Flotation is the most common method to obtain concentrate through the selective adsorption of collectors on target minerals to make them hydrophobic and floatable.In the hydrometallurgy of concentrate,collectors adsor...Flotation is the most common method to obtain concentrate through the selective adsorption of collectors on target minerals to make them hydrophobic and floatable.In the hydrometallurgy of concentrate,collectors adsorbed on concentrate can damage ion-exchange resin and increase the chemical oxygen demand(COD)value of wastewater.In this work,we proposed a new scheme,i.e.,desorbing the collectors from concentrate in ore dressing plant and reusing them in flotation flowsheet.Lead nitrate and benzohydroxamic acid(Pb-BHA)complex is a common collector in scheelite flotation.In this study,different physical(stirring or ultrasonic waves)and chemical(strong acid or alkali environment)methods for facilitating the desorption of Pb-BHA collector from scheelite concentrate were explored.Single-mineral desorption tests showed that under the condition of pulp pH 13 and ultrasonic treatment for 15 min,the highest desorption rates of Pb and BHA from the scheelite concentrate were 90.48%and 63.75%,respectively.Run-of-mine ore flotation tests revealed that the reuse of desorbed Pb and BHA reduced the collector dosage by 30%for BHA and 25%for Pb.The strong alkali environment broke the chemical bonds between Pb and BHA.The cavitation effect of ultrasonic waves effectively reduced the interaction intensity between Pb-BHA collector and scheelite surfaces.This method combining ultrasonic waves and strong alkali environment can effectively desorb the collectors from concentrate and provide“clean”scheelite concentrate for metallurgic plants;the reuse of desorbed collector in flotation flowsheet can reduce reagent cost for ore dressing plants.展开更多
In recent years,the interest in the development of highly concentrated electrolyte solutions for battery applications has increased enormously.Such electrolyte solutions are typically characterized by a low flammabili...In recent years,the interest in the development of highly concentrated electrolyte solutions for battery applications has increased enormously.Such electrolyte solutions are typically characterized by a low flammability,a high thermal and electrochemical stability and by the formation of a stable solid electrolyte interphase(SEI)in contact to electrode materials.However,the classification of concentrated electrolyte solutions in terms of the classical scheme"strong"or"weak"has been controversially discussed in the literature.In this paper,a comprehensive theoretical framework is presented for a more general classification,which is based on a comparison of charge transport and mass transport.By combining the Onsager transport formalism with linear response theory,center-of-mass fluctuations and collective translational dipole fluctuations of the ions in equilibrium are related to transport properties in a lithium-ion battery cell,namely mass transport,charge transport and Li^(+)transport under anion-blocking conditions.The relevance of the classification approach is substantiated by showing that i)it is straightforward to classify highly concentrated electrolytes and that ii)both fast charge transport and fast mass transport are indispensable for achieving fast Li^(+)transport under anion-blocking conditions.展开更多
The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy(CSA)was studied using a molecular dynamics method.We have performed displacement cascade simulations to explore the generation and evo...The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy(CSA)was studied using a molecular dynamics method.We have performed displacement cascade simulations to explore the generation and evolution behavior of irradiation defects.The results demonstrate that the defect accumulation and agglomeration in TiVTa CSA are significantly suppressed compared to pure V.The peak value of Frenkel pairs during cascade collisions in TiVTa CSA is much higher than that in pure V due to the lower formation energy of point defects.Meanwhile,the longer lifetime of the thermal spike relaxation and slow energy dissipation capability of TiVTa CSA can facilitate the recombination of point defects.The defect agglomeration rate in TiVTa CSA is much lower due to the lower binding energy of interstitial clusters and reduced interstitial diffusivity.Furthermore,the occurrence probability of dislocation loops in TiVTa CSA is lower than that in pure V.The reduction in primary radiation damage may enhance the radiation resistance of TiVTa CSA,and the improved radiation tolerance is primarily attributed to the relaxation stage and long-term defect evolution rather than the ballistic stage.These results can provide fundamental insights into irradiation-induced defects evolution in refractory CSAs.展开更多
Trehalose(TRE)was used to improve the gastrointestinal tolerance of Lactobacillus plantarum embedded with whey protein concentrate/pullulan(WPC/PUL)hydrogel and the embedded L.plantarum was applied to juice.The study ...Trehalose(TRE)was used to improve the gastrointestinal tolerance of Lactobacillus plantarum embedded with whey protein concentrate/pullulan(WPC/PUL)hydrogel and the embedded L.plantarum was applied to juice.The study indicated that 5%TRE significantly increased the viable counts of L.plantarum embedded in WPC/PUL hydrogel from(8.83±0.03)to(9.14±0.04)(lg(CFU/g))in simulated gastric juice(SGJ)and from(9.13±0.04)to(9.38±0.04)(lg(CFU/g))in simulated intestinal juice,respectively.The addition of TRE improved the glass transition temperature of WPC/PUL hydrogel and decreased the hardness and its solubility in SGJ,which may be responsible for the improved protection of WPC/PUL hydrogels on L.plantarum.In addition,TRE increased the viable counts of L.plantarum in WPC/PUL probiotic microcapsule juice at low pH and high temperature during storage.展开更多
In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air...In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air as the cooling fluid. This enabled us to evaluate some of the parameters influencing the electrical and thermal performance of this device. The results showed that the temperature, thermal efficiency and electrical efficiency delivered depend on the air mass flow rate. The electrical and thermal efficiencies for different values of air mass flow are encouraging, and demonstrate the benefits of cooling photovoltaic cells. The results show that thermal efficiency decreases air flow rate greater than 0.7 kg/s, whatever the value of the light concentration used. The thermal efficiency of the solar cell increases as the light concentration increases, whatever the air flow rate used. For a concentration equal to 30 sun, the thermal efficiency is 0.16 with an air flow rate equal to 0.005 kg/s;the thermal efficiency increases to 0.19 with an air flow rate equal to 0.1 kg/s at the same concentration. An interesting and useful finding was that the proposed numerical model allows the determination of the electrical as well as thermal efficiency of the hybrid CPV/T with air flow as cooling fluid.展开更多
A Zr-Gd alloy with neutron poisoning properties and resistance to boiling concentrated HNO3 corrosion was developed based on a corrosion-resistant Zr-702 alloy to meet the demand for neutron shielding in the closed-lo...A Zr-Gd alloy with neutron poisoning properties and resistance to boiling concentrated HNO3 corrosion was developed based on a corrosion-resistant Zr-702 alloy to meet the demand for neutron shielding in the closed-loop treatment of spent fuel and the nuclear chemical industry.In this study,1 wt.%,3 wt.%,5 wt.%,7 wt.%,and 9 wt.%Zr-Gd alloys were designed and fabricated with Zr-702 as the control element.The electrochemical behavior of the Zr-Gd alloys in boiling concentrated HNO3 was investigated,and the neutron shielding effect on plate thickness and Gd content was simulated.The experimental results demonstrate that the corrosion resistance of the alloy decreased slightly before~7-9 wt.%with increasing Gd content;this is the inflection point of its corrosion resistance.The alloy uniformly dissolved the Gd content that could not be dissolved in the Zr lattice,resulting in numerous micropores on the passivation coating,which deteriorated and accelerated the corrosion rate.The MCNP simulation demonstrated that when the Gd content was increased to 5 wt.%,a 2-mm-thick plate can shield 99.9%neutrons;an alloy with a Gd content≥7 wt.%required only a 1-mm-thick plate,thereby showing that the addition of Gd provides an excellent neutron poisoning effect.Thus,the corrosion resistance and neutron shielding performance of the Zr-Gd alloy can meet the harsh service requirements of the nuclear industry.展开更多
Background Soy protein supplements,with high crude protein and less antinutritional factors,are produced from soybean meal by different processes.This study evaluated the comparative effects of various soy protein sup...Background Soy protein supplements,with high crude protein and less antinutritional factors,are produced from soybean meal by different processes.This study evaluated the comparative effects of various soy protein supplements replacing animal protein supplements in feeds on the intestinal immune status,intestinal oxidative stress,mucosaassociated microbiota,and growth performance of nursery pigs.Methods Sixty nursery pigs(6.6±0.5 kg BW)were allotted to five treatments in a randomized complete block design with initial BW and sex as blocks.Pigs were fed for 39 d in 3 phases(P1,P2,and P3).Treatments were:Control(CON),basal diet with fish meal 4%,2%,and 1%,poultry meal 10%,8%,and 4%,and blood plasma 4%,2%,and 1%for P1,P2,and P3,respectively;basal diet with soy protein concentrate(SPC),enzyme-treated soybean meal(ESB),fermented soybean meal with Lactobacillus(FSBL),and fermented soybean meal with Bacillus(FSBB),replacing 1/3,2/3,and 3/3 of animal protein supplements for P1,P2,and P3,respectively.Data were analyzed using the MIXED procedure in SAS 9.4.Results The SPC did not affect the BW,ADG,and G:F,whereas it tended to reduce(P=0.094)the ADFI and tended to increase(P=0.091)crypt cell proliferation.The ESM did not affect BW,ADG,ADFI,and G:F,whereas tended to decrease(P=0.098)protein carbonyl in jejunal mucosa.The FSBL decreased(P<0.05)BW and ADG,increased(P<0.05)TNF-α,and Klebsiella and tended to increase MDA(P=0.065)and IgG(P=0.089)in jejunal mucosa.The FSBB tended to increase(P=0.073)TNF-α,increased(P<0.05)Clostridium and decreased(P<0.05)Achromobacter and alpha diversity of microbiota in jejunal mucosa.Conclusions Soy protein concentrate,enzyme-treated soybean meal,and fermented soybean meal with Bacillus could reduce the use of animal protein supplements up to 33%until 7 kg body weight,up to 67%from 7 to 11 kg body weight,and entirely from 11 kg body weight without affecting the intestinal health and the growth performance of nursery pigs.Fermented soybean meal with Lactobacillus,however,increased the immune reaction and oxidative stress in the intestine consequently reducing the growth performance.展开更多
Background:Research on nutrition in early-life commonly focuses on the maturation of the intestine because the intestinal system is crucial for ensuring continued growth.To explore the importance of early nutrition re...Background:Research on nutrition in early-life commonly focuses on the maturation of the intestine because the intestinal system is crucial for ensuring continued growth.To explore the importance of early nutrition regulation in animals,soy protein concentrate(SPC)was added to the early diet of broilers to investigate its effects on amino acid digestibility,intestinal development,especially intestinal microorganisms,and broiler metabolites.A total of 192 oneday-old Arbor Acres(AA)male broilers were randomly assigned to two experimental treatments with 8 replicates of 12 birds.The control group was fed a basal diet(control),and the treatment group was fed a basal diet supplemented with 12%SPC(SPC12)during the first 10 d(starter phase).From d 11 to 21(grower phase)and d 22 to 42(finisher phase),a basal diet was fed to both treatment groups.Results:SPC reduced the pH value and acid-binding capacity of the starter diet(P<0.05,d 10);SPC in the early diet enhanced the gizzard weight(P<0.05,d 10 and d 42)and the ileum weight(P<0.05,d 10)and decreased the weight and length of the jejunum(P<0.05,d 10)and the relative length of the duodenum and jejunum(P<0.05,d 10).At the same time,SPC enhanced villus height(P<0.05,d 10)and muscle thickness in the jejunum and ileum(P<0.05,d 10)and increased the number of goblet cells in the duodenum(P<0.05,d 10).Meanwhile,SPC increased the Chao1 index and the ACE index(P<0.05,d 10)and altered the composition of caecal microflora at d 10.SPC also increased the relative abundance of Alistipes,Anaerotruncus,Erysipelatoclostridium,Intestinimonas and Flavonifractor bacteria(P<0.05,d 10).At the same time,the concentrations of caecal butyric acid and total short-chain fatty acids(SCFAs)were also increased in the SPC12 group(P<0.05,d 10).Conclusions:In summary,the results showed that supplementing the starter diet of broilers with SPC has a significant effect on the early development of the intestine and the microflora.展开更多
The electrolyte integrated with lithium metal anodes is subjected to the issues of interfacial compatibility and stability,which strongly influence the performances of high-energy lithium metal batteries.Here,we repor...The electrolyte integrated with lithium metal anodes is subjected to the issues of interfacial compatibility and stability,which strongly influence the performances of high-energy lithium metal batteries.Here,we report a new electrolyte recipe viz.a moderately concentrated electrolyte comprising of 2.4 M lithium bis(fluorosulfonyl)imide(LiFSI)in a cosolvent mixture of fluorinated ethylene carbonate(FEC)and dimethyl carbonate(DMC)with relatively high ion conductivity.Owing to the preferential decomposition of LiFSI and FEC,an inorganic-rich interphase with abundant Li_(2)O and LiF nanocrystals is formed on lithium metal with improved robustness and ion transfer kinetics,enabling lithium plating/stripping with an extremely low overpotential of~8 mV and the average CE of 97%.When tested in Li||LiFePO_(4) cell,this electrolyte provides long-term cycling with a capacity retention of 98.3%after 1000 cycles at 1 C and an excellent rate performance of 20 C,as well as an areal capacity of 1.35 mA h cm^(-2)at the cathode areal loading of 9 mg cm^(-2).Moreover,the Li||LiFePO_(4) cell exhibits excellent wide-temperature performances(-40~60℃),including long-term cycling stability over 2600 cycles without visible capacity fading at 0℃,as well as extremely high average CEs of 99.6%and 99.8% over 400 cycles under-20℃ and 45℃.展开更多
Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations o...Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations of thickened tailings often occur.The rheological properties and concentration evolution in the thickened tailings remain unclear.Moreover,traditional indoor thickening experiments have yet to quantitatively characterize their rheological properties.An experiment of flocculation condition optimization based on the Box-Behnken design(BBD)was performed in the study,and the two response values were investigated:concentration and the mean weighted chord length(MWCL)of flocs.Thus,optimal flocculation conditions were obtained.In addition,the rheological properties and concentration evolution of different flocculant dosages and ultrafine tailing contents under shear,compression,and compression-shear coupling experimental conditions were tested and compared.The results show that the shear yield stress under compression and compression-shear coupling increases with the growth of compressive yield stress,while the shear yield stress increases slightly under shear.The order of shear yield stress from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Under compression and compression-shear coupling,the concentration first rapidly increases with the growth of compressive yield stress and then slowly increases,while concentration increases slightly under shear.The order of concentration from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Finally,the evolution mechanism of the flocs and drainage channels during the thickening of the thickened tailings under different experimental conditions was revealed.展开更多
Nitrogen(N), phosphorus(P), and potassium(K) are essential macronutrients that are crucial not only for maize growth and development, but also for crop yield and quality. The genetic basis of macronutrient dynamics an...Nitrogen(N), phosphorus(P), and potassium(K) are essential macronutrients that are crucial not only for maize growth and development, but also for crop yield and quality. The genetic basis of macronutrient dynamics and accumulation during grain filling in maize remains largely unknown. In this study, we evaluated grain N, P, and K concentrations in 206 recombinant inbred lines generated from a cross of DH1M and T877 at six time points after pollination. We then calculated conditional phenotypic values at different time intervals to explore the dynamic characteristics of the N, P, and K concentrations. Abundant phenotypic variations were observed in the concentrations and net changes of these nutrients. Unconditional quantitative trait locus(QTL) mapping revealed 41 non-redundant QTLs, including 17, 16, and 14 for the N, P, and K concentrations, respectively. Conditional QTL mapping uncovered 39 non-redundant QTLs related to net changes in the N, P, and K concentrations. By combining QTL, gene expression, co-expression analysis, and comparative genomic data, we identified 44, 36, and 44 candidate genes for the N, P, and K concentrations, respectively, including GRMZM2G371058 encoding a Doftype zinc finger DNA-binding family protein, which was associated with the N concentration, and GRMZM2G113967encoding a CBL-interacting protein kinase, which was related to the K concentration. The results deepen our understanding of the genetic factors controlling N, P, and K accumulation during maize grain development and provide valuable genes for the genetic improvement of nutrient concentrations in maize.展开更多
Latex wastewater is a kind of refractory organic wastewater containing high concentrations of organics and ammonia nitrogen.In this work,the combined process of forward osmosis(FO)and reverse osmosis(RO)was designed t...Latex wastewater is a kind of refractory organic wastewater containing high concentrations of organics and ammonia nitrogen.In this work,the combined process of forward osmosis(FO)and reverse osmosis(RO)was designed to treat the latex wastewater in the whole process,achieving the water recovery rate of 99%and basically no waste discharge after the catalytic oxidation process.The turbidity of the latex wastewater was decreased to below 1 NTU by microfiltration pretreatment,and then using MgCl_2 worked as the draw solution for FO process to treat the latex wastewater.Different operation conditions including adding acid or scale inhibitor as the pretreatment methods were conducted to improve the treatment performance of the combined process.After the treatment of the whole process,the concentration of COD was less than 20 mg·L^(-1),the concentration of NH_3-N was less than 10 mg·L^(-1),and the concentration of TP was less than 0.5 mg·L^(-1)for the treated latex wastewater.The water quality met standards of industrial water reuse after the complete analysis of the treated latex wastewater,meanwhile,useful substances of L-Quebrachitol(L-Q)were successfully extracted from the concentrated solution.Therefore,the combined process of FO and RO could realize the efficient treatment and reuse of latex wastewater,which provided with some important guidance on the industrial application.展开更多
In the presentmanuscript,a Layer-Wise(LW)generalizedmodel is proposed for the linear static analysis of doublycurved shells constrained with general boundary conditions under the influence of concentrated and surface ...In the presentmanuscript,a Layer-Wise(LW)generalizedmodel is proposed for the linear static analysis of doublycurved shells constrained with general boundary conditions under the influence of concentrated and surface loads.The unknown field variable is modelled employing polynomials of various orders,each of them defined within each layer of the structure.As a particular case of the LW model,an Equivalent Single Layer(ESL)formulation is derived too.Different approaches are outlined for the assessment of external forces,as well as for non-conventional constraints.The doubly-curved shell is composed by superimposed generally anisotropic laminae,each of them characterized by an arbitrary orientation.The fundamental governing equations are derived starting from an orthogonal set of principal coordinates.Furthermore,generalized blending functions account for the distortion of the physical domain.The implementation of the fundamental governing equations is performed bymeans of the Generalized Differential Quadrature(GDQ)method,whereas the numerical integrations are computed employing theGeneralized IntegralQuadrature(GIQ)method.In the post-processing phase,an effective procedure is adopted for the reconstruction of stress and strain through-the-thickness distributions based on the exact fulfillment of three-dimensional equilibrium equations.A series of systematic investigations are performed in which the static response of structures with various curvatures and lamination schemes,calculated by the present methodology,have been successfully compared to those ones obtained fromrefined finite element three-dimensional simulations.Even though the present LW approach accounts for a two-dimensional assessment of the structural problem,it is capable of well predicting the three-dimensional response of structures with different characteristics,taking into account a reduced computational cost and pretending to be a valid alternative to widespread numerical implementations.展开更多
A new concentrated ternary salt ether-based electrolyte enables stable cycling of lithium metal battery(LMB)cells with high-mass-loading(13.8 mg cm^(−2),2.5 mAh cm^(−2))NMC622(LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2))cathodes ...A new concentrated ternary salt ether-based electrolyte enables stable cycling of lithium metal battery(LMB)cells with high-mass-loading(13.8 mg cm^(−2),2.5 mAh cm^(−2))NMC622(LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2))cathodes and 50μm Li anodes.Termed“CETHER-3,”this electrolyte is based on LiTFSI,LiDFOB,and LiBF4 with 5 vol%fluorinated ethylene carbonate in 1,2-dimethoxyethane.Commer-cial carbonate and state-of-the-art binary salt ether electrolytes were also tested as baselines.With CETHER-3,the electrochemical performance of the full-cell battery is among the most favorably reported in terms of high-voltage cycling stability.For example,LiNi_(x)Mn_(y)Co_(1-x-y)O_(2)(NMC)-Li metal cells retain 80%capacity at 430 cycles with a 4.4 V cut-off and 83%capacity at 100 cycles with a 4.5 V cut-off(charge at C/5,discharge at C/2).According to simulation by density functional theory and molecular dynamics,this favorable performance is an outcome of enhanced coordination between Li^(+)and the solvent/salt molecules.Combining advanced microscopy(high-resolution transmission electron microscopy,scanning electron microscopy)and surface science(X-ray photoelectron spectroscopy,time-of-fight secondary ion mass spectroscopy,Fourier-transform infrared spectroscopy,Raman spectroscopy),it is demonstrated that a thinner and more stable cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)are formed.The CEI is rich in lithium sulfide(Li_(2)SO_(3)),while the SEI is rich in Li_(3)N and LiF.During cycling,the CEI/SEI suppresses both the deleterious transformation of the cathode R-3m layered near-surface structure into disordered rock salt and the growth of lithium metal dendrites.展开更多
AIM:To compare high or low concentration of hyaluronic acid eye drops(HY)for dry eye syndromes(DES).METHODS:Randomized controlled trials(RCTs)comparing various concentrations of HY were searched in PubMed,Embase,Web o...AIM:To compare high or low concentration of hyaluronic acid eye drops(HY)for dry eye syndromes(DES).METHODS:Randomized controlled trials(RCTs)comparing various concentrations of HY were searched in PubMed,Embase,Web of Science,Cochrane,SinoMed,CNKI,Wanfang Database,CQVIP,and Chinese journals databases between inception and July 2023.Pooled standardized mean differences(SMD)or weighted mean difference(WMD)with 95%confidence intervals(CI)from RCTs evaluating Schirmer’s I test(SIT),corneal fluorescein staining score(CFS),tear breakup time(TBUT),DES score(DESS),and Ocular Surface Disease Index(OSDI)were calculated.Sensitivity analysis,Egger’s test and Meta-regression analysis were performed for all indicators.RESULTS:We conducted a Meta-analysis of 10 RCTs that met the inclusion criteria,involving 1796 cases.High-concentrations group significantly improved the outcome of CFS according to random effects modelling(SMD,-3.37;95%CI,-5.25 to-1.48;P=0.0005).The rest of the results were not statistically significant,including indicators such as SIT,TBUT,DESS and OSDI.CONCLUSION:For dry eyes with positive corneal staining,a high concentration of HY is recommended,whereas in other cases,a high concentration of HY does not offer a more pronounced advantage over a low concentration of HY in the treatment of dry eyes.展开更多
Relationship between the hole concentration at room temperature and the Mg doping concentration in p-GaN grown by MOCVD after sufficient annealing was studied in this paper.Different annealing conditions were applied ...Relationship between the hole concentration at room temperature and the Mg doping concentration in p-GaN grown by MOCVD after sufficient annealing was studied in this paper.Different annealing conditions were applied to obtain sufficient activation for p-GaN samples with different Mg doping ranges.Hole concentration,resistivity and mobility were characterized by room-temperature Hall measurements.The Mg doping concentration and the residual impurities such as H,C,O and Si were measured by secondary ion mass spectroscopy,confirming negligible compensations by the impurities.The hole concentration,resistivity and mobility data are presented as a function of Mg concentration,and are compared with literature data.The appropriate curve relating the Mg doping concentration to the hole concentration is derived using a charge neutrality equation and the ionized-acceptor-density[N-(A)^(-)](cm^(−3))dependent ionization energy of Mg acceptor was determined asE_(A)^(Mg)=184−2.66×10^(−5)×[N_(A)^(-)]1/3 meV.展开更多
Ozone(O_(3))pollution has a profound impact on human health,vegetation development,and the ecological environment,making it a critical focus of global academic research.In recent years,O_(3)pollution in China has been...Ozone(O_(3))pollution has a profound impact on human health,vegetation development,and the ecological environment,making it a critical focus of global academic research.In recent years,O_(3)pollution in China has been on a steady rise,with ozone emerging as the sole conventional pollutant to consistently increase in concentration without any decline.This study conducted a quantitative analysis of O_(3)concentrations across 367 Chinese cities in 2019,examining spatial autocorrelation and local clustering of O_(3)levels,and investigated the diverse relationships between human activity factors and O_(3)concentration.The seasonal fluctuation of O_(3)exhibited the“M-type”pattern,with peak concentrations in winter and the lowest levels in summer.The center of O_(3)pollution migrated southeastward,with the area of highest concentration progressively shifting south along the eastern coast.Moreover,O_(3)concentration showed a strong positive correlation with population density,road freight volume,and industrial emissions,suggesting that human activities,vehicle emissions,and industrial operations are significant contributors to O_(3)production.The results provide comprehensive information on the characteristics,causes,and occurrence mechanism of O_(3)in Chinese cities that can be utilized by global government departments to formulate strategies to prevent and control O_(3)pollution.展开更多
The climate crisis necessitates the development of non-fossil energy sources.Harnessing solar energy for fuel production shows promise and offers the potential to utilize existing energy infrastructure.However,solar f...The climate crisis necessitates the development of non-fossil energy sources.Harnessing solar energy for fuel production shows promise and offers the potential to utilize existing energy infrastructure.However,solar fuel production is in its early stages of development,constrained by low conversion efficiency and challenges in scaling up production.Concentrated solar energy(CSE)technology has matured alongside the rapid growth of solar thermal power plants.This review provides an overview of current CSE methods and solar fuel production,analyzes their integration compatibility,and delves into the theoretical mechanisms by which CSE impacts solar energy conversion efficiency and product selectivity in the context of photo-electrochemistry,thermochemistry,and photo-thermal co-catalysis for solar fuel production.The review also summarizes approaches to studying the photoelectric and photothermal effects of CSE.Lastly,it explores emerging novel CSE technology methods in the field of solar fuel production.展开更多
Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate ...Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate rock is still unknown.This study examines the variations in the wettability of the surface of carbonate rocks in solutions containing varying amounts of sodium sulfate and pure water.The problem is addressed in the framework of molecular dynamics simulation(Material Studio software)and experiments.The experiment’s findings demonstrate that sodium sulfate can increase the rate at which oil moisture is turned into water moisture.The final contact angle is smaller than that of pure water.The results of the simulations show that many water molecules travel down the water channel under the influence of several powerful forces,including the electrostatic force,the van der Waals force and hydrogen bond,crowding out the oil molecules on the calcite’s surface and causing the oil film to separate.The relative concentration curve of water and oil molecules indicates that the separation rate of the oil film on the surface of calcite increases with the number of sulfate ions.展开更多
The study of non-axisymmetric fuel dispersal and detonation can provide reference for the prevention of industrial cloud explosion accidents and the design of fuel air explosive(FAE).The concentration and detonation f...The study of non-axisymmetric fuel dispersal and detonation can provide reference for the prevention of industrial cloud explosion accidents and the design of fuel air explosive(FAE).The concentration and detonation fields of 85 kg cylindrical and fan-shaped fuel are investigated by experiments and numerical simulations.A dynamic model of the whole process for fuel dispersal and detonation is built.The concentration distribution of fuel is used as the initial condition to calculate the detonation stage,thus solving the initial value problem of detonation field.The phase and component changes of fuel cloud at different locations are compared.The fuel cloud is divided into directions of 0°,90°,135°and 180°.The results show that the maximum cloud radius is 20.94 m in 135°and the minimum is 12.04 m in 0°.The diameter of the detonation fireball is 53.6 m,and the peak temperature is 3455 K.The highest peak overpressure is 3.44 MPa in 0°and the lowest is 2.97 MPa in 135°.The proportion of liquid phase in 0°is22.90%,and the fuel loss is 11.8% and 9% higher than that in 135°and cylindrical charge,respectively.The stable propagation distance of blast wave in 135°is 42.50% longer than 0°and 28.37% longer than cylindrical charge.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52304314 and U23A20602)the Leading Talents of S&T Innovation of Hunan Province,China(No.2021RC4002)+2 种基金the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2024-16)the Open Foundation of Key Laboratory of Green Separation and Enrichment of Strategic Metal Mineral Resources(No.2023-02)the Fundamental Research Funds for the Central Universities of Central South University(No.2024ZZTS0008).
文摘Flotation is the most common method to obtain concentrate through the selective adsorption of collectors on target minerals to make them hydrophobic and floatable.In the hydrometallurgy of concentrate,collectors adsorbed on concentrate can damage ion-exchange resin and increase the chemical oxygen demand(COD)value of wastewater.In this work,we proposed a new scheme,i.e.,desorbing the collectors from concentrate in ore dressing plant and reusing them in flotation flowsheet.Lead nitrate and benzohydroxamic acid(Pb-BHA)complex is a common collector in scheelite flotation.In this study,different physical(stirring or ultrasonic waves)and chemical(strong acid or alkali environment)methods for facilitating the desorption of Pb-BHA collector from scheelite concentrate were explored.Single-mineral desorption tests showed that under the condition of pulp pH 13 and ultrasonic treatment for 15 min,the highest desorption rates of Pb and BHA from the scheelite concentrate were 90.48%and 63.75%,respectively.Run-of-mine ore flotation tests revealed that the reuse of desorbed Pb and BHA reduced the collector dosage by 30%for BHA and 25%for Pb.The strong alkali environment broke the chemical bonds between Pb and BHA.The cavitation effect of ultrasonic waves effectively reduced the interaction intensity between Pb-BHA collector and scheelite surfaces.This method combining ultrasonic waves and strong alkali environment can effectively desorb the collectors from concentrate and provide“clean”scheelite concentrate for metallurgic plants;the reuse of desorbed collector in flotation flowsheet can reduce reagent cost for ore dressing plants.
文摘In recent years,the interest in the development of highly concentrated electrolyte solutions for battery applications has increased enormously.Such electrolyte solutions are typically characterized by a low flammability,a high thermal and electrochemical stability and by the formation of a stable solid electrolyte interphase(SEI)in contact to electrode materials.However,the classification of concentrated electrolyte solutions in terms of the classical scheme"strong"or"weak"has been controversially discussed in the literature.In this paper,a comprehensive theoretical framework is presented for a more general classification,which is based on a comparison of charge transport and mass transport.By combining the Onsager transport formalism with linear response theory,center-of-mass fluctuations and collective translational dipole fluctuations of the ions in equilibrium are related to transport properties in a lithium-ion battery cell,namely mass transport,charge transport and Li^(+)transport under anion-blocking conditions.The relevance of the classification approach is substantiated by showing that i)it is straightforward to classify highly concentrated electrolytes and that ii)both fast charge transport and fast mass transport are indispensable for achieving fast Li^(+)transport under anion-blocking conditions.
基金Project supported by the Dean’s Fund of China Institute of Atomic Energy(Grant No.219256)the CNNC Science Fund for Talented Young Scholars.
文摘The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy(CSA)was studied using a molecular dynamics method.We have performed displacement cascade simulations to explore the generation and evolution behavior of irradiation defects.The results demonstrate that the defect accumulation and agglomeration in TiVTa CSA are significantly suppressed compared to pure V.The peak value of Frenkel pairs during cascade collisions in TiVTa CSA is much higher than that in pure V due to the lower formation energy of point defects.Meanwhile,the longer lifetime of the thermal spike relaxation and slow energy dissipation capability of TiVTa CSA can facilitate the recombination of point defects.The defect agglomeration rate in TiVTa CSA is much lower due to the lower binding energy of interstitial clusters and reduced interstitial diffusivity.Furthermore,the occurrence probability of dislocation loops in TiVTa CSA is lower than that in pure V.The reduction in primary radiation damage may enhance the radiation resistance of TiVTa CSA,and the improved radiation tolerance is primarily attributed to the relaxation stage and long-term defect evolution rather than the ballistic stage.These results can provide fundamental insights into irradiation-induced defects evolution in refractory CSAs.
基金Financial support was provided by the Jilin Provincial Science and Technology Department(20220202086NC)Jilin Provincial Science and Technology Development Plan Project(20220508115RC).
文摘Trehalose(TRE)was used to improve the gastrointestinal tolerance of Lactobacillus plantarum embedded with whey protein concentrate/pullulan(WPC/PUL)hydrogel and the embedded L.plantarum was applied to juice.The study indicated that 5%TRE significantly increased the viable counts of L.plantarum embedded in WPC/PUL hydrogel from(8.83±0.03)to(9.14±0.04)(lg(CFU/g))in simulated gastric juice(SGJ)and from(9.13±0.04)to(9.38±0.04)(lg(CFU/g))in simulated intestinal juice,respectively.The addition of TRE improved the glass transition temperature of WPC/PUL hydrogel and decreased the hardness and its solubility in SGJ,which may be responsible for the improved protection of WPC/PUL hydrogels on L.plantarum.In addition,TRE increased the viable counts of L.plantarum in WPC/PUL probiotic microcapsule juice at low pH and high temperature during storage.
文摘In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air as the cooling fluid. This enabled us to evaluate some of the parameters influencing the electrical and thermal performance of this device. The results showed that the temperature, thermal efficiency and electrical efficiency delivered depend on the air mass flow rate. The electrical and thermal efficiencies for different values of air mass flow are encouraging, and demonstrate the benefits of cooling photovoltaic cells. The results show that thermal efficiency decreases air flow rate greater than 0.7 kg/s, whatever the value of the light concentration used. The thermal efficiency of the solar cell increases as the light concentration increases, whatever the air flow rate used. For a concentration equal to 30 sun, the thermal efficiency is 0.16 with an air flow rate equal to 0.005 kg/s;the thermal efficiency increases to 0.19 with an air flow rate equal to 0.1 kg/s at the same concentration. An interesting and useful finding was that the proposed numerical model allows the determination of the electrical as well as thermal efficiency of the hybrid CPV/T with air flow as cooling fluid.
基金supported by the National Natural Science Foundation of China (Nos.52201021 and 52101099)Key Research and Development Program of Shaanxi (2021GY-249,2021GY-233)+1 种基金Natural Science Basic Research Program of Shaanxi (No.2020JC-50)Shaanxi Provincial Natural Science Youth Foundation (2022JQ-410).
文摘A Zr-Gd alloy with neutron poisoning properties and resistance to boiling concentrated HNO3 corrosion was developed based on a corrosion-resistant Zr-702 alloy to meet the demand for neutron shielding in the closed-loop treatment of spent fuel and the nuclear chemical industry.In this study,1 wt.%,3 wt.%,5 wt.%,7 wt.%,and 9 wt.%Zr-Gd alloys were designed and fabricated with Zr-702 as the control element.The electrochemical behavior of the Zr-Gd alloys in boiling concentrated HNO3 was investigated,and the neutron shielding effect on plate thickness and Gd content was simulated.The experimental results demonstrate that the corrosion resistance of the alloy decreased slightly before~7-9 wt.%with increasing Gd content;this is the inflection point of its corrosion resistance.The alloy uniformly dissolved the Gd content that could not be dissolved in the Zr lattice,resulting in numerous micropores on the passivation coating,which deteriorated and accelerated the corrosion rate.The MCNP simulation demonstrated that when the Gd content was increased to 5 wt.%,a 2-mm-thick plate can shield 99.9%neutrons;an alloy with a Gd content≥7 wt.%required only a 1-mm-thick plate,thereby showing that the addition of Gd provides an excellent neutron poisoning effect.Thus,the corrosion resistance and neutron shielding performance of the Zr-Gd alloy can meet the harsh service requirements of the nuclear industry.
基金awarded and funded by USDA-NIFA Hatch Fund (#02636, Washington DC, USA)North Carolina Agricultural Foundation (#660101, Raleigh, NC, USA)CJ Cheil Jedang (Seoul, Korea)
文摘Background Soy protein supplements,with high crude protein and less antinutritional factors,are produced from soybean meal by different processes.This study evaluated the comparative effects of various soy protein supplements replacing animal protein supplements in feeds on the intestinal immune status,intestinal oxidative stress,mucosaassociated microbiota,and growth performance of nursery pigs.Methods Sixty nursery pigs(6.6±0.5 kg BW)were allotted to five treatments in a randomized complete block design with initial BW and sex as blocks.Pigs were fed for 39 d in 3 phases(P1,P2,and P3).Treatments were:Control(CON),basal diet with fish meal 4%,2%,and 1%,poultry meal 10%,8%,and 4%,and blood plasma 4%,2%,and 1%for P1,P2,and P3,respectively;basal diet with soy protein concentrate(SPC),enzyme-treated soybean meal(ESB),fermented soybean meal with Lactobacillus(FSBL),and fermented soybean meal with Bacillus(FSBB),replacing 1/3,2/3,and 3/3 of animal protein supplements for P1,P2,and P3,respectively.Data were analyzed using the MIXED procedure in SAS 9.4.Results The SPC did not affect the BW,ADG,and G:F,whereas it tended to reduce(P=0.094)the ADFI and tended to increase(P=0.091)crypt cell proliferation.The ESM did not affect BW,ADG,ADFI,and G:F,whereas tended to decrease(P=0.098)protein carbonyl in jejunal mucosa.The FSBL decreased(P<0.05)BW and ADG,increased(P<0.05)TNF-α,and Klebsiella and tended to increase MDA(P=0.065)and IgG(P=0.089)in jejunal mucosa.The FSBB tended to increase(P=0.073)TNF-α,increased(P<0.05)Clostridium and decreased(P<0.05)Achromobacter and alpha diversity of microbiota in jejunal mucosa.Conclusions Soy protein concentrate,enzyme-treated soybean meal,and fermented soybean meal with Bacillus could reduce the use of animal protein supplements up to 33%until 7 kg body weight,up to 67%from 7 to 11 kg body weight,and entirely from 11 kg body weight without affecting the intestinal health and the growth performance of nursery pigs.Fermented soybean meal with Lactobacillus,however,increased the immune reaction and oxidative stress in the intestine consequently reducing the growth performance.
基金the earmarked fund for Jiangsu Agricultural Industry Technology System(JATS[2021]403)Su Xi Broiler Industry Cluster Project(2022)。
文摘Background:Research on nutrition in early-life commonly focuses on the maturation of the intestine because the intestinal system is crucial for ensuring continued growth.To explore the importance of early nutrition regulation in animals,soy protein concentrate(SPC)was added to the early diet of broilers to investigate its effects on amino acid digestibility,intestinal development,especially intestinal microorganisms,and broiler metabolites.A total of 192 oneday-old Arbor Acres(AA)male broilers were randomly assigned to two experimental treatments with 8 replicates of 12 birds.The control group was fed a basal diet(control),and the treatment group was fed a basal diet supplemented with 12%SPC(SPC12)during the first 10 d(starter phase).From d 11 to 21(grower phase)and d 22 to 42(finisher phase),a basal diet was fed to both treatment groups.Results:SPC reduced the pH value and acid-binding capacity of the starter diet(P<0.05,d 10);SPC in the early diet enhanced the gizzard weight(P<0.05,d 10 and d 42)and the ileum weight(P<0.05,d 10)and decreased the weight and length of the jejunum(P<0.05,d 10)and the relative length of the duodenum and jejunum(P<0.05,d 10).At the same time,SPC enhanced villus height(P<0.05,d 10)and muscle thickness in the jejunum and ileum(P<0.05,d 10)and increased the number of goblet cells in the duodenum(P<0.05,d 10).Meanwhile,SPC increased the Chao1 index and the ACE index(P<0.05,d 10)and altered the composition of caecal microflora at d 10.SPC also increased the relative abundance of Alistipes,Anaerotruncus,Erysipelatoclostridium,Intestinimonas and Flavonifractor bacteria(P<0.05,d 10).At the same time,the concentrations of caecal butyric acid and total short-chain fatty acids(SCFAs)were also increased in the SPC12 group(P<0.05,d 10).Conclusions:In summary,the results showed that supplementing the starter diet of broilers with SPC has a significant effect on the early development of the intestine and the microflora.
基金the Innovation-Driven Project of Central South University(2019CX033)the National Natural Science Foundation of China(51904344 and 52172264)the Natural Science Foundation of Hunan Province of China(2021JJ10060 and 2022GK2033)。
文摘The electrolyte integrated with lithium metal anodes is subjected to the issues of interfacial compatibility and stability,which strongly influence the performances of high-energy lithium metal batteries.Here,we report a new electrolyte recipe viz.a moderately concentrated electrolyte comprising of 2.4 M lithium bis(fluorosulfonyl)imide(LiFSI)in a cosolvent mixture of fluorinated ethylene carbonate(FEC)and dimethyl carbonate(DMC)with relatively high ion conductivity.Owing to the preferential decomposition of LiFSI and FEC,an inorganic-rich interphase with abundant Li_(2)O and LiF nanocrystals is formed on lithium metal with improved robustness and ion transfer kinetics,enabling lithium plating/stripping with an extremely low overpotential of~8 mV and the average CE of 97%.When tested in Li||LiFePO_(4) cell,this electrolyte provides long-term cycling with a capacity retention of 98.3%after 1000 cycles at 1 C and an excellent rate performance of 20 C,as well as an areal capacity of 1.35 mA h cm^(-2)at the cathode areal loading of 9 mg cm^(-2).Moreover,the Li||LiFePO_(4) cell exhibits excellent wide-temperature performances(-40~60℃),including long-term cycling stability over 2600 cycles without visible capacity fading at 0℃,as well as extremely high average CEs of 99.6%and 99.8% over 400 cycles under-20℃ and 45℃.
基金financially supported by the National Natural Science Foundation of China(Nos.52130404 and 52304121)the Fundamental Research Funds for the Central Universities(No.FRF-TP-22-112A1)+4 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2021A 1515110161)the ANID(Chile)through Fondecyt project 1210610the Centro de Modelamiento Matemático(BASAL funds for Centers of Excellence FB210005)the CRHIAM project ANID/FONDAP/15130015 and ANID/FONDAP/1523A0001the Anillo project ANID/ACT210030。
文摘Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations of thickened tailings often occur.The rheological properties and concentration evolution in the thickened tailings remain unclear.Moreover,traditional indoor thickening experiments have yet to quantitatively characterize their rheological properties.An experiment of flocculation condition optimization based on the Box-Behnken design(BBD)was performed in the study,and the two response values were investigated:concentration and the mean weighted chord length(MWCL)of flocs.Thus,optimal flocculation conditions were obtained.In addition,the rheological properties and concentration evolution of different flocculant dosages and ultrafine tailing contents under shear,compression,and compression-shear coupling experimental conditions were tested and compared.The results show that the shear yield stress under compression and compression-shear coupling increases with the growth of compressive yield stress,while the shear yield stress increases slightly under shear.The order of shear yield stress from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Under compression and compression-shear coupling,the concentration first rapidly increases with the growth of compressive yield stress and then slowly increases,while concentration increases slightly under shear.The order of concentration from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Finally,the evolution mechanism of the flocs and drainage channels during the thickening of the thickened tailings under different experimental conditions was revealed.
基金supported by the Seed Industry Revitalization Project of Jiangsu Province,China(JBGS[2021]009)the National Natural Science Foundation of China(32061143030 and 31972487)+3 种基金the Jiangsu Province University Basic Science Research Project,China(21KJA210002)the Key Research and Development Program of Jiangsu Province,China(BE2022343)the Innovative Research Team of Universities in Jiangsu Province,China,the High-end Talent Project of Yangzhou University,China,the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),Chinathe Qing Lan Project of Jiangsu Province,China。
文摘Nitrogen(N), phosphorus(P), and potassium(K) are essential macronutrients that are crucial not only for maize growth and development, but also for crop yield and quality. The genetic basis of macronutrient dynamics and accumulation during grain filling in maize remains largely unknown. In this study, we evaluated grain N, P, and K concentrations in 206 recombinant inbred lines generated from a cross of DH1M and T877 at six time points after pollination. We then calculated conditional phenotypic values at different time intervals to explore the dynamic characteristics of the N, P, and K concentrations. Abundant phenotypic variations were observed in the concentrations and net changes of these nutrients. Unconditional quantitative trait locus(QTL) mapping revealed 41 non-redundant QTLs, including 17, 16, and 14 for the N, P, and K concentrations, respectively. Conditional QTL mapping uncovered 39 non-redundant QTLs related to net changes in the N, P, and K concentrations. By combining QTL, gene expression, co-expression analysis, and comparative genomic data, we identified 44, 36, and 44 candidate genes for the N, P, and K concentrations, respectively, including GRMZM2G371058 encoding a Doftype zinc finger DNA-binding family protein, which was associated with the N concentration, and GRMZM2G113967encoding a CBL-interacting protein kinase, which was related to the K concentration. The results deepen our understanding of the genetic factors controlling N, P, and K accumulation during maize grain development and provide valuable genes for the genetic improvement of nutrient concentrations in maize.
基金supported by the National Natural Science Foundation of China (22125802 and 22108012)Natural Science Foundation of Beijing Municipality (2222017)Fundamental Research Funds for the Central Universities (BUCTRC-202109)。
文摘Latex wastewater is a kind of refractory organic wastewater containing high concentrations of organics and ammonia nitrogen.In this work,the combined process of forward osmosis(FO)and reverse osmosis(RO)was designed to treat the latex wastewater in the whole process,achieving the water recovery rate of 99%and basically no waste discharge after the catalytic oxidation process.The turbidity of the latex wastewater was decreased to below 1 NTU by microfiltration pretreatment,and then using MgCl_2 worked as the draw solution for FO process to treat the latex wastewater.Different operation conditions including adding acid or scale inhibitor as the pretreatment methods were conducted to improve the treatment performance of the combined process.After the treatment of the whole process,the concentration of COD was less than 20 mg·L^(-1),the concentration of NH_3-N was less than 10 mg·L^(-1),and the concentration of TP was less than 0.5 mg·L^(-1)for the treated latex wastewater.The water quality met standards of industrial water reuse after the complete analysis of the treated latex wastewater,meanwhile,useful substances of L-Quebrachitol(L-Q)were successfully extracted from the concentrated solution.Therefore,the combined process of FO and RO could realize the efficient treatment and reuse of latex wastewater,which provided with some important guidance on the industrial application.
文摘In the presentmanuscript,a Layer-Wise(LW)generalizedmodel is proposed for the linear static analysis of doublycurved shells constrained with general boundary conditions under the influence of concentrated and surface loads.The unknown field variable is modelled employing polynomials of various orders,each of them defined within each layer of the structure.As a particular case of the LW model,an Equivalent Single Layer(ESL)formulation is derived too.Different approaches are outlined for the assessment of external forces,as well as for non-conventional constraints.The doubly-curved shell is composed by superimposed generally anisotropic laminae,each of them characterized by an arbitrary orientation.The fundamental governing equations are derived starting from an orthogonal set of principal coordinates.Furthermore,generalized blending functions account for the distortion of the physical domain.The implementation of the fundamental governing equations is performed bymeans of the Generalized Differential Quadrature(GDQ)method,whereas the numerical integrations are computed employing theGeneralized IntegralQuadrature(GIQ)method.In the post-processing phase,an effective procedure is adopted for the reconstruction of stress and strain through-the-thickness distributions based on the exact fulfillment of three-dimensional equilibrium equations.A series of systematic investigations are performed in which the static response of structures with various curvatures and lamination schemes,calculated by the present methodology,have been successfully compared to those ones obtained fromrefined finite element three-dimensional simulations.Even though the present LW approach accounts for a two-dimensional assessment of the structural problem,it is capable of well predicting the three-dimensional response of structures with different characteristics,taking into account a reduced computational cost and pretending to be a valid alternative to widespread numerical implementations.
基金National Natural Science Foundation of China,Grant/Award Numbers:21905265,52072322,U1930402,61974042National Science Foundation,Civil,Mechanical and Manufacturing Innovation,Grant/Award Number:1911905+3 种基金Fundamental Research Funds for the Central Universities,Grant/Award Number:WK2060140026Department of Science and Technology of Sichuan Province,Grant/Award Numbers:2019‐GH02‐00052‐HZ,2019YFG0220Scientific and Technological Innovation Foundation of Shunde Graduate School,Grant/Award Number:BK19BE024National Key Research and Development Program of China,Grant/Award Number:2017YFA0303403。
文摘A new concentrated ternary salt ether-based electrolyte enables stable cycling of lithium metal battery(LMB)cells with high-mass-loading(13.8 mg cm^(−2),2.5 mAh cm^(−2))NMC622(LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2))cathodes and 50μm Li anodes.Termed“CETHER-3,”this electrolyte is based on LiTFSI,LiDFOB,and LiBF4 with 5 vol%fluorinated ethylene carbonate in 1,2-dimethoxyethane.Commer-cial carbonate and state-of-the-art binary salt ether electrolytes were also tested as baselines.With CETHER-3,the electrochemical performance of the full-cell battery is among the most favorably reported in terms of high-voltage cycling stability.For example,LiNi_(x)Mn_(y)Co_(1-x-y)O_(2)(NMC)-Li metal cells retain 80%capacity at 430 cycles with a 4.4 V cut-off and 83%capacity at 100 cycles with a 4.5 V cut-off(charge at C/5,discharge at C/2).According to simulation by density functional theory and molecular dynamics,this favorable performance is an outcome of enhanced coordination between Li^(+)and the solvent/salt molecules.Combining advanced microscopy(high-resolution transmission electron microscopy,scanning electron microscopy)and surface science(X-ray photoelectron spectroscopy,time-of-fight secondary ion mass spectroscopy,Fourier-transform infrared spectroscopy,Raman spectroscopy),it is demonstrated that a thinner and more stable cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)are formed.The CEI is rich in lithium sulfide(Li_(2)SO_(3)),while the SEI is rich in Li_(3)N and LiF.During cycling,the CEI/SEI suppresses both the deleterious transformation of the cathode R-3m layered near-surface structure into disordered rock salt and the growth of lithium metal dendrites.
文摘AIM:To compare high or low concentration of hyaluronic acid eye drops(HY)for dry eye syndromes(DES).METHODS:Randomized controlled trials(RCTs)comparing various concentrations of HY were searched in PubMed,Embase,Web of Science,Cochrane,SinoMed,CNKI,Wanfang Database,CQVIP,and Chinese journals databases between inception and July 2023.Pooled standardized mean differences(SMD)or weighted mean difference(WMD)with 95%confidence intervals(CI)from RCTs evaluating Schirmer’s I test(SIT),corneal fluorescein staining score(CFS),tear breakup time(TBUT),DES score(DESS),and Ocular Surface Disease Index(OSDI)were calculated.Sensitivity analysis,Egger’s test and Meta-regression analysis were performed for all indicators.RESULTS:We conducted a Meta-analysis of 10 RCTs that met the inclusion criteria,involving 1796 cases.High-concentrations group significantly improved the outcome of CFS according to random effects modelling(SMD,-3.37;95%CI,-5.25 to-1.48;P=0.0005).The rest of the results were not statistically significant,including indicators such as SIT,TBUT,DESS and OSDI.CONCLUSION:For dry eyes with positive corneal staining,a high concentration of HY is recommended,whereas in other cases,a high concentration of HY does not offer a more pronounced advantage over a low concentration of HY in the treatment of dry eyes.
基金supported by the National Natural Science Foundation of China(62150710548,61834008,U21A20493)the National Key Research and Development Program of China(2022YFB2802801)+2 种基金the Key Research and Development Program of Jiangsu Province(BE2021008-1)the Suzhou Key Laboratory of New-type Laser Display Technology(SZS2022007)the Natural Science Foundation of Jiangsu Province(BK20232042).
文摘Relationship between the hole concentration at room temperature and the Mg doping concentration in p-GaN grown by MOCVD after sufficient annealing was studied in this paper.Different annealing conditions were applied to obtain sufficient activation for p-GaN samples with different Mg doping ranges.Hole concentration,resistivity and mobility were characterized by room-temperature Hall measurements.The Mg doping concentration and the residual impurities such as H,C,O and Si were measured by secondary ion mass spectroscopy,confirming negligible compensations by the impurities.The hole concentration,resistivity and mobility data are presented as a function of Mg concentration,and are compared with literature data.The appropriate curve relating the Mg doping concentration to the hole concentration is derived using a charge neutrality equation and the ionized-acceptor-density[N-(A)^(-)](cm^(−3))dependent ionization energy of Mg acceptor was determined asE_(A)^(Mg)=184−2.66×10^(−5)×[N_(A)^(-)]1/3 meV.
基金supported by National Natural Science Foundation of China(grant number 42101318)the National Key R&D Program of China(grant number 2018YFD1100101)。
文摘Ozone(O_(3))pollution has a profound impact on human health,vegetation development,and the ecological environment,making it a critical focus of global academic research.In recent years,O_(3)pollution in China has been on a steady rise,with ozone emerging as the sole conventional pollutant to consistently increase in concentration without any decline.This study conducted a quantitative analysis of O_(3)concentrations across 367 Chinese cities in 2019,examining spatial autocorrelation and local clustering of O_(3)levels,and investigated the diverse relationships between human activity factors and O_(3)concentration.The seasonal fluctuation of O_(3)exhibited the“M-type”pattern,with peak concentrations in winter and the lowest levels in summer.The center of O_(3)pollution migrated southeastward,with the area of highest concentration progressively shifting south along the eastern coast.Moreover,O_(3)concentration showed a strong positive correlation with population density,road freight volume,and industrial emissions,suggesting that human activities,vehicle emissions,and industrial operations are significant contributors to O_(3)production.The results provide comprehensive information on the characteristics,causes,and occurrence mechanism of O_(3)in Chinese cities that can be utilized by global government departments to formulate strategies to prevent and control O_(3)pollution.
基金support by the National Key Research and Development Program of China(2022YFB3803600)the National Natural Science Foundation of China(No.52276212)+3 种基金the Natural Science Foundation of Jiangsu Province(No.BK20231211)the Suzhou Science and Technology Program(SYG202101)the Key Research and Development Program in Shaanxi Province of China(No.2023-YBGY-300)the China Fundamental Research Funds for the Central Universities.
文摘The climate crisis necessitates the development of non-fossil energy sources.Harnessing solar energy for fuel production shows promise and offers the potential to utilize existing energy infrastructure.However,solar fuel production is in its early stages of development,constrained by low conversion efficiency and challenges in scaling up production.Concentrated solar energy(CSE)technology has matured alongside the rapid growth of solar thermal power plants.This review provides an overview of current CSE methods and solar fuel production,analyzes their integration compatibility,and delves into the theoretical mechanisms by which CSE impacts solar energy conversion efficiency and product selectivity in the context of photo-electrochemistry,thermochemistry,and photo-thermal co-catalysis for solar fuel production.The review also summarizes approaches to studying the photoelectric and photothermal effects of CSE.Lastly,it explores emerging novel CSE technology methods in the field of solar fuel production.
基金supported by CNPC-CZU Innovation Alliancethe Research Start-Up Fund of Changzhou University.
文摘Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate rock is still unknown.This study examines the variations in the wettability of the surface of carbonate rocks in solutions containing varying amounts of sodium sulfate and pure water.The problem is addressed in the framework of molecular dynamics simulation(Material Studio software)and experiments.The experiment’s findings demonstrate that sodium sulfate can increase the rate at which oil moisture is turned into water moisture.The final contact angle is smaller than that of pure water.The results of the simulations show that many water molecules travel down the water channel under the influence of several powerful forces,including the electrostatic force,the van der Waals force and hydrogen bond,crowding out the oil molecules on the calcite’s surface and causing the oil film to separate.The relative concentration curve of water and oil molecules indicates that the separation rate of the oil film on the surface of calcite increases with the number of sulfate ions.
基金supported by the National Key Research and Development Program of China (Grant No.2021YFC3001204)。
文摘The study of non-axisymmetric fuel dispersal and detonation can provide reference for the prevention of industrial cloud explosion accidents and the design of fuel air explosive(FAE).The concentration and detonation fields of 85 kg cylindrical and fan-shaped fuel are investigated by experiments and numerical simulations.A dynamic model of the whole process for fuel dispersal and detonation is built.The concentration distribution of fuel is used as the initial condition to calculate the detonation stage,thus solving the initial value problem of detonation field.The phase and component changes of fuel cloud at different locations are compared.The fuel cloud is divided into directions of 0°,90°,135°and 180°.The results show that the maximum cloud radius is 20.94 m in 135°and the minimum is 12.04 m in 0°.The diameter of the detonation fireball is 53.6 m,and the peak temperature is 3455 K.The highest peak overpressure is 3.44 MPa in 0°and the lowest is 2.97 MPa in 135°.The proportion of liquid phase in 0°is22.90%,and the fuel loss is 11.8% and 9% higher than that in 135°and cylindrical charge,respectively.The stable propagation distance of blast wave in 135°is 42.50% longer than 0°and 28.37% longer than cylindrical charge.