resources:A comprehensive review
15
作者 Yukun Huang Pengxu Chen +5 位作者 Xuanzhao Shu Biao Fu Weijun Peng Jiang Liu Yijun Cao Xiaofeng Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期628-649,共22页
Cobalt has excellent electrochemical,magnetic,and heat properties.As a strategic resource,it has been applied in many hightech products.However,the recent rapid growth of the battery industry has substantially deplete... Cobalt has excellent electrochemical,magnetic,and heat properties.As a strategic resource,it has been applied in many hightech products.However,the recent rapid growth of the battery industry has substantially depleted cobalt resources,leading to a crisis of cobalt resource supply.The paper examines cobalt ore reserves and distribution,and the recent development and consumption of cobalt resources are summarized as well.In addition,the principles,advantages and disadvantages,and research status of various methods are discussed comprehensively.It can be concluded that the use of diverse sources(Cu-Co ores,Ni-Co ores,zinc plant residues,and waste cobalt products)for cobalt production should be enhanced to meet developmental requirements.Furthermore,in recovery technology,the pyro-hydrometallurgical process employs pyrometallurgy as the pretreatment to modify the phase structure of cobalt minerals,enhancing its recovery in the hydrometallurgical stage and facilitating high-purity cobalt production.Consequently,it represents a promising technology for future cobalt recovery.Lastly,based on the above conclusions,the prospects for cobalt are assessed regarding cobalt ore processing and sustainable cobalt recycling,for which further study should be conducted. 展开更多
关键词 cobalt recovery copper-cobalt ore nickel-cobalt ore zinc plant residue waste cobalt products
下载PDF
Sulphuric Acid Bake-Leach Process for the Treatment of Mixed Copper-Cobalt Oxide Ores
16
作者 Precious Mwamba Jewette H. Masinja +1 位作者 James Manchisi Leonard Kabondo 《Journal of Minerals and Materials Characterization and Engineering》 2022年第2期174-184,共11页
A sulphuric acid bake–leach method for the treatment of mixed copper-cobalt oxide minerals was investigated as an alternative to the reductive leaching method. Sulphuric acid bake-leach process of the mixed copper-co... A sulphuric acid bake–leach method for the treatment of mixed copper-cobalt oxide minerals was investigated as an alternative to the reductive leaching method. Sulphuric acid bake-leach process of the mixed copper-cobalt oxide ore was carried out by mixing the sample with sulphuric acid followed by baking of the mixture in a muffle furnace. Baking tests were conducted at different conditions such as temperature, time, and varying amounts of acid. The reacted samples were then subjected to water leaching at room temperature to determine the leachability of copper and cobalt from the baked material. The dissolutions of copper and cobalt were dependent on acid concentration with cobalt showing more sensitivity to the amount of acid. Both copper and cobalt were extracted from the baked material within short leaching times and without the addition of reducing agents. The outcome of this work has shown that the sulphuric acid bake-leach process is a possible alternative to the reductive leaching method for copper-cobalt oxide ores. 展开更多
关键词 Democratic Republic of Congo (DRC) Mixed copper-cobalt Oxide Sulphuric Acid Baking Sulphate Reducing Agent Metal Dissolution
下载PDF
NiHCF/石墨烯膜电极用于电化学检测抗坏血酸 被引量:1
17
作者 余小娜 苏趁意 《许昌学院学报》 CAS 2023年第5期58-61,共4页
将热还原石墨烯和铁氰化镍(NiHCF)颗粒经超声分散后得到NiHCF/石墨烯复合物,采用扫描电子显微镜、傅里叶红外等技术表征了石墨烯及石墨烯复合物的形貌及特征结构.利用循环伏安法考察了NiHCF/石墨烯膜电极的电化学行为.结果表明,该材料... 将热还原石墨烯和铁氰化镍(NiHCF)颗粒经超声分散后得到NiHCF/石墨烯复合物,采用扫描电子显微镜、傅里叶红外等技术表征了石墨烯及石墨烯复合物的形貌及特征结构.利用循环伏安法考察了NiHCF/石墨烯膜电极的电化学行为.结果表明,该材料具有优异的电子传递性能.采用计时电流测试技术实现了对抗坏血酸的定量检测,在1×10^(-4)~7×10^(-4)mol·L^(-1)浓度范围内,响应电流和分析物浓度之间呈现良好的线性关系.该NiHCF/石墨烯膜电极有望用于实际样品中抗坏血酸的灵敏、快速检测. 展开更多
关键词 石墨烯 铁氰化镍 抗坏血酸 循环伏安法 计时电流法
下载PDF
改性硅藻土负载亚铁氰化铜复合物的制备及其对Cs^(+)的吸附性能 被引量:2
18
作者 郭雪琴 邓小川 +6 位作者 朱朝梁 扶鑫 王瑞瑞 马婉霞 樊洁 左方涛 卿彬菊 《无机化学学报》 SCIE CAS CSCD 北大核心 2023年第5期815-829,共15页
采用水热法、以氯化铝为铝源对硅藻土(De)进行改性,通过浸渍法将亚铁氰化铜(KCu HCF)纳米颗粒负载于改性De表面,制备出γ-Al OOH/De-KCu HCF和γ-Al_(2)O_(3)/De-KCu HCF两种复合吸附剂,对所制备的吸附剂进行了表征,并研究了其对Cs^(+)... 采用水热法、以氯化铝为铝源对硅藻土(De)进行改性,通过浸渍法将亚铁氰化铜(KCu HCF)纳米颗粒负载于改性De表面,制备出γ-Al OOH/De-KCu HCF和γ-Al_(2)O_(3)/De-KCu HCF两种复合吸附剂,对所制备的吸附剂进行了表征,并研究了其对Cs^(+)的吸附性能。结果表明,所制备吸附剂具有优异的Cs^(+)吸附性能,γ-Al OOH/De-KCu HCF和γ-Al_(2)O_(3)/De-KCu HCF最高吸附容量分别可达75.44、84.02 mg·g^(-1),γ-Al_(2)O_(3)/De-KCu HCF对模拟卤水中Cs^(+)的吸附率高达97.55%;以3 mol·L^(-1)NH_(4)NO_(3)为脱附剂,经3级连续脱附后,γ-Al_(2)O_(3)/De-KCu HCF的Cs^(+)脱附率可达81.88%,经过5次吸附-脱附循环后仍保持了较高的吸附量。 展开更多
关键词 氯化铝 硅藻土 亚铁氰化铜 Cs^(+)吸附
下载PDF
Switching Optimally Balanced Fe-N Interaction Enables Extremely Stable Energy Storage 被引量:1
19
作者 Zhenzhen Zhao Wei Zhang +8 位作者 Miao Liu Dong Wang Xiyang Wang Lirong Zheng Xu Zou Zizhun Wang Dabing Li Keke Huang Weitao Zheng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期275-283,共9页
The interaction between electrode materials and charge carriers is one of the central issues dominating underlying energy storage mechanisms.To address the notoriously significant volume changes accompanying intercala... The interaction between electrode materials and charge carriers is one of the central issues dominating underlying energy storage mechanisms.To address the notoriously significant volume changes accompanying intercalation or formation of alloy/compounds,we aim to introduce and utilize a weak,reversible Fe-N interaction during the(de)intercalation of ammonium ions(NH_(4)^(+))within iron(Ⅲ)hexacyanoferrate(FeHCF),inspired by manipulating the electrostatic adsorption between N and Fe in the early stages of ammonia synthesis(Bosch-Harber Process,Chemical Engineering)and steel nitriding processes(Metal Industry).Such strategy of switching well-balanced Fe-N interaction is confirmed in between the nitrogen of ammonium ions and highspin Fe in FeHCF,as observed by using X-ray absorption spectroscopy.The resulting material provided an extremely stable energy storage(58 mAh g^(-1) after 10000 cycles at current density of 1 A g^(-1))as well as high-rate performance(23.6 mAh g^(-1) at current density of 10 A g^(-1)). 展开更多
关键词 ammonium ion battery Iron(Ⅲ)hexacyanoferrate reversible Fe-N interaction stability
下载PDF
Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides
20
作者 Ling Fang Sha Wang +4 位作者 Shun Lu Fengjun Yin Yujie Dai Lin Chang Hong Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期204-209,共6页
Electrochemical conversion of nitrate(NO_(3)~-) to ammonia(NH_(3)) can target two birds with one stone well, in NO_(3)^(-)-containing sewage remediation and sustainable NH_(3) production. However, single metalbased ca... Electrochemical conversion of nitrate(NO_(3)~-) to ammonia(NH_(3)) can target two birds with one stone well, in NO_(3)^(-)-containing sewage remediation and sustainable NH_(3) production. However, single metalbased catalysts are difficult to drive high-efficient NO_(3)~- removal due to the multi-electron transfer steps.Herein, we present a tandem catalyst with simple structure, Cu-Co binary metal oxides(Cu-Co-O), by engineering intermediate phases as catalytic active species for NO_(3)~- conversion. Electrochemical evaluation,X-ray photoelectron spectroscopy, and in situ Raman spectra together suggest that the newly-generated Cu-based phases was prone to NO_(3)~- to NO_(2)~- conversion, then NO_(2)~- was reduced to NH_(3) on Co-based species. At an applied potential of -1.1 V vs. saturated calomel electrode, the Cu-Co-O catalyst achieved NO_(3)~- -N removal of 90% and NH_(3) faradaic efficiency of 81% for 120 min in 100 m L of 50 mg/L NO_(3)~- -N,consuming only 0.69 k Wh/mol in a two-electrode system. This study provides a facile and efficient engineering strategy for developing high-performance catalysts for electrocatalytic nitrate conversion. 展开更多
关键词 NO_(3)^(-)-containing sewage remediation Electrocatalytic reduction copper-cobalt oxides Tandem reactivity Enriched active phases
原文传递
上一页 1 2 10 下一页 到第
使用帮助 返回顶部