期刊文献+
共找到218篇文章
< 1 2 11 >
每页显示 20 50 100
Improving Image Copy-Move Forgery Detection with Particle Swarm Optimization Techniques 被引量:7
1
作者 SHI Wenchang ZHAO Fei +1 位作者 QIN Bo LIANG Bin 《China Communications》 SCIE CSCD 2016年第1期139-149,共11页
Copy-Move Forgery(CMF) is one of the simple and effective operations to create forged digital images.Recently,techniques based on Scale Invariant Features Transform(SIFT) are widely used to detect CMF.Various approach... Copy-Move Forgery(CMF) is one of the simple and effective operations to create forged digital images.Recently,techniques based on Scale Invariant Features Transform(SIFT) are widely used to detect CMF.Various approaches under the SIFT-based framework are the most acceptable ways to CMF detection due to their robust performance.However,for some CMF images,these approaches cannot produce satisfactory detection results.For instance,the number of the matched keypoints may be too less to prove an image to be a CMF image or to generate an accurate result.Sometimes these approaches may even produce error results.According to our observations,one of the reasons is that detection results produced by the SIFT-based framework depend highly on parameters whose values are often determined with experiences.These values are only applicable to a few images,which limits their application.To solve the problem,a novel approach named as CMF Detection with Particle Swarm Optimization(CMFDPSO) is proposed in this paper.CMFD-PSO integrates the Particle Swarm Optimization(PSO) algorithm into the SIFT-based framework.It utilizes the PSO algorithm to generate customized parameter values for images,which are used for CMF detection under the SIFT-based framework.Experimental results show that CMFD-PSO has good performance. 展开更多
关键词 copy-move forgery detection SIFT region duplication digital image forensics
下载PDF
Image Copy-Move Forgery Detection Using SURF in Opponent Color Space 被引量:4
2
作者 巩家昌 郭继昌 《Transactions of Tianjin University》 EI CAS 2016年第2期151-157,共7页
Most existing methods for image copy-move forgery detection(CMFD)operate on grayscale images. Although the keypoint-based methods have the advantages of strong robustness and low computational cost,they cannot identif... Most existing methods for image copy-move forgery detection(CMFD)operate on grayscale images. Although the keypoint-based methods have the advantages of strong robustness and low computational cost,they cannot identify the flat duplicated regions without reliable extracted features. In this paper, we propose a new CMFD method by using speeded-up robust feature(SURF)in the opponent color space. Our method starts by converting the inspected image from RGB to the opponent color space. The color gradient per pixel is calculated and taken as the work space for SURF to extract the keypoints. The matched keypoints are clustered and their geometric transformations are estimated. Finally, the false matches are removed. Experimental results show that the proposed technique can effectively expose the duplicated regions with various transformations, even when the duplication regions are flat. 展开更多
关键词 copy-move forgery flat region color descriptor OwSURF
下载PDF
Detection of Copy-Move Forgery in Digital Images Using Singular Value Decomposition 被引量:1
3
作者 Zaid Nidhal Khudhair Farhan Mohamed +2 位作者 Amjad Rehman Tanzila Saba Saeed Ali bahaj 《Computers, Materials & Continua》 SCIE EI 2023年第2期4135-4147,共13页
This paper presents an improved approach for detecting copy-move forgery based on singular value decomposition(SVD).It is a block-based method where the image is scanned from left to right and top to down by a sliding... This paper presents an improved approach for detecting copy-move forgery based on singular value decomposition(SVD).It is a block-based method where the image is scanned from left to right and top to down by a sliding window with a determined size.At each step,the SVD is determined.First,the diagonal matrix’s maximum value(norm)is selected(representing the scaling factor for SVD and a fixed value for each set of matrix elements even when rotating thematrix or scaled).Then,the similar norms are grouped,and each leading group is separated into many subgroups(elements of each subgroup are neighbors)according to 8-adjacency(the subgroups for each leading group must be far from others by a specific distance).After that,a weight is assigned for each subgroup to classify the image as forgery or not.Finally,the F1 score of the proposed system is measured,reaching 99.1%.This approach is robust against rotation,scaling,noisy images,and illumination variation.It is compared with other similarmethods and presents very promised results. 展开更多
关键词 forgery image forensic image processing region duplication SVD transformation technological development
下载PDF
A Survey on Digital Image Copy-Move Forgery Localization Using Passive Techniques 被引量:1
4
作者 Weijin Tan Yunqing Wu +1 位作者 Peng Wu Beijing Chen 《Journal of New Media》 2019年第1期11-25,共15页
Digital images can be tampered easily with simple image editing software tools.Therefore,image forensic investigation on the authenticity of digital images’content is increasingly important.Copy-move is one of the mo... Digital images can be tampered easily with simple image editing software tools.Therefore,image forensic investigation on the authenticity of digital images’content is increasingly important.Copy-move is one of the most common types of image forgeries.Thus,an overview of the traditional and the recent copy-move forgery localization methods using passive techniques is presented in this paper.These methods are classified into three types:block-based methods,keypoint-based methods,and deep learning-based methods.In addition,the strengths and weaknesses of these methods are compared and analyzed in robustness and computational cost.Finally,further research directions are discussed. 展开更多
关键词 image forgery copy-move forgery localization passive techniques
下载PDF
Image Splicing Forgery Detection Using Feature-Based of Sonine Functions and Deep Features
5
作者 Ala’a R.Al-Shamasneh Rabha W.Ibrahim 《Computers, Materials & Continua》 SCIE EI 2024年第1期795-810,共16页
The growing prevalence of fake images on the Internet and social media makes image integrity verification a crucial research topic.One of the most popular methods for manipulating digital images is image splicing,whic... The growing prevalence of fake images on the Internet and social media makes image integrity verification a crucial research topic.One of the most popular methods for manipulating digital images is image splicing,which involves copying a specific area from one image and pasting it into another.Attempts were made to mitigate the effects of image splicing,which continues to be a significant research challenge.This study proposes a new splicing detectionmodel,combining Sonine functions-derived convex-based features and deep features.Two stages make up the proposed method.The first step entails feature extraction,then classification using the“support vector machine”(SVM)to differentiate authentic and spliced images.The proposed Sonine functions-based feature extraction model reveals the spliced texture details by extracting some clues about the probability of image pixels.The proposed model achieved an accuracy of 98.93% when tested with the CASIA V2.0 dataset“Chinese Academy of Sciences,Institute of Automation”which is a publicly available dataset for forgery classification.The experimental results show that,for image splicing forgery detection,the proposed Sonine functions-derived convex-based features and deep features outperform state-of-the-art techniques in terms of accuracy,precision,and recall.Overall,the obtained detection accuracy attests to the benefit of using the Sonine functions alongside deep feature representations.Finding the regions or locations where image tampering has taken place is limited by the study.Future research will need to look into advanced image analysis techniques that can offer a higher degree of accuracy in identifying and localizing tampering regions. 展开更多
关键词 image forgery image splicing deep learning Sonine functions
下载PDF
IMTNet:Improved Multi-Task Copy-Move Forgery Detection Network with Feature Decoupling and Multi-Feature Pyramid
6
作者 Huan Wang Hong Wang +2 位作者 Zhongyuan Jiang Qing Qian Yong Long 《Computers, Materials & Continua》 SCIE EI 2024年第9期4603-4620,共18页
Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality a... Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality and quantity,and a narrow range of applicable tasks.These limitations significantly restrict the capacity and applicability of CMFD.To overcome the limitations of existing methods,a novel solution called IMTNet is proposed for CMFD by employing a feature decoupling approach.Firstly,this study formulates the objective task and network relationship as an optimization problem using transfer learning.Furthermore,it thoroughly discusses and analyzes the relationship between CMFD and deep network architecture by employing ResNet-50 during the optimization solving phase.Secondly,a quantitative comparison between fine-tuning and feature decoupling is conducted to evaluate the degree of similarity between the image classification and CMFD domains by the enhanced ResNet-50.Finally,suspicious regions are localized using a feature pyramid network with bottom-up path augmentation.Experimental results demonstrate that IMTNet achieves faster convergence,shorter training times,and favorable generalization performance compared to existingmethods.Moreover,it is shown that IMTNet significantly outperforms fine-tuning based approaches in terms of accuracy and F_(1). 展开更多
关键词 image copy-move detection feature decoupling multi-scale feature pyramids passive forensics
下载PDF
An effective copy-move forgery detection algorithm using fractional quaternion Zernike moments and improved PatchMatch algorithm 被引量:3
7
作者 Chen Beijing Gao Ye +2 位作者 Yu Ming Wu Peng Shu Huazhong 《Journal of Southeast University(English Edition)》 EI CAS 2019年第4期431-439,共9页
An effective algorithm is proposed to detect copy-move forgery.In this algorithm,first,the PatchMatch algorithm is improved by using a reliable order-statistics-based approximate nearest neighbor search algorithm(ROSA... An effective algorithm is proposed to detect copy-move forgery.In this algorithm,first,the PatchMatch algorithm is improved by using a reliable order-statistics-based approximate nearest neighbor search algorithm(ROSANNA)to modify the propagation process.Then,fractional quaternion Zernike moments(FrQZMs)are considered to be features extracted from color forged images.Finally,the extracted FrQZMs features are matched by the improved PatchMatch algorithm.The experimental results on two publicly available datasets(FAU and GRIP datasets)show that the proposed algorithm performs better than the state-of-the-art algorithms not only in objective criteria F-measure value but also in visual.Moreover,the proposed algorithm is robust to some attacks,such as additive white Gaussian noise,JPEG compression,rotation,and scaling. 展开更多
关键词 QUATERNION fractional Zernike moments PatchMatch algorithm copy-move forgery detection
下载PDF
Efficient Forgery Detection Approaches for Digital Color Images 被引量:1
8
作者 Amira Baumy Abeer D.Algarni +3 位作者 Mahmoud Abdalla Walid El-Shafai Fathi E.Abd El-Samie Naglaa F.Soliman 《Computers, Materials & Continua》 SCIE EI 2022年第5期3257-3276,共20页
This paper is concerned with a vital topic in image processing:color image forgery detection. The development of computing capabilitieshas led to a breakthrough in hacking and forgery attacks on signal, image,and data... This paper is concerned with a vital topic in image processing:color image forgery detection. The development of computing capabilitieshas led to a breakthrough in hacking and forgery attacks on signal, image,and data communicated over networks. Hence, there is an urgent need fordeveloping efficient image forgery detection algorithms. Two main types offorgery are considered in this paper: splicing and copy-move. Splicing isperformed by inserting a part of an image into another image. On the otherhand, copy-move forgery is performed by copying a part of the image intoanother position in the same image. The proposed approach for splicingdetection is based on the assumption that illumination between the originaland tampered images is different. To detect the difference between the originaland tampered images, the homomorphic transform separates the illuminationcomponent from the reflectance component. The illumination histogramderivative is used for detecting the difference in illumination, and henceforgery detection is accomplished. Prior to performing the forgery detectionprocess, some pre-processing techniques, including histogram equalization,histogram matching, high-pass filtering, homomorphic enhancement, andsingle image super-resolution, are introduced to reinforce the details andchanges between the original and embedded sections. The proposed approachfor copy-move forgery detection is performed with the Speeded Up RobustFeatures (SURF) algorithm, which extracts feature points and feature vectors. Searching for the copied partition is accomplished through matchingwith Euclidian distance and hierarchical clustering. In addition, some preprocessing methods are used with the SURF algorithm, such as histogramequalization and single-mage super-resolution. Simulation results proved thefeasibility and the robustness of the pre-processing step in homomorphicdetection and SURF detection algorithms for splicing and copy-move forgerydetection, respectively. 展开更多
关键词 image forgery splicing algorithm copy-move algorithm histogram matching homomorphic enhancement SISR SURF
下载PDF
Detecting JPEG image forgery based on double compression 被引量:1
9
作者 Wang Junwen Liu Guangjie Dai Yuewei Wang Zhiquan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第5期1096-1103,共8页
Detecting the forgery parts from a double compressed image is very important and urgent work for blind authentication. A very simple and efficient method for accomplishing the task is proposed. Firstly, the probabilis... Detecting the forgery parts from a double compressed image is very important and urgent work for blind authentication. A very simple and efficient method for accomplishing the task is proposed. Firstly, the probabilistic model with periodic effects in double quantization is analyzed, and the probability of quantized DCT coefficients in each block is calculated over the entire iraage. Secondly, the posteriori probability of each block is computed according to Bayesian theory and the results mentioned in first part. Then the mean and variance of the posteriori probability are to be used for judging whether the target block is tampered. Finally, the mathematical morphology operations are performed to reduce the false alarm probability. Experimental results show that the method can exactly locate the doctored part, and through the experiment it is also found that for detecting the tampered regions, the higher the second compression quality is, the more exact the detection efficiency is. 展开更多
关键词 image forgery JPEG double compression QUANTIZATION posteriori probability.
下载PDF
A Thorough Investigation on Image Forgery Detection
10
作者 Anjani Kumar Rai Subodh Srivastava 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1489-1528,共40页
Image forging is the alteration of a digital image to conceal some of the necessary or helpful information.It cannot be easy to distinguish themodified region fromthe original image in somecircumstances.The demand for... Image forging is the alteration of a digital image to conceal some of the necessary or helpful information.It cannot be easy to distinguish themodified region fromthe original image in somecircumstances.The demand for authenticity and the integrity of the image drive the detection of a fabricated image.There have been cases of ownership infringements or fraudulent actions by counterfeiting multimedia files,including re-sampling or copy-moving.This work presents a high-level view of the forensics of digital images and their possible detection approaches.This work presents a thorough analysis of digital image forgery detection techniques with their steps and effectiveness.These methods have identified forgery and its type and compared it with state of the art.This work will help us to find the best forgery detection technique based on the different environments.It also shows the current issues in other methods,which can help researchers find future scope for further research in this field. 展开更多
关键词 forgery detection digital forgery image forgery localization image segmentation image forensics multimedia security
下载PDF
Exposing Image Forgery with Inconsistent Reflection Line Midpoint
11
作者 葛华勇 MALIK Hafiz +1 位作者 蒋学芹 房树娟 《Journal of Donghua University(English Edition)》 EI CAS 2017年第1期44-48,共5页
In recent years,there has been a backlash of sorts and the authenticity of images has been routinely questioned.Seeing is no longer believing.There is an urgent need for robust image forensic techniques to expose phot... In recent years,there has been a backlash of sorts and the authenticity of images has been routinely questioned.Seeing is no longer believing.There is an urgent need for robust image forensic techniques to expose photo forgery.This paper proposed a novel and effective technique to expose image forgery using inconsistent reflection.More specifically,a new technique was presented to calculate reflection line midpoint,the definition of midpoint ratio was given,and three standards were proposed and employed to detect image forgery.Accuracy and effectiveness of the proposed technique were evaluated using a data set consisting of 200 authentic and forged images.Experimental results indicate that the proposed method can detect image forgery with very high success rate. 展开更多
关键词 image forgery inconsistent reflection midpoint ratio image forensics
下载PDF
An Active Image Forgery Detection Approach Based on Edge Detection
12
作者 Hüseyin Bilal Macit Arif Koyun 《Computers, Materials & Continua》 SCIE EI 2023年第4期1603-1619,共17页
Recently, digital images have become the most used data, thanks tohigh internet speed and high resolution, cheap and easily accessible digitalcameras. We generate, transmit and store millions of images every second.Mo... Recently, digital images have become the most used data, thanks tohigh internet speed and high resolution, cheap and easily accessible digitalcameras. We generate, transmit and store millions of images every second.Most of these images are insignificant images containing only personal information.However, in many fields such as banking, finance, public institutions,and educational institutions, the images of many valuable objects like IDcards, photographs, credit cards, and transaction receipts are stored andtransmitted to the digital environment. These images are very significantand must be secured. A valuable image can be maliciously modified by anattacker. The modification of an image is sometimes imperceptible even by theperson who stored the image. In this paper, an active image forgery detectionmethod that encodes and decodes image edge information is proposed. Theproposed method is implemented by designing an interface and applied on atest image which is frequently used in the literature. Various tampering attacksare simulated to test the fidelity of the method. The method not only notifieswhether the image is forged or not but also marks the tampered region ofthe image. Also, the proposed method successfully detected tampered regionsafter geometric attacks, even on self-copy attacks. Also, it didn’t fail on JPEGcompression. 展开更多
关键词 image forgery image tampering edge detection
下载PDF
Metaheuristics with Optimal Deep Transfer Learning Based Copy-Move Forgery Detection Technique
13
作者 C.D.Prem Kumar S.Saravana Sundaram 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期881-899,共19页
The extensive availability of advanced digital image technologies and image editing tools has simplified the way of manipulating the image content.An effective technique for tampering the identification is the copy-mo... The extensive availability of advanced digital image technologies and image editing tools has simplified the way of manipulating the image content.An effective technique for tampering the identification is the copy-move forgery.Conventional image processing techniques generally search for the patterns linked to the fake content and restrict the usage in massive data classification.Contrast-ingly,deep learning(DL)models have demonstrated significant performance over the other statistical techniques.With this motivation,this paper presents an Optimal Deep Transfer Learning based Copy Move Forgery Detection(ODTL-CMFD)technique.The presented ODTL-CMFD technique aims to derive a DL model for the classification of target images into the original and the forged/tampered,and then localize the copy moved regions.To perform the feature extraction process,the political optimizer(PO)with Mobile Networks(MobileNet)model has been derived for generating a set of useful vectors.Finally,an enhanced bird swarm algorithm(EBSA)with least square support vector machine(LS-SVM)model has been employed for classifying the digital images into the original or the forged ones.The utilization of the EBSA algorithm helps to properly modify the parameters contained in the Multiclass Support Vector Machine(MSVM)technique and thereby enhance the classification performance.For ensuring the enhanced performance of the ODTL-CMFD technique,a series of simulations have been performed against the benchmark MICC-F220,MICC-F2000,and MICC-F600 datasets.The experimental results have demonstrated the improvised performance of the ODTL-CMFD approach over the other techniques in terms of several evaluation measures. 展开更多
关键词 Copy move detection image forgery deep learning machine learning parameter tuning FORENSICS
下载PDF
Deep Learning Based Image Forgery Detection Methods
14
作者 Liang Xiu-jian Sun He 《Journal of Cyber Security》 2022年第2期119-133,共15页
Increasingly advanced image processing technology has made digital image editing easier and easier.With image processing software at one’s fingertips,one can easily alter the content of an image,and the altered image... Increasingly advanced image processing technology has made digital image editing easier and easier.With image processing software at one’s fingertips,one can easily alter the content of an image,and the altered image is so realistic that it is illegible to the naked eye.These tampered images have posed a serious threat to personal privacy,social order,and national security.Therefore,detecting and locating tampered areas in images has important practical significance,and has become an important research topic in the field of multimedia information security.In recent years,deep learning technology has been widely used in image tampering localization,and the achieved performance has significantly surpassed traditional tampering forensics methods.This paper mainly sorts out the relevant knowledge and latest methods in the field of image tampering detection based on deep learning.According to the two types of tampering detection based on deep learning,the detection tasks of the method are detailed separately,and the problems and future prospects in this field are discussed.It is quite different from the existing work:(1)This paper mainly focuses on the problem of image tampering detection,so it does not elaborate on various forensic methods.(2)This paper focuses on the detectionmethod of image tampering based on deep learning.(3)This paper is driven by the needs of tampering targets,so it pays more attention to sorting out methods for different tampering detection tasks. 展开更多
关键词 Digital image forensics image tampering detection deep learning image splicing detection copy-move detection
下载PDF
Deep Learning-Based Digital Image Forgery Detection Using Transfer Learning
15
作者 Emad Ul Haq Qazi Tanveer Zia +1 位作者 Muhammad Imran Muhammad Hamza Faheem 《Intelligent Automation & Soft Computing》 2023年第12期225-240,共16页
Deep learning is considered one of the most efficient and reliable methods through which the legitimacy of a digital image can be verified.In the current cyber world where deepfakes have shaken the global community,co... Deep learning is considered one of the most efficient and reliable methods through which the legitimacy of a digital image can be verified.In the current cyber world where deepfakes have shaken the global community,confirming the legitimacy of a digital image is of great importance.With the advancements made in deep learning techniques,now we can efficiently train and develop state-of-the-art digital image forensic models.The most traditional and widely used method by researchers is convolution neural networks(CNN)for verification of image authenticity but it consumes a considerable number of resources and requires a large dataset for training.Therefore,in this study,a transfer learning based deep learning technique for image forgery detection is proposed.The proposed methodology consists of three modules namely;preprocessing module,convolutional module,and the classification module.By using our proposed technique,the training time is drastically reduced by utilizing the pre-trained weights.The performance of the proposed technique is evaluated by using benchmark datasets,i.e.,BOW and BOSSBase that detect five forensic types which include JPEG compression,contrast enhancement(CE),median filtering(MF),additive Gaussian noise,and resampling.We evaluated the performance of our proposed technique by conducting various experiments and case scenarios and achieved an accuracy of 99.92%.The results show the superiority of the proposed system. 展开更多
关键词 image forgery transfer learning deep learning BOW dataset BOSSBase dataset
下载PDF
Detection of Copy-Scale-Move Forgery in Digital Images Using SFOP and MROGH
16
作者 Mahmoud Emam Qi Han Hongli Zhang 《国际计算机前沿大会会议论文集》 2016年第1期83-85,共3页
Social network platforms such as Twitter, Instagram and Facebook are one of the fastest and most convenient means for sharing digital images. Digital images are generally accepted as credible news but, it may undergo ... Social network platforms such as Twitter, Instagram and Facebook are one of the fastest and most convenient means for sharing digital images. Digital images are generally accepted as credible news but, it may undergo some manipulations before being shared without leaving any obvious traces of tampering; due to existence of the powerful image editing softwares. Copy-move forgery technique is a very simple and common type of image forgery, where a part of the image is copied and then pasted in the same image to replicate or hide some parts from the image. In this paper, we proposed a copy-scale-move forgery detection method based on Scale Invariant Feature Operator (SFOP) detector. The keypoints are then described using MROGH descriptor. Experimental results show that the proposed method is able to locate and detect the forgery even if under some geometric transformations such as scaling. 展开更多
关键词 image FORENSICS copy-move forgery DETECTION SCALE invariant feature RANSAC MROGH descriptor
下载PDF
基于不变矩的Copy-Move型篡改图像盲检测方法 被引量:14
17
作者 王睿 方勇 《中国图象图形学报》 CSCD 北大核心 2008年第10期1938-1941,共4页
拷贝粘贴(Copy-Move)是极为常见的图像篡改方式之一。为了快速有效地检测这种图像篡改,该文提出了一种基于不变矩的Copy-Move型篡改图像盲认证方法,实验结果表明,此方法不仅可以检测传统的Copy-Move型篡改,而且可以检测出经过旋转、镜... 拷贝粘贴(Copy-Move)是极为常见的图像篡改方式之一。为了快速有效地检测这种图像篡改,该文提出了一种基于不变矩的Copy-Move型篡改图像盲认证方法,实验结果表明,此方法不仅可以检测传统的Copy-Move型篡改,而且可以检测出经过旋转、镜像以及缩放的Copy-Move型篡改,同时,为降低算法的复杂度,还提出利用块迭代划分方法来有效减少搜索计算量。仿真实验结果表明,该方法是有效的。 展开更多
关键词 不变矩 图像认证 篡改检测
下载PDF
基于FMT的快速Copy-Move篡改检测 被引量:4
18
作者 张广群 汪杭军 《计算机工程与设计》 CSCD 北大核心 2010年第15期3530-3532,3536,共4页
为了对图像篡改中常用的复制-移动伪造进行检测,基于傅里叶-梅林变换的平移、旋转和缩放的不变性提出一种快速图像区域分割和匹配的高效篡改检测算法。不同于以往模板匹配方式中按照单像素点移动得到重叠块划分方法,该算法采用相邻图像... 为了对图像篡改中常用的复制-移动伪造进行检测,基于傅里叶-梅林变换的平移、旋转和缩放的不变性提出一种快速图像区域分割和匹配的高效篡改检测算法。不同于以往模板匹配方式中按照单像素点移动得到重叠块划分方法,该算法采用相邻图像块的图像区域分割方式来减少整个图像块的数量。通过相似性匹配检测,得到初步的复制图像区域,然后利用边缘处理的方法处理改善篡改区域,从而达到改进篡改检测算法的效率和准确性。最后通过实验验证了该算法的有效性。 展开更多
关键词 复制-移动伪造 图像篡改 傅里叶-梅林变换 篡改检测 区域分割
下载PDF
基于小波和不变矩的图像copy-move篡改盲检测
19
作者 周治平 张小祥 孙子文 《信息网络安全》 2009年第7期35-37,共3页
针对数字图像取证中一类常见的复制粘贴图像伪造,本文提出了一种基于小波变换和不变矩提取的检测算法。该算法利用小波变换提取图像的低频分量,对低频分量分块进行不变矩特征提取,然后将特征矢量进行按行字典排序,并且配合图像块的偏移... 针对数字图像取证中一类常见的复制粘贴图像伪造,本文提出了一种基于小波变换和不变矩提取的检测算法。该算法利用小波变换提取图像的低频分量,对低频分量分块进行不变矩特征提取,然后将特征矢量进行按行字典排序,并且配合图像块的偏移位置信息,进行图像复制伪造区域的检测和定位。实验表明该算法能够较精确地定位出复制和粘贴的图像伪造区域,并有效地减少了运算量,提高了检测效率。 展开更多
关键词 图像取证 小波变换 不变矩 复制伪造区域
下载PDF
区分来源和目标区域的图像copy-move伪造检测方法 被引量:7
20
作者 李应灿 杨建权 +1 位作者 丁峰 朱国普 《信号处理》 CSCD 北大核心 2020年第9期1533-1543,共11页
Copy-move是一种常用的图像伪造手段,它通过复制图像的某一区域,移动并粘贴到同一图像的其他位置,达到掩盖重要信息或伪造虚假场景的目的。近年来,为了防止copy-move被用于违法犯罪,copy-move伪造检测技术迅猛发展,在维护社会运行秩序... Copy-move是一种常用的图像伪造手段,它通过复制图像的某一区域,移动并粘贴到同一图像的其他位置,达到掩盖重要信息或伪造虚假场景的目的。近年来,为了防止copy-move被用于违法犯罪,copy-move伪造检测技术迅猛发展,在维护社会运行秩序和信息安全方面发挥着积极作用。本文提出一种基于条件生成对抗网络(conditional Generative Adversarial Networks,cGANs)的copy-move伪造检测方法。针对图像copy-move伪造检测,该方法优化设计了cGANs的损失函数,并使用适量的弱监督样本来提升网络性能。不同于目前大部分检测算法,该方法不仅可以定位出图像中的相似区域,还可以有效区分伪造来源区域和伪造目标区域。实验结果表明,本文所提出的方法在检测准确率上显著优于现有方法。 展开更多
关键词 图像取证 copy-move伪造 伪造检测 篡改定位 条件生成对抗网络
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部