In this work,we perform a Bayesian inference of the crust-core transition density ρ_(t) of neutron stars based on the neutron-star radius and neutron-skin thickness data using a thermodynamical method.Uniform and Gau...In this work,we perform a Bayesian inference of the crust-core transition density ρ_(t) of neutron stars based on the neutron-star radius and neutron-skin thickness data using a thermodynamical method.Uniform and Gaussian distributions for the ρ_(t) prior were adopted in the Bayesian approach.It has a larger probability of having values higher than 0.1 fm^(−3) for ρ_(t) as the uniform prior and neutron-star radius data were used.This was found to be controlled by the curvature K_(sym) of the nuclear symmetry energy.This phenomenon did not occur if K_(sym) was not extremely negative,namely,K_(sym)>−200 MeV.The value ofρ_(t) obtained was 0.075_(−0.01)^(+0.005) fm^(−3) at a confidence level of 68%when both the neutron-star radius and neutron-skin thickness data were considered.Strong anti-correlations were observed between ρ_(t),slope L,and curvature of the nuclear symmetry energy.The dependence of the three L-K_(sym) correlations predicted in the literature on crust-core density and pressure was quantitatively investigated.The most probable value of 0.08 fm^(−3) for ρ_(t) was obtained from the L-K_(sym) relationship proposed by Holt et al.while larger values were preferred for the other two relationships.展开更多
The principal moments of inertia(PMIs)with the principal axes are usually taken as the dynamic figure parameters of Mars;they can be deduced from satellite-observed degree-two gravitational potentials in recent global...The principal moments of inertia(PMIs)with the principal axes are usually taken as the dynamic figure parameters of Mars;they can be deduced from satellite-observed degree-two gravitational potentials in recent global gravity models and from the dynamic ellipticities resulting from precession observations.These PMIs are natural and significant for the geodetic,geophysical,and geodynamic problems of Mars,which are functions of internal density distributions.In this study,a closed and concise formula for determining the PMIs of the entire planet and its core was developed based on the second invariants of gravity and a multipole expansion.We deduced the polar oblateness J^(2)and the equatorial ellipticity J_(22)of Mars to be 1.9566×10^(−3)and 6.3106×10^(−5),respectively.The preferred principal moments of inertia of Mars are A=2.66589×1036 kg·m^(2),B=2.66775×10^(36)kg·m^(2),and C=2.68125×10^(36)kg·m^(2).These values indicate that Mar is slightly triaxial.The equatorial principal moment of inertia of the Martian core is 1.46008×10^(35)kg·m^(2),accounting for~5.47%of the planet’s PMI;this result is critical for investigating the density and size of the core of Mars,and the planet’s free core nutation.展开更多
Ecotones have received great attention due to its critical function in energy flux, species harbor, global carbon sequestration, and land-atmosphere interaction. This study investigated land use pattern and spatial he...Ecotones have received great attention due to its critical function in energy flux, species harbor, global carbon sequestration, and land-atmosphere interaction. This study investigated land use pattern and spatial heterogeneity of the ecotones among agricultural land, forest land, and grassland of the southeastern Da Hinggan Mountains in the northeastern China. The change of these delineated ecotones under different slopes and aridity conditions was analyzed by two landscape indices, edge density(ED) and core area percentage of landscape(CPL), to explore the inter-linkage between spatial structure of ecotones and socioeconomic development and land management. Specifically, the ecotones such as agriculture-forest(AF) ecotone, forest-grassland(FG) ecotone, and agriculture-forestgrassland(AFG) ecotone moved from the arid southeast to the humid northwest. The flat area with small slope is more edge-fragmented than the steep area since the ED decreases as the slope increases. The AF ecotone mostly found in the humid region is moving to more humid areas while the agriculture-grassland(AG) ecotone mostly found in the dry region is moving towards the drier region.展开更多
On the basis of NCEP/NCAR reanalysis data and yearbooks of CMA tropical cyclones, statistical analysis is performed for 1949—2013 offshore typhoons subjected to rapid decay(RD). This analysis indicates that RD typhoo...On the basis of NCEP/NCAR reanalysis data and yearbooks of CMA tropical cyclones, statistical analysis is performed for 1949—2013 offshore typhoons subjected to rapid decay(RD). This analysis indicates that RD typhoons are small-probability events, making up about 2.2% of the total offshore typhoons during this period. The RD events experience a decadal variation, mostly in the 1960 s and 1970 s(maximal in the 1970 s), rapidly decrease in the 1980 s and 1990 s and quickly increase from 2000. Also, RD typhoons show remarkable seasonal differences: they arise mainly in April and July-December, with the prime stage being in October-November. The offshore RD typhoons occur mostly in the South China Sea(SCS) and to a lesser extent in the East China Sea(ECS); however, none are observed over the Huang Sea and Bo Sea.Composite analysis and dynamic diagnosis of the RD typhoon-related large-scale circulations are performed.Physical quantities of the composite analysis consist of 500-h Pa height and temperature fields, vapor transfer, vertical wind shear(VWS), density of core convection(DCC), and high-level jet and upper-air outflow of the typhoon. The results suggest that(1) at the 500-h Pa height field, the typhoon is ahead of a westerly trough and under the effects of its passing trough;(2) at the temperature field, the typhoon is ahead of a temperature trough, with an invading cold tongue present;(3) at the vapor transfer field, water transfer into the RD typhoon is cut off; and(4) at higher levels, the related jet weakens and the outbreak of convection becomes attenuated in the typhoon core. In addition, VWS bears a relation to the RD typhoon; in particular, strong VWS favors RD occurrence.The differences in RD events between the SCS and ECS show that for the RD, the VWS of the ECS environmental winds is markedly stronger in comparison with its SCS counterpart. The cold advection invading into the typhoons is more intense in the SCS than in the ECS, and the low-level vapor transfer and high-level outflow are weaker in the SCS RD typhoons.Data analysis shows that sea surface temperature(SST), VWS, and DCC can be employed as efficient factors to predict RD occurrence. With appropriate SST, VWS, and DCC, a warning of RD occurrence can be given 36, 30-36,and 30 h, respectively, in advance. These values suggest that atmospheric SST responses lag. Owing to this time lag,the prediction of RD typhoons is possible.展开更多
基金supported by the Shanxi Provincial Foundation for Returned Overseas Scholars (No. 20220037)Natural Science Foundation of Shanxi Province (No. 20210302123085)Discipline Construction Project of Yuncheng University
文摘In this work,we perform a Bayesian inference of the crust-core transition density ρ_(t) of neutron stars based on the neutron-star radius and neutron-skin thickness data using a thermodynamical method.Uniform and Gaussian distributions for the ρ_(t) prior were adopted in the Bayesian approach.It has a larger probability of having values higher than 0.1 fm^(−3) for ρ_(t) as the uniform prior and neutron-star radius data were used.This was found to be controlled by the curvature K_(sym) of the nuclear symmetry energy.This phenomenon did not occur if K_(sym) was not extremely negative,namely,K_(sym)>−200 MeV.The value ofρ_(t) obtained was 0.075_(−0.01)^(+0.005) fm^(−3) at a confidence level of 68%when both the neutron-star radius and neutron-skin thickness data were considered.Strong anti-correlations were observed between ρ_(t),slope L,and curvature of the nuclear symmetry energy.The dependence of the three L-K_(sym) correlations predicted in the literature on crust-core density and pressure was quantitatively investigated.The most probable value of 0.08 fm^(−3) for ρ_(t) was obtained from the L-K_(sym) relationship proposed by Holt et al.while larger values were preferred for the other two relationships.
基金supported by the National Key Research and Development Program (2022YFF0503200)the National Natural Science Foundation of China (42274114)the Key Program of the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS-202102)
文摘The principal moments of inertia(PMIs)with the principal axes are usually taken as the dynamic figure parameters of Mars;they can be deduced from satellite-observed degree-two gravitational potentials in recent global gravity models and from the dynamic ellipticities resulting from precession observations.These PMIs are natural and significant for the geodetic,geophysical,and geodynamic problems of Mars,which are functions of internal density distributions.In this study,a closed and concise formula for determining the PMIs of the entire planet and its core was developed based on the second invariants of gravity and a multipole expansion.We deduced the polar oblateness J^(2)and the equatorial ellipticity J_(22)of Mars to be 1.9566×10^(−3)and 6.3106×10^(−5),respectively.The preferred principal moments of inertia of Mars are A=2.66589×1036 kg·m^(2),B=2.66775×10^(36)kg·m^(2),and C=2.68125×10^(36)kg·m^(2).These values indicate that Mar is slightly triaxial.The equatorial principal moment of inertia of the Martian core is 1.46008×10^(35)kg·m^(2),accounting for~5.47%of the planet’s PMI;this result is critical for investigating the density and size of the core of Mars,and the planet’s free core nutation.
基金Under the auspices of'Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues'of Chinese Academy of Sciences(No.XDA05090310)
文摘Ecotones have received great attention due to its critical function in energy flux, species harbor, global carbon sequestration, and land-atmosphere interaction. This study investigated land use pattern and spatial heterogeneity of the ecotones among agricultural land, forest land, and grassland of the southeastern Da Hinggan Mountains in the northeastern China. The change of these delineated ecotones under different slopes and aridity conditions was analyzed by two landscape indices, edge density(ED) and core area percentage of landscape(CPL), to explore the inter-linkage between spatial structure of ecotones and socioeconomic development and land management. Specifically, the ecotones such as agriculture-forest(AF) ecotone, forest-grassland(FG) ecotone, and agriculture-forestgrassland(AFG) ecotone moved from the arid southeast to the humid northwest. The flat area with small slope is more edge-fragmented than the steep area since the ED decreases as the slope increases. The AF ecotone mostly found in the humid region is moving to more humid areas while the agriculture-grassland(AG) ecotone mostly found in the dry region is moving towards the drier region.
基金Major State Basic Research Development Program of China(2015CB4528042013CB430305)+3 种基金National Natural Science Foundation of China(412750674130504941575108)Typhoon Scientific and Technological Innovation Group of Shanghai Meteorological Service
文摘On the basis of NCEP/NCAR reanalysis data and yearbooks of CMA tropical cyclones, statistical analysis is performed for 1949—2013 offshore typhoons subjected to rapid decay(RD). This analysis indicates that RD typhoons are small-probability events, making up about 2.2% of the total offshore typhoons during this period. The RD events experience a decadal variation, mostly in the 1960 s and 1970 s(maximal in the 1970 s), rapidly decrease in the 1980 s and 1990 s and quickly increase from 2000. Also, RD typhoons show remarkable seasonal differences: they arise mainly in April and July-December, with the prime stage being in October-November. The offshore RD typhoons occur mostly in the South China Sea(SCS) and to a lesser extent in the East China Sea(ECS); however, none are observed over the Huang Sea and Bo Sea.Composite analysis and dynamic diagnosis of the RD typhoon-related large-scale circulations are performed.Physical quantities of the composite analysis consist of 500-h Pa height and temperature fields, vapor transfer, vertical wind shear(VWS), density of core convection(DCC), and high-level jet and upper-air outflow of the typhoon. The results suggest that(1) at the 500-h Pa height field, the typhoon is ahead of a westerly trough and under the effects of its passing trough;(2) at the temperature field, the typhoon is ahead of a temperature trough, with an invading cold tongue present;(3) at the vapor transfer field, water transfer into the RD typhoon is cut off; and(4) at higher levels, the related jet weakens and the outbreak of convection becomes attenuated in the typhoon core. In addition, VWS bears a relation to the RD typhoon; in particular, strong VWS favors RD occurrence.The differences in RD events between the SCS and ECS show that for the RD, the VWS of the ECS environmental winds is markedly stronger in comparison with its SCS counterpart. The cold advection invading into the typhoons is more intense in the SCS than in the ECS, and the low-level vapor transfer and high-level outflow are weaker in the SCS RD typhoons.Data analysis shows that sea surface temperature(SST), VWS, and DCC can be employed as efficient factors to predict RD occurrence. With appropriate SST, VWS, and DCC, a warning of RD occurrence can be given 36, 30-36,and 30 h, respectively, in advance. These values suggest that atmospheric SST responses lag. Owing to this time lag,the prediction of RD typhoons is possible.