To investigate influence of welding parameters on weld bead geometry in underwater wet flux cored arc welding (FCAW), orthogonal experiments of underwater wet FCAW were conducted in the hyperbaric chamber at water d...To investigate influence of welding parameters on weld bead geometry in underwater wet flux cored arc welding (FCAW), orthogonal experiments of underwater wet FCAW were conducted in the hyperbaric chamber at water depth from 0.2 m to 60 m and mathematical models were developed by multiple curvilinear regression method from the experimental data. Sensitivity analysis was then performed to predict the bead geometry and evaluate the influence of welding parameters. The results reveal that water depth has a greater influence on bead geometry than other welding parameters when welding at a water depth less than 10 m. At a water depth deeper than 10 m, a change in travel speed affects the bead geometry more strongly than other welding parameters.展开更多
In this investigation, an attempt has been made to study the influence of welding consumables on the factors that influence cold cracking of armour grade quenched and tempered (Q&.T) steel welds. Flux cored arc wel...In this investigation, an attempt has been made to study the influence of welding consumables on the factors that influence cold cracking of armour grade quenched and tempered (Q&.T) steel welds. Flux cored arc welding (FCAW) process were used making welds using austenitic stainless steel (ASS) and low hydrogen ferritic steel (LHF) consumables. The diffusible hydrogen levels in the weld metal of the ASS and LHF consumables were determined by mercury method. Residual stresses were evaluated using X-ray stress analyzer and implant test was carried out to study the cold cracking of the welds. Results indicate that ASS welds offer a greater resistance to cold cracking of armour grade Q&T steel welds.展开更多
In this paper, an artificial neural network method that can predict the chemical composition of deposited weld metal by CO 2 Shielded Flux Cored Wire Surfacing was studied. It is found that artificial neural networ...In this paper, an artificial neural network method that can predict the chemical composition of deposited weld metal by CO 2 Shielded Flux Cored Wire Surfacing was studied. It is found that artificial neural network is a good approach on studying welding metallurgy processes that cannot be described by conventional mathematical methods. In the same time we explored a new way to study the no equilibrium welding metallurgy processes.展开更多
A set of electromagnetic vibration powder feeding apparatus of the flux cored wire production line and its single chip controlling system have been designed in this paper. The parameters of the electromagnatic vibr...A set of electromagnetic vibration powder feeding apparatus of the flux cored wire production line and its single chip controlling system have been designed in this paper. The parameters of the electromagnatic vibration powder feeding apparatus have been tested, the functional relation between powder feeding velocity V L and current I has been made out so that the controlling system can not only automatically make out the quantity of the powder according to the width of the steel belt, powder density, production speed and filling ratio, but also adjust the powder feeding speed according to the real production speed, keeping a stable filling ratio.展开更多
Quenched and Tempered (Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC) an...Quenched and Tempered (Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC) and softening in the heat affected zone (HAZ) after welding. The use of austenitic stainless steel (ASS) consumables to weld the above steel was the only available remedy to avoid HIC because of higher solubility for hydrogen in austenitic phase. Recent studies revealed that low hydrogen ferritic (LHF) steel consumables can also be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits and required resistance against cold cracking. Hence, in this investigation an attempt has been made to study the performance of armour grade Q&T steel joints fabricated by flux cored arc welding with LHF steel consumables. Two different consumables namely (i) austenitic stainless steel and (ii) low hydrogen ferritic steel have been used to fabricate the joints by flux cored arc welding (FCAW) process. The joints fabricated by LHF consumable exhibited superior transverse tensile properties due to the presence of ferrite microstructure in weld metal. The joints fabricated by ASS consumable showed higher impact toughness due to the presence of austenitic phase in weld metal microstructure. The HAZ softening in coarse grain heat affected zone (CGHAZ) is less in the joints fabricated using LHF consumable due to the lower heat input involved during fabrication compared to the joints fabricated using ASS consumables.展开更多
Self-shielded flux-cored wire is a convenient and efficient consumable for pipeline field girth welding because of its self-protection characteristic and high deposition rate, especially for remote construction sites ...Self-shielded flux-cored wire is a convenient and efficient consumable for pipeline field girth welding because of its self-protection characteristic and high deposition rate, especially for remote construction sites in rugged terrain. From the perspective of pipeline safety, the impact toughness of the girth welds is an important factor in pipeline integrity ,which determines the crack arrest behavior in the girth welds. Therefore, improving the girth weld impact toughness is of primary importance in the field of pipeline girth welding. Three self-shielded flux-cored wires comprising different chemical composition systems have been applied to large diameter X80 UOE (U-ing-O- ing-Expanding) pipeline semi-automatic girth welding,and the impact toughness of the welds has been evaluated by girth weld chemical composition analysis and microstructural analysis using scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) to investigate pipeline girth weld impact toughness and find ways to improve it. This helps in determining the main factors that influence girth weld impact toughness. Pipeline girth weld impact toughness is mainly determined by the final microstructure produced in the solid-state phase transition. In the as-weld state,acicular ferrite (AF) and fine bainite (FB) are a benefit to the impact toughness. For multilayer semiautomatic self-shielded flux-cored wire welding, the normalizing and tempering function of the latter beads to the initial beads plays an important role in the transition of girth weld microstructure, which affects the impact toughness. The original AF and FB and the corresponding heat treatment microstructure of the fine and uniform block ferrite and pearlite result in very good impact toughness. The following two mechanisms are found to promote the production of AF and FB in the girth weld. First, elements promoting the broadening of the austenitic region, such as Ni, C, Cu, and Mn, induce low temperature phase transitions and restrain the opposing function of Al, which is a benefit to the production of AF and FB. Second, dispersed high-melting-point inclusions, especially Al2O3 ,induce the nucleated production of AF. The advantageous function of inclusions is determined by their shape, distribution, and dimension. Dispersed spherical inclusions of small dimension are a benefit to the production of AF, and result in good impact toughness.展开更多
The effects of process parameters on the depth-to-width ratio (D/W) of flux-cored wire underwater wet welding with a certain type of homemade .flux-cored wire are studied. It is found that the welding .speed, wire f...The effects of process parameters on the depth-to-width ratio (D/W) of flux-cored wire underwater wet welding with a certain type of homemade .flux-cored wire are studied. It is found that the welding .speed, wire feeding speed and torch oscillating amplitude hare significant effects on the dopth-to-width ratio (D/W) of welds. The D/W ratio of welds increases significantly with the increase of welding speed without the oscillating of welding torch. It increased (from 0. 14 to 0. 26 ) with the increase of wire feeding speed while the torch oscillating. And it decreased linearly with the increase of torch oscillating amplitude. However, the influelwe of oscillating speed, wire extension and welding voltage on the D/W ratio of welds was not obvious.展开更多
The formation mechanism of inclusion in welds with different aluminum contents was determined based on thermodynamic equilibrium in self-shielded flux cored arc welds.Inclusions in welds were systematically studied by...The formation mechanism of inclusion in welds with different aluminum contents was determined based on thermodynamic equilibrium in self-shielded flux cored arc welds.Inclusions in welds were systematically studied by optical microscopy,scanning microscopy and image analyzer.The results show that the average size and the contamination rate of inclusions in low-aluminum weld are lower than those in high-aluminum weld.Highly faceted AlN inclusions with big size in the high-aluminum weld are more than those in low-aluminum weld.As a result,the low temperature impact toughness of low-aluminum weld is higher than that of high-aluminum weld.Finally,the thermodynamic analysis indicates that thermodynamic result agrees with the experimental data.展开更多
The variation in arc characteristics and behavior of metal transfer with the change in pulse parameters has been studied by high speed video camera during pulse current flux-cored arc weld deposition.A comparative stu...The variation in arc characteristics and behavior of metal transfer with the change in pulse parameters has been studied by high speed video camera during pulse current flux-cored arc weld deposition.A comparative study of similar nature has also been carried out during flux-cored arc weld deposition in globular and spray transfer modes.The effect of pulse parameters has been studied by considering their mean current and arc voltage.The arc characteristics studied by its root diameter,projected diameter and length,and the behavior of metal transfer noted by the metal transfer model and the droplet diameter have been found to vary significantly with the pulse parameters.The observation may help in understanding the arc characteristics with respect to the variation in pulse parameters which may be beneficial in using pulse current FCAW to produce desired weld quality.展开更多
The effect of Fe203 and Liz CO3 additives in flux core on the weld metal oxygen content and weld penetration in self-shielded flux cored arc welding were studied schematically. The result shows that the oxygen content...The effect of Fe203 and Liz CO3 additives in flux core on the weld metal oxygen content and weld penetration in self-shielded flux cored arc welding were studied schematically. The result shows that the oxygen content in the weld metal and weld penetration both increased with the Fe203 addition increased in the range of 5 wt. % to 20 wt. %. The oxygen content in the weld metal was increased with the Li2CO3 addition increased in the range of 1 wt. % to 8 wt. %. However, the weld penetration decreased when Li2CO3 addition exceeding 4 wt. %. High-speed photographic images show that when Fe2O3 addition influx core exceeding 15 wt. %, droplet became excessively large, so that spatters were frequently generated in large numbers. In this study, Fe203 and Li2 CO3 in the amount of 11 wt. % and 4 wt. %, respectively, jointly added in the flux core can achieve a deeper weld penetration with sound usability characteristics.展开更多
Effects of CeF3 on properties of self-shielded flux cored wire including welding process, inclusions in weld metal and mechanical properties are systematically studied. Welding smoke and spatter are reduced with the a...Effects of CeF3 on properties of self-shielded flux cored wire including welding process, inclusions in weld metal and mechanical properties are systematically studied. Welding smoke and spatter are reduced with the addition of CeF3. The main non-metallic inclusions in weld metal are AlN and Al2O3. CeF3 can refine non-metallic inclusions and reduce the amount of large size inclusions, which is attributed to the inclusion floating behavior during the solidification of weld metal. The low temperature impact toughness is improved by adding suitable amount of CeF3 in the flux.展开更多
Prevention of nitrogen porosity in weld metal deposited with self-shielded flux cored wire with CaF2-TiO2-MgO slag system can be accomplished by using a 'killing agent' such as titanium to react with nitrogen ...Prevention of nitrogen porosity in weld metal deposited with self-shielded flux cored wire with CaF2-TiO2-MgO slag system can be accomplished by using a 'killing agent' such as titanium to react with nitrogen dissolved in the weld metal. The amount of titanium needed to prevent porosity is calculated thermodynamically for various dissolved nitrogen levels. Experimental flux cored wires are used to verify the thermodynamic model. It is concluded that approximately 0.11 wt% titanium in the weld deposit is need to prevent nitrogen porosity when welding without externally applied shielding.展开更多
According to the characteristics of electric arc spraying technology and abrasion of boiler piping,a flux cored wire SMD 45 for electric arc spraying is developed The experimental results show that the surface hardn...According to the characteristics of electric arc spraying technology and abrasion of boiler piping,a flux cored wire SMD 45 for electric arc spraying is developed The experimental results show that the surface hardness of the coating reaches 60~65 HR and the adhesive strength between the coating and base is 23~28 MPa The wearability of the coating sprayed by the wire is 5 times than that of ordinary steel pipe Applying the wire to the heated surface,the life of the economizer pipe is doubly increased No local desquamation,rust and abrasion can be examined during more than one year's service.展开更多
This paper puts forward a new method to achieve flux cored wire TIG welding and uses high-speed photography to analyze the droplet transfer behavior and forces acting on the droplet. The droplet transfer forms include...This paper puts forward a new method to achieve flux cored wire TIG welding and uses high-speed photography to analyze the droplet transfer behavior and forces acting on the droplet. The droplet transfer forms include bridging transfer, slag column guided transfer, and non-contact transfer; each of these forms may be observed as the melting position of the welding wire changes. The important role of surface tension in the process of droplet transfer is proposed using static force balance theory and pinch instability theory. The phenomenon of droplet backward swing during welding process could be attributed to the vapor recoil force produced by vapors from the droplet. The welding experiments show that the proposed welding process is stable and that the weld quality produced is good.展开更多
Caterpillar construction machines play an important part in many fields such as hydraulic and electric engineering, the construction of highway, for its particular of structure. The walking system of caterpillar const...Caterpillar construction machines play an important part in many fields such as hydraulic and electric engineering, the construction of highway, for its particular of structure. The walking system of caterpillar construction machines is always under the condition of three-body abrasive wear. The abrasive wear of walking system is very severe, which always results in damages of components or structures of walking system of caterpillar construction machines. It is very important to repair the walking system by cladding technique. The abrasive wear properties of four kinds coatings produced by the shielded flux-cored wire surfacing for the repair of the damaged components of walking system of caterpillar construction machines have been studied experimentally on an MLS-23 type wet sand rubber wheel abrasive tester. The surfaces morphologies of the abrasively worn specimens and their microstructures are investigated by transmitting electron microscopy (TEM) after wear testing. Results show that the wear mechanism of cladding metals of the flux-cored wire No.1 and the No.2 is micro-cutting while that of the No.3 and the No.4 is micro-ploughing. The four kinds of flux-cored wire coatings present great potential applications for the repairing of caterpillar construction machines in the Three Gorges Engineering.展开更多
A quantitative analysis of the total concentrations of Al and Na in the Antarctic ice sheet during the past 340 kyr was performed by applying the acid digestion method to the Dome Fuji ice core. Atmospheric fluxes of ...A quantitative analysis of the total concentrations of Al and Na in the Antarctic ice sheet during the past 340 kyr was performed by applying the acid digestion method to the Dome Fuji ice core. Atmospheric fluxes of mineral and sea-salt aerosol to Dome Fuji were calculated from the total concentration. The average fluxes of mineral aerosol to Dome Fuji in the periods of glacial maximum, 18.6 ± 10.1 mg·m–2·yr–1, were larger than the value in the interglacial periods, 3.77 ± 2.20 mg·m–2·yr–1. Conversely, the fluxes of sea-salt have no significant difference between the average value of glacial maximum, 130 ± 55 mg·m–2·yr–1, and that of interglacial, 111 ± 54 mg·m–2·yr–1. The results obtained in this study suggest that the variation of mineral aerosol flux in Dome Fuji, together with climate change, was much larger than that of sea-salt aerosol flux. This result may have occurred because the variety in the intensity of the source and transport during the glacial-interglacial cycle is more significant for mineral aerosol than that for sea-salt aerosol.展开更多
A novel high-frequency and high power density planar insulated core transformer(PICT) applied to high voltage DC generator is introduced. PICT's operating principle and fundamental configuration are described,and ...A novel high-frequency and high power density planar insulated core transformer(PICT) applied to high voltage DC generator is introduced. PICT's operating principle and fundamental configuration are described,and preliminary experimental results in self-designed PICT apparatus are presented. Emphatically, magnetic leakage flux(MFL) giving rise to the output voltage drop is analyzed in detail both theoretically and by finite element method(FEM). Showing good consistency with experimental result, FEM simulation is considered to be practicable in physical design of PICT. To cancel out leakage inductance and improve the voltage uniformity,compensation capacitor is adopted and experimental verification is also presented. All shows satisfactory results.展开更多
Metal transfer behavior of six kinds of self shielded flux cored wire(SSFCW) is studied using the apparatus of SSFCW high speed photography self made. Six kinds of metal transfer modes of SSFCW were obtained throu...Metal transfer behavior of six kinds of self shielded flux cored wire(SSFCW) is studied using the apparatus of SSFCW high speed photography self made. Six kinds of metal transfer modes of SSFCW were obtained through observation for high speed photograph film and analysis. It is believed that the research is of magnificent for improving operative performance and mechanical properties of SSFCW and dynamics characteristic of welding power.展开更多
Output voltage is an important performance characteristic of planar insulating core transformer (PICT).In PICT magnetic cores are insulated from their neighboring magnetic cores by solid insulating materials.Solid ins...Output voltage is an important performance characteristic of planar insulating core transformer (PICT).In PICT magnetic cores are insulated from their neighboring magnetic cores by solid insulating materials.Solid insulating materials can increase leakage flux.This results in a low generated voltage in secondary coils,especially on the upper stages.Connecting flux compensation capacitors to secondary coils can compensate the flux loss.Design equations to calculate the flux compensation capacitors value and relevant simulation by CST and Protel software were presented.Simulation results of an actual PICT showed that output voltage increased by 19% after being connected to flux compensation capacitors and the voltage on every stage was equally distributed.Results of simulation were consistent with the following experimental test,which revealed that flux compensation capacitors were effective.展开更多
基金Projects(51175185,50705030)supported by the National Natural Science Foundation of ChinaProject(2012ZZ0052)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(9151064101000065)supported by the Natural Science Foundation of Guangdong Province,China
文摘To investigate influence of welding parameters on weld bead geometry in underwater wet flux cored arc welding (FCAW), orthogonal experiments of underwater wet FCAW were conducted in the hyperbaric chamber at water depth from 0.2 m to 60 m and mathematical models were developed by multiple curvilinear regression method from the experimental data. Sensitivity analysis was then performed to predict the bead geometry and evaluate the influence of welding parameters. The results reveal that water depth has a greater influence on bead geometry than other welding parameters when welding at a water depth less than 10 m. At a water depth deeper than 10 m, a change in travel speed affects the bead geometry more strongly than other welding parameters.
基金Armament Research Board (ARMREB),New Delhi for funding this projectwork (Project No MAA/03/41)
文摘In this investigation, an attempt has been made to study the influence of welding consumables on the factors that influence cold cracking of armour grade quenched and tempered (Q&.T) steel welds. Flux cored arc welding (FCAW) process were used making welds using austenitic stainless steel (ASS) and low hydrogen ferritic steel (LHF) consumables. The diffusible hydrogen levels in the weld metal of the ASS and LHF consumables were determined by mercury method. Residual stresses were evaluated using X-ray stress analyzer and implant test was carried out to study the cold cracking of the welds. Results indicate that ASS welds offer a greater resistance to cold cracking of armour grade Q&T steel welds.
文摘In this paper, an artificial neural network method that can predict the chemical composition of deposited weld metal by CO 2 Shielded Flux Cored Wire Surfacing was studied. It is found that artificial neural network is a good approach on studying welding metallurgy processes that cannot be described by conventional mathematical methods. In the same time we explored a new way to study the no equilibrium welding metallurgy processes.
文摘A set of electromagnetic vibration powder feeding apparatus of the flux cored wire production line and its single chip controlling system have been designed in this paper. The parameters of the electromagnatic vibration powder feeding apparatus have been tested, the functional relation between powder feeding velocity V L and current I has been made out so that the controlling system can not only automatically make out the quantity of the powder according to the width of the steel belt, powder density, production speed and filling ratio, but also adjust the powder feeding speed according to the real production speed, keeping a stable filling ratio.
基金New Delhi for funding this project work(Project No.MAA/03/41)
文摘Quenched and Tempered (Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC) and softening in the heat affected zone (HAZ) after welding. The use of austenitic stainless steel (ASS) consumables to weld the above steel was the only available remedy to avoid HIC because of higher solubility for hydrogen in austenitic phase. Recent studies revealed that low hydrogen ferritic (LHF) steel consumables can also be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits and required resistance against cold cracking. Hence, in this investigation an attempt has been made to study the performance of armour grade Q&T steel joints fabricated by flux cored arc welding with LHF steel consumables. Two different consumables namely (i) austenitic stainless steel and (ii) low hydrogen ferritic steel have been used to fabricate the joints by flux cored arc welding (FCAW) process. The joints fabricated by LHF consumable exhibited superior transverse tensile properties due to the presence of ferrite microstructure in weld metal. The joints fabricated by ASS consumable showed higher impact toughness due to the presence of austenitic phase in weld metal microstructure. The HAZ softening in coarse grain heat affected zone (CGHAZ) is less in the joints fabricated using LHF consumable due to the lower heat input involved during fabrication compared to the joints fabricated using ASS consumables.
文摘Self-shielded flux-cored wire is a convenient and efficient consumable for pipeline field girth welding because of its self-protection characteristic and high deposition rate, especially for remote construction sites in rugged terrain. From the perspective of pipeline safety, the impact toughness of the girth welds is an important factor in pipeline integrity ,which determines the crack arrest behavior in the girth welds. Therefore, improving the girth weld impact toughness is of primary importance in the field of pipeline girth welding. Three self-shielded flux-cored wires comprising different chemical composition systems have been applied to large diameter X80 UOE (U-ing-O- ing-Expanding) pipeline semi-automatic girth welding,and the impact toughness of the welds has been evaluated by girth weld chemical composition analysis and microstructural analysis using scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) to investigate pipeline girth weld impact toughness and find ways to improve it. This helps in determining the main factors that influence girth weld impact toughness. Pipeline girth weld impact toughness is mainly determined by the final microstructure produced in the solid-state phase transition. In the as-weld state,acicular ferrite (AF) and fine bainite (FB) are a benefit to the impact toughness. For multilayer semiautomatic self-shielded flux-cored wire welding, the normalizing and tempering function of the latter beads to the initial beads plays an important role in the transition of girth weld microstructure, which affects the impact toughness. The original AF and FB and the corresponding heat treatment microstructure of the fine and uniform block ferrite and pearlite result in very good impact toughness. The following two mechanisms are found to promote the production of AF and FB in the girth weld. First, elements promoting the broadening of the austenitic region, such as Ni, C, Cu, and Mn, induce low temperature phase transitions and restrain the opposing function of Al, which is a benefit to the production of AF and FB. Second, dispersed high-melting-point inclusions, especially Al2O3 ,induce the nucleated production of AF. The advantageous function of inclusions is determined by their shape, distribution, and dimension. Dispersed spherical inclusions of small dimension are a benefit to the production of AF, and result in good impact toughness.
文摘The effects of process parameters on the depth-to-width ratio (D/W) of flux-cored wire underwater wet welding with a certain type of homemade .flux-cored wire are studied. It is found that the welding .speed, wire feeding speed and torch oscillating amplitude hare significant effects on the dopth-to-width ratio (D/W) of welds. The D/W ratio of welds increases significantly with the increase of welding speed without the oscillating of welding torch. It increased (from 0. 14 to 0. 26 ) with the increase of wire feeding speed while the torch oscillating. And it decreased linearly with the increase of torch oscillating amplitude. However, the influelwe of oscillating speed, wire extension and welding voltage on the D/W ratio of welds was not obvious.
文摘The formation mechanism of inclusion in welds with different aluminum contents was determined based on thermodynamic equilibrium in self-shielded flux cored arc welds.Inclusions in welds were systematically studied by optical microscopy,scanning microscopy and image analyzer.The results show that the average size and the contamination rate of inclusions in low-aluminum weld are lower than those in high-aluminum weld.Highly faceted AlN inclusions with big size in the high-aluminum weld are more than those in low-aluminum weld.As a result,the low temperature impact toughness of low-aluminum weld is higher than that of high-aluminum weld.Finally,the thermodynamic analysis indicates that thermodynamic result agrees with the experimental data.
文摘The variation in arc characteristics and behavior of metal transfer with the change in pulse parameters has been studied by high speed video camera during pulse current flux-cored arc weld deposition.A comparative study of similar nature has also been carried out during flux-cored arc weld deposition in globular and spray transfer modes.The effect of pulse parameters has been studied by considering their mean current and arc voltage.The arc characteristics studied by its root diameter,projected diameter and length,and the behavior of metal transfer noted by the metal transfer model and the droplet diameter have been found to vary significantly with the pulse parameters.The observation may help in understanding the arc characteristics with respect to the variation in pulse parameters which may be beneficial in using pulse current FCAW to produce desired weld quality.
文摘The effect of Fe203 and Liz CO3 additives in flux core on the weld metal oxygen content and weld penetration in self-shielded flux cored arc welding were studied schematically. The result shows that the oxygen content in the weld metal and weld penetration both increased with the Fe203 addition increased in the range of 5 wt. % to 20 wt. %. The oxygen content in the weld metal was increased with the Li2CO3 addition increased in the range of 1 wt. % to 8 wt. %. However, the weld penetration decreased when Li2CO3 addition exceeding 4 wt. %. High-speed photographic images show that when Fe2O3 addition influx core exceeding 15 wt. %, droplet became excessively large, so that spatters were frequently generated in large numbers. In this study, Fe203 and Li2 CO3 in the amount of 11 wt. % and 4 wt. %, respectively, jointly added in the flux core can achieve a deeper weld penetration with sound usability characteristics.
文摘Effects of CeF3 on properties of self-shielded flux cored wire including welding process, inclusions in weld metal and mechanical properties are systematically studied. Welding smoke and spatter are reduced with the addition of CeF3. The main non-metallic inclusions in weld metal are AlN and Al2O3. CeF3 can refine non-metallic inclusions and reduce the amount of large size inclusions, which is attributed to the inclusion floating behavior during the solidification of weld metal. The low temperature impact toughness is improved by adding suitable amount of CeF3 in the flux.
文摘Prevention of nitrogen porosity in weld metal deposited with self-shielded flux cored wire with CaF2-TiO2-MgO slag system can be accomplished by using a 'killing agent' such as titanium to react with nitrogen dissolved in the weld metal. The amount of titanium needed to prevent porosity is calculated thermodynamically for various dissolved nitrogen levels. Experimental flux cored wires are used to verify the thermodynamic model. It is concluded that approximately 0.11 wt% titanium in the weld deposit is need to prevent nitrogen porosity when welding without externally applied shielding.
文摘According to the characteristics of electric arc spraying technology and abrasion of boiler piping,a flux cored wire SMD 45 for electric arc spraying is developed The experimental results show that the surface hardness of the coating reaches 60~65 HR and the adhesive strength between the coating and base is 23~28 MPa The wearability of the coating sprayed by the wire is 5 times than that of ordinary steel pipe Applying the wire to the heated surface,the life of the economizer pipe is doubly increased No local desquamation,rust and abrasion can be examined during more than one year's service.
基金supported by the National Natural Science Foundation of China(No.51175374)the Natural Science Foundation of Tianjin(No.16JCZDJC38700)
文摘This paper puts forward a new method to achieve flux cored wire TIG welding and uses high-speed photography to analyze the droplet transfer behavior and forces acting on the droplet. The droplet transfer forms include bridging transfer, slag column guided transfer, and non-contact transfer; each of these forms may be observed as the melting position of the welding wire changes. The important role of surface tension in the process of droplet transfer is proposed using static force balance theory and pinch instability theory. The phenomenon of droplet backward swing during welding process could be attributed to the vapor recoil force produced by vapors from the droplet. The welding experiments show that the proposed welding process is stable and that the weld quality produced is good.
文摘Caterpillar construction machines play an important part in many fields such as hydraulic and electric engineering, the construction of highway, for its particular of structure. The walking system of caterpillar construction machines is always under the condition of three-body abrasive wear. The abrasive wear of walking system is very severe, which always results in damages of components or structures of walking system of caterpillar construction machines. It is very important to repair the walking system by cladding technique. The abrasive wear properties of four kinds coatings produced by the shielded flux-cored wire surfacing for the repair of the damaged components of walking system of caterpillar construction machines have been studied experimentally on an MLS-23 type wet sand rubber wheel abrasive tester. The surfaces morphologies of the abrasively worn specimens and their microstructures are investigated by transmitting electron microscopy (TEM) after wear testing. Results show that the wear mechanism of cladding metals of the flux-cored wire No.1 and the No.2 is micro-cutting while that of the No.3 and the No.4 is micro-ploughing. The four kinds of flux-cored wire coatings present great potential applications for the repairing of caterpillar construction machines in the Three Gorges Engineering.
文摘A quantitative analysis of the total concentrations of Al and Na in the Antarctic ice sheet during the past 340 kyr was performed by applying the acid digestion method to the Dome Fuji ice core. Atmospheric fluxes of mineral and sea-salt aerosol to Dome Fuji were calculated from the total concentration. The average fluxes of mineral aerosol to Dome Fuji in the periods of glacial maximum, 18.6 ± 10.1 mg·m–2·yr–1, were larger than the value in the interglacial periods, 3.77 ± 2.20 mg·m–2·yr–1. Conversely, the fluxes of sea-salt have no significant difference between the average value of glacial maximum, 130 ± 55 mg·m–2·yr–1, and that of interglacial, 111 ± 54 mg·m–2·yr–1. The results obtained in this study suggest that the variation of mineral aerosol flux in Dome Fuji, together with climate change, was much larger than that of sea-salt aerosol flux. This result may have occurred because the variety in the intensity of the source and transport during the glacial-interglacial cycle is more significant for mineral aerosol than that for sea-salt aerosol.
基金Supported by the Science and Technology Commission of Shanghai Municipality under Grant No.12ZR1436500the Knowledge Innovation Programm of the Chinese Academy of Sciences
文摘A novel high-frequency and high power density planar insulated core transformer(PICT) applied to high voltage DC generator is introduced. PICT's operating principle and fundamental configuration are described,and preliminary experimental results in self-designed PICT apparatus are presented. Emphatically, magnetic leakage flux(MFL) giving rise to the output voltage drop is analyzed in detail both theoretically and by finite element method(FEM). Showing good consistency with experimental result, FEM simulation is considered to be practicable in physical design of PICT. To cancel out leakage inductance and improve the voltage uniformity,compensation capacitor is adopted and experimental verification is also presented. All shows satisfactory results.
文摘Metal transfer behavior of six kinds of self shielded flux cored wire(SSFCW) is studied using the apparatus of SSFCW high speed photography self made. Six kinds of metal transfer modes of SSFCW were obtained through observation for high speed photograph film and analysis. It is believed that the research is of magnificent for improving operative performance and mechanical properties of SSFCW and dynamics characteristic of welding power.
文摘Output voltage is an important performance characteristic of planar insulating core transformer (PICT).In PICT magnetic cores are insulated from their neighboring magnetic cores by solid insulating materials.Solid insulating materials can increase leakage flux.This results in a low generated voltage in secondary coils,especially on the upper stages.Connecting flux compensation capacitors to secondary coils can compensate the flux loss.Design equations to calculate the flux compensation capacitors value and relevant simulation by CST and Protel software were presented.Simulation results of an actual PICT showed that output voltage increased by 19% after being connected to flux compensation capacitors and the voltage on every stage was equally distributed.Results of simulation were consistent with the following experimental test,which revealed that flux compensation capacitors were effective.