: The kinematic vorticity number and strain of the mylonitic zone related to the detachment fault increase from ESE to WNW along the moving direction of the upper plate of the Xiaoqinling metamorphic core complex (XMC...: The kinematic vorticity number and strain of the mylonitic zone related to the detachment fault increase from ESE to WNW along the moving direction of the upper plate of the Xiaoqinling metamorphic core complex (XMCC) and the geometry of quartz c-axis fabrics changes progressively from crossed girdles to single girdles in the same direction. Therefore, pure shear is dominant in the ESE part of the XMCC while simple shear becomes increasingly important towards WNW. However, the shear type does not change with the strain across the shear zone, thus the variation of shear type is of significance in indicating the formation mechanism. The granitic plutons within the XMCC came from the deep source and their emplacement was an active and forceful upwelling prior to the detachment faulting. The PTt path demonstrates that magmatism is an important cause for the formation of the XMCC. The formation mechanism of the XMCC is supposed to be active plutonism and passive detachment. Crustal thickening and magmatic doming caused necking extension with pure shear, and magmatic heating and doming resulted in detachment extension with simple shear and formed the XMCC.展开更多
Precast prestressed Hollow Core Slabs (HCS), are one of the famous and widely used slabs for concrete structures all over the world and widely implemented in the Middle East. HCS are used in industrial, commercial, re...Precast prestressed Hollow Core Slabs (HCS), are one of the famous and widely used slabs for concrete structures all over the world and widely implemented in the Middle East. HCS are used in industrial, commercial, residential buildings, as well as, in the parking structures. This paper succeeded to present new special details for deep HCS to enhance and strengthen the web shear strength capacity of HCS 400 and 500 mm depths respectively at the open parking area. This is subjected to heavy truck wheel loads so as to achieve the LRFD Code’s requirements. However, it is noticed many web shear cracks of HCS are used at parking area at many projects in Gulf Region. On the other hand, ACI318-14 permits no shear reinforcement in prestressed HCS thickness of less than 12.5 in (320 mm). The paper presents experimental tests program, to verify the numerical finite element of deep HCS under maximum design uniform loads, in addition to the new strengthening techniques. New strengthening techniques succeed to enhance the web shear capacity by significant percentage, due to the new details for HCS 400 by 68% up to 256% increasing of the web shear capacity compared to the ordinary HCS section. Also, HCS 500 shear capacity is enhanced with different percentages of strengthening techniques by 55%, up to 197% based on the different cases of strengthening. Furthermore enhancing deep HCS shear performance;the new techniques have an advantage of an easy execution at the site;casting with structural topping, otherwise the preparation can be done in precast factory before site handover, which saves time and cost compared to the others traditional strengthening techniques.展开更多
A series of ductile shear zones of the overthrust and strike-slip-types and related ductile shear metamorphicrocks, including tectonic melange and mylonites. were formed in the core of the Qinling orogenic belt in the...A series of ductile shear zones of the overthrust and strike-slip-types and related ductile shear metamorphicrocks, including tectonic melange and mylonites. were formed in the core of the Qinling orogenic belt in thecourse of the Caledonian-Indosinian ductilc and brittle-ductile reworking. The study on their petrography. va-riations in composition and conditions of formation is conducive to revealing the metamorphism-deformationhistory of the core of the Qinling orogenic belt and further to understanding the dynamic mechanism of its evo-lution.展开更多
In this study, the relationship between skin structure and shear strength distribution of thin-wall injection molded polypropylene (PP) molded at different molecular weight and molecular distribution was investigated....In this study, the relationship between skin structure and shear strength distribution of thin-wall injection molded polypropylene (PP) molded at different molecular weight and molecular distribution was investigated. Skin-core structure, cross-sectional morphology, crystallinity, crystal orientation, crystal morphology and molecular orientation were evaluated by using polarized optical microscope, differential scanning calorimeter, X-ray spectroscopic analyzer and laser Raman spectroscopy, respectively, while the shear strength distribution was investigated using a micro cutting method called SAICAS (Surface And Interfacial Cutting Analysis System). The results indicated that the difference of molecular weight and molecular weight distribution showed own skin layer thickness. Especially, high molecular weight sample showed thicker layer of the lamellar orientation and molecular orientation than low molecular weight sample. In addition, wide molecular distribution sample showed large crystal orientation layer.展开更多
文摘: The kinematic vorticity number and strain of the mylonitic zone related to the detachment fault increase from ESE to WNW along the moving direction of the upper plate of the Xiaoqinling metamorphic core complex (XMCC) and the geometry of quartz c-axis fabrics changes progressively from crossed girdles to single girdles in the same direction. Therefore, pure shear is dominant in the ESE part of the XMCC while simple shear becomes increasingly important towards WNW. However, the shear type does not change with the strain across the shear zone, thus the variation of shear type is of significance in indicating the formation mechanism. The granitic plutons within the XMCC came from the deep source and their emplacement was an active and forceful upwelling prior to the detachment faulting. The PTt path demonstrates that magmatism is an important cause for the formation of the XMCC. The formation mechanism of the XMCC is supposed to be active plutonism and passive detachment. Crustal thickening and magmatic doming caused necking extension with pure shear, and magmatic heating and doming resulted in detachment extension with simple shear and formed the XMCC.
文摘Precast prestressed Hollow Core Slabs (HCS), are one of the famous and widely used slabs for concrete structures all over the world and widely implemented in the Middle East. HCS are used in industrial, commercial, residential buildings, as well as, in the parking structures. This paper succeeded to present new special details for deep HCS to enhance and strengthen the web shear strength capacity of HCS 400 and 500 mm depths respectively at the open parking area. This is subjected to heavy truck wheel loads so as to achieve the LRFD Code’s requirements. However, it is noticed many web shear cracks of HCS are used at parking area at many projects in Gulf Region. On the other hand, ACI318-14 permits no shear reinforcement in prestressed HCS thickness of less than 12.5 in (320 mm). The paper presents experimental tests program, to verify the numerical finite element of deep HCS under maximum design uniform loads, in addition to the new strengthening techniques. New strengthening techniques succeed to enhance the web shear capacity by significant percentage, due to the new details for HCS 400 by 68% up to 256% increasing of the web shear capacity compared to the ordinary HCS section. Also, HCS 500 shear capacity is enhanced with different percentages of strengthening techniques by 55%, up to 197% based on the different cases of strengthening. Furthermore enhancing deep HCS shear performance;the new techniques have an advantage of an easy execution at the site;casting with structural topping, otherwise the preparation can be done in precast factory before site handover, which saves time and cost compared to the others traditional strengthening techniques.
文摘A series of ductile shear zones of the overthrust and strike-slip-types and related ductile shear metamorphicrocks, including tectonic melange and mylonites. were formed in the core of the Qinling orogenic belt in thecourse of the Caledonian-Indosinian ductilc and brittle-ductile reworking. The study on their petrography. va-riations in composition and conditions of formation is conducive to revealing the metamorphism-deformationhistory of the core of the Qinling orogenic belt and further to understanding the dynamic mechanism of its evo-lution.
文摘In this study, the relationship between skin structure and shear strength distribution of thin-wall injection molded polypropylene (PP) molded at different molecular weight and molecular distribution was investigated. Skin-core structure, cross-sectional morphology, crystallinity, crystal orientation, crystal morphology and molecular orientation were evaluated by using polarized optical microscope, differential scanning calorimeter, X-ray spectroscopic analyzer and laser Raman spectroscopy, respectively, while the shear strength distribution was investigated using a micro cutting method called SAICAS (Surface And Interfacial Cutting Analysis System). The results indicated that the difference of molecular weight and molecular weight distribution showed own skin layer thickness. Especially, high molecular weight sample showed thicker layer of the lamellar orientation and molecular orientation than low molecular weight sample. In addition, wide molecular distribution sample showed large crystal orientation layer.