Core-shell silica nanoparticles are superior in modifying surface wetting behavior, enhancing nucleation and growth in crystallization, improving dispersion of naked nanoparticles, and thus upgrading the overall prope...Core-shell silica nanoparticles are superior in modifying surface wetting behavior, enhancing nucleation and growth in crystallization, improving dispersion of naked nanoparticles, and thus upgrading the overall properties of organic polymers. The dispersion behavior and morphology of monodisperse core-shell silica particles in several polymers including polyesters are reviewed and their potential applications are discussed.展开更多
Polymer hollow microspheres were prepared by performing alkali treatment on the multilayer core/shell polymer latex particles containing carboxyl groups. Effects of the shell composition and dosage as well as alkali t...Polymer hollow microspheres were prepared by performing alkali treatment on the multilayer core/shell polymer latex particles containing carboxyl groups. Effects of the shell composition and dosage as well as alkali type on the morphology of the microspheres were investigated. Results showed that in comparison with acrylonitrile(AN) and methacrylic acid(MAA), using butyl acrylate(BA) as the shell co-monomer decreased the glass transition temperature(T_g) of shell effectively and was beneficial to the formation of uniform and big hollow structure. Along with the increase of the shell dosage, the alkali-treated microspheres sequentially presented porous and hollow morphology, and the size of microspheres increased, while the hollow diameter increased first and then decreased, and the maximum hollow ratio reached 39.5%. Furthermore, the multilayer core/shell microspheres had better tolerance to NH_3·H_2O than to NaOH. When the molar ratio of alkali to methacrylic acid(MR_(alkali/acid)) for Na OH ranged from 1.15 to 1.30 or MRalkali/acid for NH_3·H_2O ranged from 1.30 to 2.00, the regular polymer hollow microspheres could be obtained.展开更多
文摘Core-shell silica nanoparticles are superior in modifying surface wetting behavior, enhancing nucleation and growth in crystallization, improving dispersion of naked nanoparticles, and thus upgrading the overall properties of organic polymers. The dispersion behavior and morphology of monodisperse core-shell silica particles in several polymers including polyesters are reviewed and their potential applications are discussed.
基金financially supported by Heilongjiang Provincial Natural Science Foundation for Youth (No. QC2014C052)Fund of Key Laboratory of Advanced Materials of Ministry of Education (No. 2016AML06)
文摘Polymer hollow microspheres were prepared by performing alkali treatment on the multilayer core/shell polymer latex particles containing carboxyl groups. Effects of the shell composition and dosage as well as alkali type on the morphology of the microspheres were investigated. Results showed that in comparison with acrylonitrile(AN) and methacrylic acid(MAA), using butyl acrylate(BA) as the shell co-monomer decreased the glass transition temperature(T_g) of shell effectively and was beneficial to the formation of uniform and big hollow structure. Along with the increase of the shell dosage, the alkali-treated microspheres sequentially presented porous and hollow morphology, and the size of microspheres increased, while the hollow diameter increased first and then decreased, and the maximum hollow ratio reached 39.5%. Furthermore, the multilayer core/shell microspheres had better tolerance to NH_3·H_2O than to NaOH. When the molar ratio of alkali to methacrylic acid(MR_(alkali/acid)) for Na OH ranged from 1.15 to 1.30 or MRalkali/acid for NH_3·H_2O ranged from 1.30 to 2.00, the regular polymer hollow microspheres could be obtained.