We present a general construction producing a unitary corepresentation of a multiplier Hopf algebra in itself and study RR-corepresentations of twisted tensor coproduct multiplier Hopf algebra. Then we investigate som...We present a general construction producing a unitary corepresentation of a multiplier Hopf algebra in itself and study RR-corepresentations of twisted tensor coproduct multiplier Hopf algebra. Then we investigate some properties of functors, integrals and morphisms related to the categories of the crossed modules and covariant modules over multiplier Hopf algebras. By doing so, we can apply our theory to the case of group-cograded multiplier Hopf algebras, in particular, the case of Hopf group-coalgebras.展开更多
基金Supported by National Natural Science Foundation of China (Grant No. 10871042) the Research Fund for the Doctoral Program of Higher Education (Grant No. 20060286006)+1 种基金 Natural Science Foundation of Jiangsu Province (Grant No. BK2009258)the Key Project of Chinese Ministry of Education of China (Grant No.108154)
文摘We present a general construction producing a unitary corepresentation of a multiplier Hopf algebra in itself and study RR-corepresentations of twisted tensor coproduct multiplier Hopf algebra. Then we investigate some properties of functors, integrals and morphisms related to the categories of the crossed modules and covariant modules over multiplier Hopf algebras. By doing so, we can apply our theory to the case of group-cograded multiplier Hopf algebras, in particular, the case of Hopf group-coalgebras.