Based on ab initio molecular dynamics simulations and density functional theory, we performed a systematic theoretical study to elucidate the correlation between the H-bonded environment and X- ray emission spectra of...Based on ab initio molecular dynamics simulations and density functional theory, we performed a systematic theoretical study to elucidate the correlation between the H-bonded environment and X- ray emission spectra of liquid water. The spectra generated from excited water molecules embedded in an intact H-bonded environment yield broader spectral peaks and a larger spectral range than the spectra generated from water molecules in a broken H-bonded environment. Such differences are caused by the local electronic structures on the excited water molecules within the core-hole lifetime that evolve differently through the rearrangement of neighboring water molecules in different H-bonded environments.展开更多
文摘Based on ab initio molecular dynamics simulations and density functional theory, we performed a systematic theoretical study to elucidate the correlation between the H-bonded environment and X- ray emission spectra of liquid water. The spectra generated from excited water molecules embedded in an intact H-bonded environment yield broader spectral peaks and a larger spectral range than the spectra generated from water molecules in a broken H-bonded environment. Such differences are caused by the local electronic structures on the excited water molecules within the core-hole lifetime that evolve differently through the rearrangement of neighboring water molecules in different H-bonded environments.