Passive image forgery detection methods that identify forgeries without prior knowledge have become a key research focus.In copy-move forgery,the assailant intends to hide a portion of an image by pasting other portio...Passive image forgery detection methods that identify forgeries without prior knowledge have become a key research focus.In copy-move forgery,the assailant intends to hide a portion of an image by pasting other portions of the same image.The detection of such manipulations in images has great demand in legal evidence,forensic investigation,and many other fields.The paper aims to present copy-move forgery detection algorithms with the help of advanced feature descriptors,such as local ternary pattern,local phase quantization,local Gabor binary pattern histogram sequence,Weber local descriptor,and local monotonic pattern,and classifiers such as optimized support vector machine and optimized NBC.The proposed algorithms can classify an image efficiently as either copy-move forged or authenticated,even if the test image is subjected to attacks such as JPEG compression,scaling,rotation,and brightness variation.CoMoFoD,CASIA,and MICC datasets and a combination of CoMoFoD and CASIA datasets images are used to quantify the performance of the proposed algorithms.The proposed algorithms are more efficient than state-of-the-art algorithms even though the suspected image is post-processed.展开更多
With the rapid development of powerful image, editing software makes the forgery of the digital image easy. Researchers proposed methods to cope with image authentication in recent years. We proposed a passive image a...With the rapid development of powerful image, editing software makes the forgery of the digital image easy. Researchers proposed methods to cope with image authentication in recent years. We proposed a passive image authentication technique to determine the copy move forgery that copied a part of an image and pasted it on the other region in the same image. First, the method divides the image into overlapping blocks. It uses LPQ (local phase quantization) to label each block. The column average value of labeled blocks constitutes the feature vector for the block. Similarity among the feature vectors gives a clue about the forgery. Local phase quantization has not been used to detect copy move forgery in the literature before. Experimental results show that, the method has higher accuracy ratios and lower false negative values under blurring operation at high levels compared to other methods. Our method can also detect multiple copy move forgery.展开更多
In this paper,copy-move forgery in image is detected for single image with multiple manipulations such as blurring,noise addition,gray scale conver-sion,brightness modifications,rotation,Hu adjustment,color adjustment,...In this paper,copy-move forgery in image is detected for single image with multiple manipulations such as blurring,noise addition,gray scale conver-sion,brightness modifications,rotation,Hu adjustment,color adjustment,contrast changes and JPEG Compression.However,traditional algorithms detect only copy-move attacks in image and never for different manipulation in single image.The proposed LLP(Laterally linked pixel)algorithm has two dimensional arrays and single layer is obtained through unit linking pulsed neural network for detec-tion of copied region and kernel tricks is applied for detection of multiple manip-ulations in single forged image.LLP algorithm consists of two channels such as feeding component(F-Channel)and linking component(L channel)for linking pixels.LLP algorithm linking pixels detects image with multiple manipulation and copy-move forgery due to one-to-one correspondence between pixel and neu-ron,where each pixel’s intensity is taken as input for F channel of neuron and connected for forgery identification.Furthermore,neuron is connected with neighboringfield of neuron by L channel for detecting forged images with multi-ple manipulations in the image along with copy-move,through kernel trick clas-sifier(KTC).From experimental results,proposed LLP algorithm performs better than traditional algorithms for multiple manipulated copy and paste images.The accuracy obtained through LLP algorithm is about 90%and further forgery detec-tion is improved based on optimized kernel selections in classification algorithm.展开更多
文摘Passive image forgery detection methods that identify forgeries without prior knowledge have become a key research focus.In copy-move forgery,the assailant intends to hide a portion of an image by pasting other portions of the same image.The detection of such manipulations in images has great demand in legal evidence,forensic investigation,and many other fields.The paper aims to present copy-move forgery detection algorithms with the help of advanced feature descriptors,such as local ternary pattern,local phase quantization,local Gabor binary pattern histogram sequence,Weber local descriptor,and local monotonic pattern,and classifiers such as optimized support vector machine and optimized NBC.The proposed algorithms can classify an image efficiently as either copy-move forged or authenticated,even if the test image is subjected to attacks such as JPEG compression,scaling,rotation,and brightness variation.CoMoFoD,CASIA,and MICC datasets and a combination of CoMoFoD and CASIA datasets images are used to quantify the performance of the proposed algorithms.The proposed algorithms are more efficient than state-of-the-art algorithms even though the suspected image is post-processed.
文摘With the rapid development of powerful image, editing software makes the forgery of the digital image easy. Researchers proposed methods to cope with image authentication in recent years. We proposed a passive image authentication technique to determine the copy move forgery that copied a part of an image and pasted it on the other region in the same image. First, the method divides the image into overlapping blocks. It uses LPQ (local phase quantization) to label each block. The column average value of labeled blocks constitutes the feature vector for the block. Similarity among the feature vectors gives a clue about the forgery. Local phase quantization has not been used to detect copy move forgery in the literature before. Experimental results show that, the method has higher accuracy ratios and lower false negative values under blurring operation at high levels compared to other methods. Our method can also detect multiple copy move forgery.
文摘In this paper,copy-move forgery in image is detected for single image with multiple manipulations such as blurring,noise addition,gray scale conver-sion,brightness modifications,rotation,Hu adjustment,color adjustment,contrast changes and JPEG Compression.However,traditional algorithms detect only copy-move attacks in image and never for different manipulation in single image.The proposed LLP(Laterally linked pixel)algorithm has two dimensional arrays and single layer is obtained through unit linking pulsed neural network for detec-tion of copied region and kernel tricks is applied for detection of multiple manip-ulations in single forged image.LLP algorithm consists of two channels such as feeding component(F-Channel)and linking component(L channel)for linking pixels.LLP algorithm linking pixels detects image with multiple manipulation and copy-move forgery due to one-to-one correspondence between pixel and neu-ron,where each pixel’s intensity is taken as input for F channel of neuron and connected for forgery identification.Furthermore,neuron is connected with neighboringfield of neuron by L channel for detecting forged images with multi-ple manipulations in the image along with copy-move,through kernel trick clas-sifier(KTC).From experimental results,proposed LLP algorithm performs better than traditional algorithms for multiple manipulated copy and paste images.The accuracy obtained through LLP algorithm is about 90%and further forgery detec-tion is improved based on optimized kernel selections in classification algorithm.