Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric const...Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2)as the core,MXene as the intermediate layer,and MoS_(2)as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2)nanosheets.Notably,the synergistic combination of SiO_(2)and MoS_(2)with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”展开更多
Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclu...Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclusters,serving as exemplary models,significantly expand the range of accessible structures through diverse cores and ligands,creating an exceptional platform for the investigation of catalytic reactions.Notably,ligand‐protected Au nanoclusters(NCs)with precisely defined core numbers offer a distinct advantage in elucidating the correlation between their specific structures and the reaction mechanisms in electrocatalysis.The strategic modulation of the fine microstructures of Au NCs presents crucial opportunities for tailoring their electrocatalytic performance across various reactions.This review delves into the profound structural effects of Au NC cores and ligands in electrocatalysis,elucidating their underlying mechanisms.A detailed exploration of the fundamentals of Au NCs,considering core and ligand structures,follows.Subsequently,the interaction between the core and ligand structures of Au NCs and their impact on electrocatalytic performance in diverse reactions are examined.Concluding the discourse,challenges and personal prospects are presented to guide the rational design of efficient electrocatalysts and advance electrocatalytic reactions.展开更多
A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established ...A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established by the third-order shear deformation theory(TSDT),and then combined with the fluid-structure coupling conditions,and the sound insulation is solved.The theoretical results are validated by COMSOL simulation results,and the effects of the structural parameter on the sound insulation are analyzed.Finally,the standard genetic algorithm is adopted to optimize the sound insulation of the sandwich plate.展开更多
Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostat...Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostatic solver in an atmospheric dynamical core.The NAS is designed to replace this solver,which can be incorporated into any hydrostatic models so that existing well-developed hydrostatic models can effectively serve for a longer time.Recent advances in machine learning(ML)provide a potential tool for capturing the main complicated nonlinear-nonhydrostatic relationship.In this study,an ML approach called a neural network(NN)was adopted to select leading input features and develop the NAS.The NNs were trained and evaluated with 12-day simulation results of dry baroclinic-wave tests by the Weather Research and Forecasting(WRF)model.The forward time difference of the nonhydrostatic tendency was used as the target variable,and the five selected features were the nonhydrostatic tendency at the last time step,and four hydrostatic variables at the current step including geopotential height,pressure in two different forms,and potential temperature,respectively.Finally,a practical NAS was developed with these features and trained layer by layer at a 20-km horizontal resolution,which can accurately reproduce the temporal variation and vertical distribution of the nonhydrostatic tendency.Corrected by the NN-based NAS,the improved hydrostatic solver at different horizontal resolutions can run stably for at least one month and effectively reduce most of the nonhydrostatic errors in terms of system bias,anomaly root-mean-square error,and the error of the wave spatial pattern,which proves the feasibility and superiority of this scheme.展开更多
Curcumin is a natural polyphenol that is used in various traditional medicines.However,its inherent properties,such as its rapid degradation and metabolism,low bioavailability,and short half-life,are serious problems ...Curcumin is a natural polyphenol that is used in various traditional medicines.However,its inherent properties,such as its rapid degradation and metabolism,low bioavailability,and short half-life,are serious problems that must be resolved.To this end,a drug carrier incorporating natural magnetic cores in a zeolite framework was developed and applied to the loading of curcumin in ethanol solutions.In this system,curcumin is encapsulated in a zeolite Na(ZNA)magnetic core–shell structure(Fe@Si/ZNA),which can be easily synthesized using an in situ method.Synthesis of Fe_(3)O_(4) nanoparticles was carried out from natural materials using a co-precipitation method.Analysis of the prepared magnetic core–shell structures and composites was carried out using vibrating-sample magnetometery,Fourier transform infrared spectroscopy,transmission electron microscopy,and x-ray diffraction.The cumulative loading of curcumin in the ZNA composite with 9%nanoparticles was found to reach 90.70%with a relatively long half-life of 32.49 min.Stability tests of curcumin loading in the composite showed that adding magnetic particles to the zeolite framework also increased the stability of the composite structure.Adsorption kinetics and isotherm studies also found that the system follows the pseudo-second-order and Langmuir isotherm models.展开更多
Commercial sterility does not guarantee the sustained stability of ultrahigh temperature(UHT)milk over 6 months shelf life.We explore the microbiota presented in normal(SZ)and quality deteriorated UHT milk(QY and WY)p...Commercial sterility does not guarantee the sustained stability of ultrahigh temperature(UHT)milk over 6 months shelf life.We explore the microbiota presented in normal(SZ)and quality deteriorated UHT milk(QY and WY)products from the same brand.Based on high-throughput sequencing research results,11 phyla and 54 genera were identified as dominant microbiota.Pseudomonas,Streptococcus,and Acinetobacter as core functional microbiota significantly influenced the UHT milk quality properties.Moreover,principal component analysis(PCA)and multivariate analyses were used to examine the quality characteristics,including 11 physicochemical parameters,10 fatty acids,and 2 enzyme activities,in normal and quality deteriorated UHT milk.We found that the abundance of Pseudomonas increased in quality deteriorated milk(WY)and showed a significant positive correlation with heat-resistant protease content.Acinetobacter in quality deteriorated milk(QY)also considerably contributed to the content of heat-resistant lipase,which resulted in spoilage deterioration of UHT milk.展开更多
Manganese-based perovskite is popular for research on ferromagnetic materials,and its spectroscopic studies are essential for understanding its electronic structure,dielectric,electrical,and magnetic properties.In thi...Manganese-based perovskite is popular for research on ferromagnetic materials,and its spectroscopic studies are essential for understanding its electronic structure,dielectric,electrical,and magnetic properties.In this paper,the M-edge spectra of La ions and the M-edge,L-edge,and K-edge spectra of Mn ions in LaMnO3 are calculated by considering both the free-ion multiplet calculation and the crystal field effects.We analyze spectral shapes,identify peak origins,and estimate the oxidation states of La and Mn ions in LaMnO3 theoretically.It is concluded that La ions in LaMnO3 predominantly exist in the trivalent state,while Mn ions exist primarily in the trivalent state with a minor presence of tetravalent ions.Furthermore,the calculated spectra are in better conformity with the experimental spectra when the proportion of Mn3+is 90%and Mn4+is 10%.This article enhances our comprehension of the oxidation states of La and Mn within the crystal and also provides a valuable guidance for spectroscopic investigations of other manganates.展开更多
Many networks exhibit the core/periphery structure.Core/periphery structure is a type of meso-scale structure that consists of densely connected core nodes and sparsely connected peripheral nodes.Core nodes tend to be...Many networks exhibit the core/periphery structure.Core/periphery structure is a type of meso-scale structure that consists of densely connected core nodes and sparsely connected peripheral nodes.Core nodes tend to be well-connected,both among themselves and to peripheral nodes,which tend not to be well-connected to other nodes.In this brief report,we propose a new method to detect the core of a network by the centrality of each node.It is discovered that such nodes with non-negative centralities often consist in the core of the networks.The simulation is carried out on different real networks.The results are checked by the objective function.The checked results may show the effectiveness of the simulation results by the centralities of the nodes on the real networks.Furthermore,we discuss the characters of networks with the single core/periphery structure and point out the scope of the application of our method at the end of this paper.展开更多
The Earth’s Free Core Nutation(FCN) causes Earth tides and forced nutation with frequencies close to the FCN that exhibit resonance effects.High-precision superconducting gravimeter(SG) and very long baseline interfe...The Earth’s Free Core Nutation(FCN) causes Earth tides and forced nutation with frequencies close to the FCN that exhibit resonance effects.High-precision superconducting gravimeter(SG) and very long baseline interferometry(VLBI) provide good observation techniques for detecting the FCN parameters.However,some choices in data processing and solution procedures increase the uncertainty of the FCN parameters.In this study,we analyzed the differences and the effectiveness of weight function and ocean tide corrections in the FCN parameter detection using synthetic data,SG data from thirty-one stations,and the 10 celestial pole offset(CPO) series.The results show that significant discrepancies are caused by different computing options for a single SG station.The stacking method,which results in a variation of0.24-5 sidereal days(SDs) in the FCN period(T) and 10^(3)-10^(4) in the quality factor(Q) due to the selection of the weighting function and the ocean tide model(OTM),can effectively suppress this influence.The statistical analysis results of synthetic data shows that although different weight choices,while adjusting the proportion of diurnal tidal waves involved,do not significantly improve the accuracy of fitted FCN parameters from gravity observations.The study evaluated a series of OTMs using the loading correction efficiency.The fitting of FCN parameters can be improved by selecting the mean of appropriate OTMs based on the evaluation results.Through the estimation of the FCN parameters based on the forced nutation,it was found that the weight function P_(1) is more suitable than others,and different CPO series(after 2009) resulted in a difference of 0.4 SDs in the T and of 103 in the Q.We estimated the FCN parameters for SG(T=430.4±1.5 SDs and Q=1.52×10^(4)±2.5×10^(3)) and for VLBI(T=429.8±0.7 SDs,Q=1.88×10^(4)±2.1×10^(3)).展开更多
With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial ...With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial networks with limi-ted resources,the utilization efficiency of the entire space-terres-trial integrated networks resources can be affected by the core network indirectly.In order to improve the response efficiency of core networks expansion construction,early warning of the core network elements capacity is necessary.Based on the inte-grated architecture of space and terrestrial network,multidimen-sional factors are considered in this paper,including the number of terminals,login users,and the rules of users’migration during holidays.Using artifical intelligence(AI)technologies,the regis-tered users of the access and mobility management function(AMF),authorization users of the unified data management(UDM),protocol data unit(PDU)sessions of session manage-ment function(SMF)are predicted in combination with the num-ber of login users,the number of terminals.Therefore,the core network elements capacity can be predicted in advance.The proposed method is proven to be effective based on the data from real network.展开更多
A stable and highly active core‐shell heterostructure electrocatalyst is essential for catalyzing oxygen evolution reaction(OER).Here,a dual‐trimetallic core‐shell heterostructure OER electrocatalyst that consists ...A stable and highly active core‐shell heterostructure electrocatalyst is essential for catalyzing oxygen evolution reaction(OER).Here,a dual‐trimetallic core‐shell heterostructure OER electrocatalyst that consists of a NiFeWS_(2)inner core and an amorphous NiFeW(OH)_(z)outer shell is designed and synthesized using in situ electrochemical tuning.The electrochemical measurements of different as‐synthesized catalysts with a similar mass loading suggest that the core‐shell Ni_(0.66)Fe_(0.17)W_(0.17)S_(2)@amorphous NiFeW(OH)_(z)nanosheets exhibit the highest overall performance compared with that of other bimetallic reference catalysts for the OER.Additionally,the nanosheet arrays were in situ grown on hydrophilic‐treated carbon paper to fabricate an integrated three‐dimensional electrode that affords a current density of 10 mA cm^(−2)at a small overpotential of 182 mV and a low Tafel slope of 35 mV decade^(−1)in basic media.The Faradaic efficiency of core‐shell Ni_(0.66)Fe_(0.17)W_(0.17)S_(2)@amorphous NiFeW(OH)_(z)is as high as 99.5%for OER.The scanning electron microscope,transmission electron microscope,and X‐ray photoelectron spectroscopy analyses confirm that this electrode has excellent stability in morphology and elementary composition after long‐term electrochemical measurements.Importantly,density functional theory calculations further indicate that the core‐shell heterojunction increased the conductivity of the catalyst,optimized the adsorption energy of the OER intermediates,and improved the OER activity.This study provides a universal strategy for designing more active core‐shell structure electrocatalysts based on the rule of coordinated regulation between electronic transport and active sites.展开更多
The deep cement mixing(DCM)is used to improve the capacity and reduce the settlement of the soft ground by forming cemented clay columns.The investigation on the mechanical behaviour of the DCM samples is limited to e...The deep cement mixing(DCM)is used to improve the capacity and reduce the settlement of the soft ground by forming cemented clay columns.The investigation on the mechanical behaviour of the DCM samples is limited to either laboratory-prepared samples or in-situ samples under unconfined compression.In this study,a series of drained and undrained triaxial shearing tests was performed on the in-situ cored DCM samples with high cement content to assess their mechanical behaviours.It is found that the drainage condition affects significantly the stiffness,peak and residual strengths of the DCM samples,which is mainly due to the state of excess pore water pressure at different strain levels,i.e.being positive before the peak deviatoric stress and negative after the peak deviatoric stress,in the undrained tests.The slope of the failure envelope changes obviously with the confining pressures,being steeper at lower stress levels and flatter at higher stress levels.The strength parameters,effective cohesion and friction angle obtained from lower stress levels(c′0 andφ′0)are 400 kPa and 58°,respectively,which are deemed to be true for design in most DCM applications where the in-situ stress levels are normally at lower values of 50-200 kPa.Additionally,the computed tomography(CT)scanning system was adopted to visualize the internal structures of DCM samples.It is found that the clay pockets existing inside the DCM samples due to uneven mixing affect markedly their stress-strain behaviour,which is one of the main reasons for the high variability of the DCM samples.展开更多
The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigate...The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed.展开更多
BACKGROUND The overlap of imaging manifestations among distinct splenic lesions gives rise to a diagnostic dilemma.Consequently,a definitive diagnosis primarily relies on his-tological results.The ultrasound(US)-guide...BACKGROUND The overlap of imaging manifestations among distinct splenic lesions gives rise to a diagnostic dilemma.Consequently,a definitive diagnosis primarily relies on his-tological results.The ultrasound(US)-guided coaxial core needle biopsy(CNB)not only procures sufficient tissue to help clarify the diagnosis,but reduces the incidence of puncture-related complications.CASE SUMMARY A 41-year-old female,with a history of pulmonary tuberculosis,was admitted to our hospital with multiple indeterminate splenic lesions.Gray-scale ultrasono-graphy demonstrated splenomegaly with numerous well-defined hypoechoic ma-sses.Abdominal contrast-enhanced computed tomography(CT)showed an en-larged spleen with multiple irregular-shaped,peripherally enhancing,hypodense lesions.Positron emission CT revealed numerous abnormal hyperglycemia foci.These imaging findings strongly indicated the possibility of infectious disease as the primary concern,with neoplastic lesions requiring exclusion.To obtain the precise pathological diagnosis,the US-guided coaxial CNB of the spleen was ca-rried out.The patient did not express any discomfort during the procedure.CONCLUSION Percutaneous US-guided coaxial CNB is an excellent and safe option for obtaining precise splenic tissue samples,as it significantly enhances sample yield for exact pathological analysis with minimum trauma to the spleen parenchyma and sur-rounding tissue.展开更多
Internet gaming disorder(IGD)among junior high school students is an increasingly prominent mental health concern.It is important to look for influences behind internet gaming disorder tendency(IGDT)in the junior high...Internet gaming disorder(IGD)among junior high school students is an increasingly prominent mental health concern.It is important to look for influences behind internet gaming disorder tendency(IGDT)in the junior high school student population.The present study aimed to reveal the explanatory mechanisms underlying the association between parental psychological control(PPC)and internet gaming disorder tendency among junior high school students by testing the mediating role of core self-evaluation(CSE)and the moderating role of intentional self-regulation(ISR).Participants in present study were 735 Chinese junior high school students who completed offline self-report questionnaires on parental psychological control,core self-evaluation,intentional self-regulation,and Internet gaming disorder tendency.Analyses were conducted via mediation and moderated mediation.The results showed that:(1)Parental psychological control was positively related to junior high school students’Internet gaming disorder tendency.Core self-evaluation,and intentional self-regulation were negatively related to junior high school students’Internet gaming disorder tendency,respectively.(2)Core self-evaluation partially mediated the relationship between parental psychological control and junior high school students’Internet gaming disorder tendency.(3)Intentional self-regulation moderated the association between parental psychological control and Internet gaming disorder tendency,as well as the relationships between parental psychological control and core self-evaluation and core self-evaluation and Internet gaming disorder tendency in the mediated model.Based on these findings,we believe that there is a need to weaken parental psychological control,strengthen junior high school students’core self-evaluation and intentional self-regulation,and to recognize the important role of parents as well as their children’s personal positive traits in the healthy development of junior high school students.展开更多
BACKGROUND With the increasingly extensive application of artificial intelligence(AI)in medical systems,the accuracy of AI in medical diagnosis in the real world deserves attention and objective evaluation.AIM To inve...BACKGROUND With the increasingly extensive application of artificial intelligence(AI)in medical systems,the accuracy of AI in medical diagnosis in the real world deserves attention and objective evaluation.AIM To investigate the accuracy of AI diagnostic software(Shukun)in assessing ischemic penumbra/core infarction in acute ischemic stroke patients due to large vessel occlusion.METHODS From November 2021 to March 2022,consecutive acute stroke patients with large vessel occlusion who underwent mechanical thrombectomy(MT)post-Shukun AI penumbra assessment were included.Computed tomography angiography(CTA)and perfusion exams were analyzed by AI,reviewed by senior neurointerventional experts.In the case of divergences among the three experts,discussions were held to reach a final conclusion.When the results of AI were inconsistent with the neurointerventional experts’diagnosis,the diagnosis by AI was considered inaccurate.RESULTS A total of 22 patients were included in the study.The vascular recanalization rate was 90.9%,and 63.6%of patients had modified Rankin scale scores of 0-2 at the 3-month follow-up.The computed tomography(CT)perfusion diagnosis by Shukun(AI)was confirmed to be invalid in 3 patients(inaccuracy rate:13.6%).CONCLUSION AI(Shukun)has limits in assessing ischemic penumbra.Integrating clinical and imaging data(CT,CTA,and even magnetic resonance imaging)is crucial for MT decision-making.展开更多
The management of hepatitis B virus(HBV)infection now involves regular and appropriate monitoring of viral activity,disease progression,and treatment response.Traditional HBV infection biomarkers are limited in their ...The management of hepatitis B virus(HBV)infection now involves regular and appropriate monitoring of viral activity,disease progression,and treatment response.Traditional HBV infection biomarkers are limited in their ability to predict clinical outcomes or therapeutic effectiveness.Quantitation of HBV core antibodies(qAnti-HBc)is a novel non-invasive biomarker that may help with a variety of diagnostic issues.It was shown to correlate strongly with infection stages,hepatic inflammation and fibrosis,chronic infection exacerbations,and the presence of occult infection.Furthermore,qAnti-HBc levels were shown to be predictive of spontaneous or treatment-induced HBeAg and HBsAg seroclearance,relapse after medication termination,re-infection following liver transplantation,and viral reactivation in the presence of immunosuppression.qAnti-HBc,on the other hand,cannot be relied on as a single diagnostic test to address all problems,and its diagnostic and prognostic potential may be greatly increased when paired with qHBsAg.Commercial qAnti-HBc diagnostic kits are currently not widely available.Because many methodologies are only semi-quantitative,comparing data from various studies and defining universal cut-off values remains difficult.This review focuses on the clinical utility of qAnti-HBc and qHBsAg in chronic hepatitis B management.展开更多
基金Joint Fund of Research and Development Program of Henan Province,Grant/Award Number:222301420002National Natural Science Foundation of China,Grant/Award Number:U21A2064Scientific and Technological Innovation Talents in Colleges and Universities in Henan Province,Grant/Award Number:22HASTIT001。
文摘Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2)as the core,MXene as the intermediate layer,and MoS_(2)as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2)nanosheets.Notably,the synergistic combination of SiO_(2)and MoS_(2)with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”
基金Guangzhou Key R&D Program/Plan Unveiled Flagship Project,Grant/Award Number:20220602JBGS02Guangzhou Basic and Applied Basic Research Project,Grant/Award Number:202201011449+3 种基金Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology,Grant/Award Numbers:FC202220,FC202216Guangdong Basic and Applied Basic Research Foundation,Grant/Award Numbers:2021A1515010167,2022A1515011196National Natural Science Foundation of China,Grant/Award Numbers:21975292,21978331,22068008,52101186Training Program of the Major Research Plan of the National Natural Science Foundation of China,Grant/Award Number:92061124。
文摘Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclusters,serving as exemplary models,significantly expand the range of accessible structures through diverse cores and ligands,creating an exceptional platform for the investigation of catalytic reactions.Notably,ligand‐protected Au nanoclusters(NCs)with precisely defined core numbers offer a distinct advantage in elucidating the correlation between their specific structures and the reaction mechanisms in electrocatalysis.The strategic modulation of the fine microstructures of Au NCs presents crucial opportunities for tailoring their electrocatalytic performance across various reactions.This review delves into the profound structural effects of Au NC cores and ligands in electrocatalysis,elucidating their underlying mechanisms.A detailed exploration of the fundamentals of Au NCs,considering core and ligand structures,follows.Subsequently,the interaction between the core and ligand structures of Au NCs and their impact on electrocatalytic performance in diverse reactions are examined.Concluding the discourse,challenges and personal prospects are presented to guide the rational design of efficient electrocatalysts and advance electrocatalytic reactions.
基金Project supported by the National Natural Science Foundation of China (Nos. 12172339 and 11732005)the Beijing Natural Science Foundation of China (No. 1222006)。
文摘A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established by the third-order shear deformation theory(TSDT),and then combined with the fluid-structure coupling conditions,and the sound insulation is solved.The theoretical results are validated by COMSOL simulation results,and the effects of the structural parameter on the sound insulation are analyzed.Finally,the standard genetic algorithm is adopted to optimize the sound insulation of the sandwich plate.
基金supported by the National Science Foundation of China(Grant No.42230606)。
文摘Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostatic solver in an atmospheric dynamical core.The NAS is designed to replace this solver,which can be incorporated into any hydrostatic models so that existing well-developed hydrostatic models can effectively serve for a longer time.Recent advances in machine learning(ML)provide a potential tool for capturing the main complicated nonlinear-nonhydrostatic relationship.In this study,an ML approach called a neural network(NN)was adopted to select leading input features and develop the NAS.The NNs were trained and evaluated with 12-day simulation results of dry baroclinic-wave tests by the Weather Research and Forecasting(WRF)model.The forward time difference of the nonhydrostatic tendency was used as the target variable,and the five selected features were the nonhydrostatic tendency at the last time step,and four hydrostatic variables at the current step including geopotential height,pressure in two different forms,and potential temperature,respectively.Finally,a practical NAS was developed with these features and trained layer by layer at a 20-km horizontal resolution,which can accurately reproduce the temporal variation and vertical distribution of the nonhydrostatic tendency.Corrected by the NN-based NAS,the improved hydrostatic solver at different horizontal resolutions can run stably for at least one month and effectively reduce most of the nonhydrostatic errors in terms of system bias,anomaly root-mean-square error,and the error of the wave spatial pattern,which proves the feasibility and superiority of this scheme.
基金funding from the Ministry of Education,Culture,Research,and Technology,Indonesia,through the PDKN Research Grant with Contract No.041/E5/PG.02.00.PL/2023.
文摘Curcumin is a natural polyphenol that is used in various traditional medicines.However,its inherent properties,such as its rapid degradation and metabolism,low bioavailability,and short half-life,are serious problems that must be resolved.To this end,a drug carrier incorporating natural magnetic cores in a zeolite framework was developed and applied to the loading of curcumin in ethanol solutions.In this system,curcumin is encapsulated in a zeolite Na(ZNA)magnetic core–shell structure(Fe@Si/ZNA),which can be easily synthesized using an in situ method.Synthesis of Fe_(3)O_(4) nanoparticles was carried out from natural materials using a co-precipitation method.Analysis of the prepared magnetic core–shell structures and composites was carried out using vibrating-sample magnetometery,Fourier transform infrared spectroscopy,transmission electron microscopy,and x-ray diffraction.The cumulative loading of curcumin in the ZNA composite with 9%nanoparticles was found to reach 90.70%with a relatively long half-life of 32.49 min.Stability tests of curcumin loading in the composite showed that adding magnetic particles to the zeolite framework also increased the stability of the composite structure.Adsorption kinetics and isotherm studies also found that the system follows the pseudo-second-order and Langmuir isotherm models.
基金supported by the National Natural Science Foundation of China(32172279,31871831)Shenyang Science and Technology Innovation Platform Project(21-103-0-14,21-104-0-28)Shenyang City Youth Science and Technology Innovation Leading Talent Project(RC200495).
文摘Commercial sterility does not guarantee the sustained stability of ultrahigh temperature(UHT)milk over 6 months shelf life.We explore the microbiota presented in normal(SZ)and quality deteriorated UHT milk(QY and WY)products from the same brand.Based on high-throughput sequencing research results,11 phyla and 54 genera were identified as dominant microbiota.Pseudomonas,Streptococcus,and Acinetobacter as core functional microbiota significantly influenced the UHT milk quality properties.Moreover,principal component analysis(PCA)and multivariate analyses were used to examine the quality characteristics,including 11 physicochemical parameters,10 fatty acids,and 2 enzyme activities,in normal and quality deteriorated UHT milk.We found that the abundance of Pseudomonas increased in quality deteriorated milk(WY)and showed a significant positive correlation with heat-resistant protease content.Acinetobacter in quality deteriorated milk(QY)also considerably contributed to the content of heat-resistant lipase,which resulted in spoilage deterioration of UHT milk.
基金Project supported by the National Natural Science Foundation of China(Grant No.11974253).
文摘Manganese-based perovskite is popular for research on ferromagnetic materials,and its spectroscopic studies are essential for understanding its electronic structure,dielectric,electrical,and magnetic properties.In this paper,the M-edge spectra of La ions and the M-edge,L-edge,and K-edge spectra of Mn ions in LaMnO3 are calculated by considering both the free-ion multiplet calculation and the crystal field effects.We analyze spectral shapes,identify peak origins,and estimate the oxidation states of La and Mn ions in LaMnO3 theoretically.It is concluded that La ions in LaMnO3 predominantly exist in the trivalent state,while Mn ions exist primarily in the trivalent state with a minor presence of tetravalent ions.Furthermore,the calculated spectra are in better conformity with the experimental spectra when the proportion of Mn3+is 90%and Mn4+is 10%.This article enhances our comprehension of the oxidation states of La and Mn within the crystal and also provides a valuable guidance for spectroscopic investigations of other manganates.
基金Project supported by the National Natural Science Foundation of China (Gant No.11872323)。
文摘Many networks exhibit the core/periphery structure.Core/periphery structure is a type of meso-scale structure that consists of densely connected core nodes and sparsely connected peripheral nodes.Core nodes tend to be well-connected,both among themselves and to peripheral nodes,which tend not to be well-connected to other nodes.In this brief report,we propose a new method to detect the core of a network by the centrality of each node.It is discovered that such nodes with non-negative centralities often consist in the core of the networks.The simulation is carried out on different real networks.The results are checked by the objective function.The checked results may show the effectiveness of the simulation results by the centralities of the nodes on the real networks.Furthermore,we discuss the characters of networks with the single core/periphery structure and point out the scope of the application of our method at the end of this paper.
基金supported by the Open Fund of Hubei Luojia Laboratory (No. 220100033)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB41000000)+1 种基金National Natural Science Foundation of China (Grant Nos. 42174108, 41874094, 42192535 and 42242015)the Young Top-notch Talent Cultivation Program of Hubei Province。
文摘The Earth’s Free Core Nutation(FCN) causes Earth tides and forced nutation with frequencies close to the FCN that exhibit resonance effects.High-precision superconducting gravimeter(SG) and very long baseline interferometry(VLBI) provide good observation techniques for detecting the FCN parameters.However,some choices in data processing and solution procedures increase the uncertainty of the FCN parameters.In this study,we analyzed the differences and the effectiveness of weight function and ocean tide corrections in the FCN parameter detection using synthetic data,SG data from thirty-one stations,and the 10 celestial pole offset(CPO) series.The results show that significant discrepancies are caused by different computing options for a single SG station.The stacking method,which results in a variation of0.24-5 sidereal days(SDs) in the FCN period(T) and 10^(3)-10^(4) in the quality factor(Q) due to the selection of the weighting function and the ocean tide model(OTM),can effectively suppress this influence.The statistical analysis results of synthetic data shows that although different weight choices,while adjusting the proportion of diurnal tidal waves involved,do not significantly improve the accuracy of fitted FCN parameters from gravity observations.The study evaluated a series of OTMs using the loading correction efficiency.The fitting of FCN parameters can be improved by selecting the mean of appropriate OTMs based on the evaluation results.Through the estimation of the FCN parameters based on the forced nutation,it was found that the weight function P_(1) is more suitable than others,and different CPO series(after 2009) resulted in a difference of 0.4 SDs in the T and of 103 in the Q.We estimated the FCN parameters for SG(T=430.4±1.5 SDs and Q=1.52×10^(4)±2.5×10^(3)) and for VLBI(T=429.8±0.7 SDs,Q=1.88×10^(4)±2.1×10^(3)).
基金This work was supported by the National Key Research Plan(2021YFB2900602).
文摘With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial networks with limi-ted resources,the utilization efficiency of the entire space-terres-trial integrated networks resources can be affected by the core network indirectly.In order to improve the response efficiency of core networks expansion construction,early warning of the core network elements capacity is necessary.Based on the inte-grated architecture of space and terrestrial network,multidimen-sional factors are considered in this paper,including the number of terminals,login users,and the rules of users’migration during holidays.Using artifical intelligence(AI)technologies,the regis-tered users of the access and mobility management function(AMF),authorization users of the unified data management(UDM),protocol data unit(PDU)sessions of session manage-ment function(SMF)are predicted in combination with the num-ber of login users,the number of terminals.Therefore,the core network elements capacity can be predicted in advance.The proposed method is proven to be effective based on the data from real network.
基金National Natural Science Foundation of China,Grant/Award Numbers:21978160,52003300,52373087Shaanxi Province Natural Science Foundation,Grant/Award Number:2024JC‐YBMS‐131。
文摘A stable and highly active core‐shell heterostructure electrocatalyst is essential for catalyzing oxygen evolution reaction(OER).Here,a dual‐trimetallic core‐shell heterostructure OER electrocatalyst that consists of a NiFeWS_(2)inner core and an amorphous NiFeW(OH)_(z)outer shell is designed and synthesized using in situ electrochemical tuning.The electrochemical measurements of different as‐synthesized catalysts with a similar mass loading suggest that the core‐shell Ni_(0.66)Fe_(0.17)W_(0.17)S_(2)@amorphous NiFeW(OH)_(z)nanosheets exhibit the highest overall performance compared with that of other bimetallic reference catalysts for the OER.Additionally,the nanosheet arrays were in situ grown on hydrophilic‐treated carbon paper to fabricate an integrated three‐dimensional electrode that affords a current density of 10 mA cm^(−2)at a small overpotential of 182 mV and a low Tafel slope of 35 mV decade^(−1)in basic media.The Faradaic efficiency of core‐shell Ni_(0.66)Fe_(0.17)W_(0.17)S_(2)@amorphous NiFeW(OH)_(z)is as high as 99.5%for OER.The scanning electron microscope,transmission electron microscope,and X‐ray photoelectron spectroscopy analyses confirm that this electrode has excellent stability in morphology and elementary composition after long‐term electrochemical measurements.Importantly,density functional theory calculations further indicate that the core‐shell heterojunction increased the conductivity of the catalyst,optimized the adsorption energy of the OER intermediates,and improved the OER activity.This study provides a universal strategy for designing more active core‐shell structure electrocatalysts based on the rule of coordinated regulation between electronic transport and active sites.
基金funded by the Environment and Conservation Fund(Grant Nos.2020-170 and 2021-156)the National Natural Science Foundation of China(Grant No.42102327).
文摘The deep cement mixing(DCM)is used to improve the capacity and reduce the settlement of the soft ground by forming cemented clay columns.The investigation on the mechanical behaviour of the DCM samples is limited to either laboratory-prepared samples or in-situ samples under unconfined compression.In this study,a series of drained and undrained triaxial shearing tests was performed on the in-situ cored DCM samples with high cement content to assess their mechanical behaviours.It is found that the drainage condition affects significantly the stiffness,peak and residual strengths of the DCM samples,which is mainly due to the state of excess pore water pressure at different strain levels,i.e.being positive before the peak deviatoric stress and negative after the peak deviatoric stress,in the undrained tests.The slope of the failure envelope changes obviously with the confining pressures,being steeper at lower stress levels and flatter at higher stress levels.The strength parameters,effective cohesion and friction angle obtained from lower stress levels(c′0 andφ′0)are 400 kPa and 58°,respectively,which are deemed to be true for design in most DCM applications where the in-situ stress levels are normally at lower values of 50-200 kPa.Additionally,the computed tomography(CT)scanning system was adopted to visualize the internal structures of DCM samples.It is found that the clay pockets existing inside the DCM samples due to uneven mixing affect markedly their stress-strain behaviour,which is one of the main reasons for the high variability of the DCM samples.
文摘The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed.
文摘BACKGROUND The overlap of imaging manifestations among distinct splenic lesions gives rise to a diagnostic dilemma.Consequently,a definitive diagnosis primarily relies on his-tological results.The ultrasound(US)-guided coaxial core needle biopsy(CNB)not only procures sufficient tissue to help clarify the diagnosis,but reduces the incidence of puncture-related complications.CASE SUMMARY A 41-year-old female,with a history of pulmonary tuberculosis,was admitted to our hospital with multiple indeterminate splenic lesions.Gray-scale ultrasono-graphy demonstrated splenomegaly with numerous well-defined hypoechoic ma-sses.Abdominal contrast-enhanced computed tomography(CT)showed an en-larged spleen with multiple irregular-shaped,peripherally enhancing,hypodense lesions.Positron emission CT revealed numerous abnormal hyperglycemia foci.These imaging findings strongly indicated the possibility of infectious disease as the primary concern,with neoplastic lesions requiring exclusion.To obtain the precise pathological diagnosis,the US-guided coaxial CNB of the spleen was ca-rried out.The patient did not express any discomfort during the procedure.CONCLUSION Percutaneous US-guided coaxial CNB is an excellent and safe option for obtaining precise splenic tissue samples,as it significantly enhances sample yield for exact pathological analysis with minimum trauma to the spleen parenchyma and sur-rounding tissue.
基金supported by the National Social Science Foundation of China(20BSH131).
文摘Internet gaming disorder(IGD)among junior high school students is an increasingly prominent mental health concern.It is important to look for influences behind internet gaming disorder tendency(IGDT)in the junior high school student population.The present study aimed to reveal the explanatory mechanisms underlying the association between parental psychological control(PPC)and internet gaming disorder tendency among junior high school students by testing the mediating role of core self-evaluation(CSE)and the moderating role of intentional self-regulation(ISR).Participants in present study were 735 Chinese junior high school students who completed offline self-report questionnaires on parental psychological control,core self-evaluation,intentional self-regulation,and Internet gaming disorder tendency.Analyses were conducted via mediation and moderated mediation.The results showed that:(1)Parental psychological control was positively related to junior high school students’Internet gaming disorder tendency.Core self-evaluation,and intentional self-regulation were negatively related to junior high school students’Internet gaming disorder tendency,respectively.(2)Core self-evaluation partially mediated the relationship between parental psychological control and junior high school students’Internet gaming disorder tendency.(3)Intentional self-regulation moderated the association between parental psychological control and Internet gaming disorder tendency,as well as the relationships between parental psychological control and core self-evaluation and core self-evaluation and Internet gaming disorder tendency in the mediated model.Based on these findings,we believe that there is a need to weaken parental psychological control,strengthen junior high school students’core self-evaluation and intentional self-regulation,and to recognize the important role of parents as well as their children’s personal positive traits in the healthy development of junior high school students.
文摘BACKGROUND With the increasingly extensive application of artificial intelligence(AI)in medical systems,the accuracy of AI in medical diagnosis in the real world deserves attention and objective evaluation.AIM To investigate the accuracy of AI diagnostic software(Shukun)in assessing ischemic penumbra/core infarction in acute ischemic stroke patients due to large vessel occlusion.METHODS From November 2021 to March 2022,consecutive acute stroke patients with large vessel occlusion who underwent mechanical thrombectomy(MT)post-Shukun AI penumbra assessment were included.Computed tomography angiography(CTA)and perfusion exams were analyzed by AI,reviewed by senior neurointerventional experts.In the case of divergences among the three experts,discussions were held to reach a final conclusion.When the results of AI were inconsistent with the neurointerventional experts’diagnosis,the diagnosis by AI was considered inaccurate.RESULTS A total of 22 patients were included in the study.The vascular recanalization rate was 90.9%,and 63.6%of patients had modified Rankin scale scores of 0-2 at the 3-month follow-up.The computed tomography(CT)perfusion diagnosis by Shukun(AI)was confirmed to be invalid in 3 patients(inaccuracy rate:13.6%).CONCLUSION AI(Shukun)has limits in assessing ischemic penumbra.Integrating clinical and imaging data(CT,CTA,and even magnetic resonance imaging)is crucial for MT decision-making.
文摘The management of hepatitis B virus(HBV)infection now involves regular and appropriate monitoring of viral activity,disease progression,and treatment response.Traditional HBV infection biomarkers are limited in their ability to predict clinical outcomes or therapeutic effectiveness.Quantitation of HBV core antibodies(qAnti-HBc)is a novel non-invasive biomarker that may help with a variety of diagnostic issues.It was shown to correlate strongly with infection stages,hepatic inflammation and fibrosis,chronic infection exacerbations,and the presence of occult infection.Furthermore,qAnti-HBc levels were shown to be predictive of spontaneous or treatment-induced HBeAg and HBsAg seroclearance,relapse after medication termination,re-infection following liver transplantation,and viral reactivation in the presence of immunosuppression.qAnti-HBc,on the other hand,cannot be relied on as a single diagnostic test to address all problems,and its diagnostic and prognostic potential may be greatly increased when paired with qHBsAg.Commercial qAnti-HBc diagnostic kits are currently not widely available.Because many methodologies are only semi-quantitative,comparing data from various studies and defining universal cut-off values remains difficult.This review focuses on the clinical utility of qAnti-HBc and qHBsAg in chronic hepatitis B management.