现有5G(5th GenerationMobile Communication Technology)核心网异常检测主要基于信令流量深度解析,但较少利用核心网网络功能交互关系的作用。针对上述问题,提出一种基于交互的5G核心网网络功能异常检测模型。首先,该模型以行为分析为...现有5G(5th GenerationMobile Communication Technology)核心网异常检测主要基于信令流量深度解析,但较少利用核心网网络功能交互关系的作用。针对上述问题,提出一种基于交互的5G核心网网络功能异常检测模型。首先,该模型以行为分析为驱动,基于信令流量和网络功能注册数据提取多维属性,通过行为画像来表征网络功能行为模式,并采用集成学习算法RFECV(Recursive Feature Elimination with Cross-Validation)进行属性特征选择,降低特征维度的同时筛选出与区分网络功能行为模式高度相关的属性特征。然后,模型基于网络功能交互关系对核心网进行图建模,建模后的图数据融合了网络功能属性信息和交互信息。最后,模型通过基于空间域的图卷积网络聚合邻域节点属性信息和结构信息来融合行为模式特征,新生成的节点表示用于分类,从而将核心网网络功能异常检测问题转化为图节点分类问题。通过在free5GC仿真平台上采集数据,并在搭建的异常检测系统中的实验表明,该模型的异常检测性能优于基于属性特征分析的传统机器学习模型、基于结构特征分析的图嵌入模型及部分5G核心网异常检测模型。10%数据集作为训练集时,所提模型的准确率比支持向量机模型提高6.6%,比Struc2vec模型提高13%,比深度神经网络模型提高8%。展开更多
为了提高异构多核处理器平台的计算性能,从任务调度的角度出发,提出了一种使用黄金正弦和莱维飞行机制改进的麻雀搜索算法(Fusion of Golden Sinusoidal and Levy Flight in Sparrow Search Algorithm,GSLF-SSA)来优化异构多核处理器的...为了提高异构多核处理器平台的计算性能,从任务调度的角度出发,提出了一种使用黄金正弦和莱维飞行机制改进的麻雀搜索算法(Fusion of Golden Sinusoidal and Levy Flight in Sparrow Search Algorithm,GSLF-SSA)来优化异构多核处理器的任务调度。通过对异构任务调度的分析,将异构任务建模为DAG(Directed Acyclic Graph)任务模型,通过对其优先级进行随机编码分配,实现了GSLF-SSA算法求解域从连续到离散的映射,使该算法更能适用于异构多核任务调度之中。将DAG任务的最优调度长度作为算法的适应度值进行迭代寻优,通过与目前应用广泛的麻雀搜索算法(SSA)、混合式任务调度算法(IHSSA)、人工蜂群算法(ABC)等多种启发式算法在异构任务调度环境下的实验对比表明,GSLF-SSA能获得更优的调度长度与更短的调度执行时间。展开更多
文摘现有5G(5th GenerationMobile Communication Technology)核心网异常检测主要基于信令流量深度解析,但较少利用核心网网络功能交互关系的作用。针对上述问题,提出一种基于交互的5G核心网网络功能异常检测模型。首先,该模型以行为分析为驱动,基于信令流量和网络功能注册数据提取多维属性,通过行为画像来表征网络功能行为模式,并采用集成学习算法RFECV(Recursive Feature Elimination with Cross-Validation)进行属性特征选择,降低特征维度的同时筛选出与区分网络功能行为模式高度相关的属性特征。然后,模型基于网络功能交互关系对核心网进行图建模,建模后的图数据融合了网络功能属性信息和交互信息。最后,模型通过基于空间域的图卷积网络聚合邻域节点属性信息和结构信息来融合行为模式特征,新生成的节点表示用于分类,从而将核心网网络功能异常检测问题转化为图节点分类问题。通过在free5GC仿真平台上采集数据,并在搭建的异常检测系统中的实验表明,该模型的异常检测性能优于基于属性特征分析的传统机器学习模型、基于结构特征分析的图嵌入模型及部分5G核心网异常检测模型。10%数据集作为训练集时,所提模型的准确率比支持向量机模型提高6.6%,比Struc2vec模型提高13%,比深度神经网络模型提高8%。
文摘为了提高异构多核处理器平台的计算性能,从任务调度的角度出发,提出了一种使用黄金正弦和莱维飞行机制改进的麻雀搜索算法(Fusion of Golden Sinusoidal and Levy Flight in Sparrow Search Algorithm,GSLF-SSA)来优化异构多核处理器的任务调度。通过对异构任务调度的分析,将异构任务建模为DAG(Directed Acyclic Graph)任务模型,通过对其优先级进行随机编码分配,实现了GSLF-SSA算法求解域从连续到离散的映射,使该算法更能适用于异构多核任务调度之中。将DAG任务的最优调度长度作为算法的适应度值进行迭代寻优,通过与目前应用广泛的麻雀搜索算法(SSA)、混合式任务调度算法(IHSSA)、人工蜂群算法(ABC)等多种启发式算法在异构任务调度环境下的实验对比表明,GSLF-SSA能获得更优的调度长度与更短的调度执行时间。