Nanowire-based photovoltaic devices have the advantages over planar devices in light absorption and charge transport and collection.Recently,a new strategy relying on type-Ⅱ band alignment has been proposed to facili...Nanowire-based photovoltaic devices have the advantages over planar devices in light absorption and charge transport and collection.Recently,a new strategy relying on type-Ⅱ band alignment has been proposed to facilitate efficient charge separation in core/shell nanowire solar cells.This paper reviews the type-Ⅱ heterojunction solar cells based on core/shell nanowire arrays,and specifically focuses on the progress of theoretical design and fabrication of type-Ⅱ Zn O/Zn Se core/shell nanowire-based solar cells.A strong photoresponse associated with the type-Ⅱ interfacial transition exhibits a threshold of 1.6 e V,which demonstrates the feasibility and great potential for exploring all-inorganic versions of type-Ⅱ heterojunction solar cells using wide bandgap semiconductors.Future prospects in this area are also outlooked.展开更多
Simultaneously improving the efficiency and stability on a large scale is significant for the development of photoelectrochemical(PEC)water splitting systems.Here,we demonstrated a novel design of GaP/GaPN core/shell ...Simultaneously improving the efficiency and stability on a large scale is significant for the development of photoelectrochemical(PEC)water splitting systems.Here,we demonstrated a novel design of GaP/GaPN core/shell nanowire(NW)decorated p-Si photocathode for improved PEC hydrogen production performance compared to that of bare p-Si photocathode.The formation of the p-n junction between p-Si and GaP NW promotes charge separation,and the lower conduction band position of GaPN relative to that of GaP further facilitates the transfer of photogenerated electrons to the electrode surface.In addition,the NW morphology both shortens the carrier collection distance and increases the specific surface area,which result in superior reaction kinetics.Moreover,introduction of N in GaP is beneficial for enhancing the light absorption as well as stability.Our efficient and facile strategy can be applied to other solar energy conversion systems as well.展开更多
In this study, we designed and synthesized a novel battery-type electrode featuring three-dimensional(3D) hierarchical ZnO@Ni_xCo_(1-x)(OH)_y core/shell nanowire/nanosheet arrays arranged on Nifoam substrate via a two...In this study, we designed and synthesized a novel battery-type electrode featuring three-dimensional(3D) hierarchical ZnO@Ni_xCo_(1-x)(OH)_y core/shell nanowire/nanosheet arrays arranged on Nifoam substrate via a two-step protocol including a wet chemical process followed by electro-deposition. We then characterized its composition, structure and surface morphology by X-ray diff raction, energy-dispersive X-ray spectrometry(EDS), X-ray photoelectron spectroscopy, scanning electron microscopy(SEM), transmission electron microscopy, EDS elemental mapping. Our electrochemical measurements show that the ZnO@Ni_(0.67)Co_(0.33)(OH)_y electrode material exhibited a noticeably high specific capacity of as much as 255(mA ·h)/g at 1 A/g. Additionally, it demonstrated a superior rate capability, as well as an excellent cycling stability with 81.6% capacity retention over 2000 cycles at 5 A/g. This sample delivered a high energy density of 64 W·h/kg and a power density of 250 W/kg at a current density of 1 A/g. With such remarkable electrochemical properties, we expect the 3D hierarchical hybrid electrode material presented in this work to have promising applications for the next generation of energy storage systems.展开更多
Rational design of advanced cost-effective electrocatalysts is vital for the development of water electrolysis. Herein, we report a novel binder-free efficient CoS@CoOcore/shell electrocatalysts for oxygen evolution r...Rational design of advanced cost-effective electrocatalysts is vital for the development of water electrolysis. Herein, we report a novel binder-free efficient CoS@CoOcore/shell electrocatalysts for oxygen evolution reaction(OER) via a combined hydrothermal-sulfurization method. The sulfurized net-like CoSnanoflakes are strongly anchored on the CoOnanowire core forming self-supported binder-free core/shell electrocatalysts. Positive advantages including larger active surface area of CoSnanoflakes,and reinforced structural stability are achieved in the CoS@CoOcore/shell arrays. The OER performances of the CoS@CoOcore/shell arrays are thoroughly tested and enhanced electrocatalytic performance with lower over-potential(260 m V at 20 m A cm) and smaller Tafel slopes(56 mV dec-1) as well as long-term durability are demonstrated in alkaline medium. Our proposed core/shell smart design may provide a new way to construct other advanced binder-free electrocatalysts for applications in electrochemical catalysis.展开更多
This paper studies an oxide/silicon core/shell nanowire MOSFET (OS-CSNM). Through three-dimensional device simulations, we have demonstrated that the OS-CSNM has a lower leakage current and higher Ion/Ioff ratio aft...This paper studies an oxide/silicon core/shell nanowire MOSFET (OS-CSNM). Through three-dimensional device simulations, we have demonstrated that the OS-CSNM has a lower leakage current and higher Ion/Ioff ratio after intro- ducing the oxide core into a traditional nanowire MOSFET (TNM). The oxide/silicon OS-CSNM structure suppresses threshold voltage roll-off, drain induced barrier lowering and subthreshold swing degradation. Smaller intrinsic device delay is also observed in OS-CSNM in comparison with that of TNM.展开更多
Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still fac...Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance.展开更多
Cu-Ni core-shell nanowires, with an inner Cu core diameter of about 60 nm and varying Ni shell thicknesses (10, 30, 50, 60, and 80 nm), were successfully fabricated in porous polycarbonate (PC) ion- track template...Cu-Ni core-shell nanowires, with an inner Cu core diameter of about 60 nm and varying Ni shell thicknesses (10, 30, 50, 60, and 80 nm), were successfully fabricated in porous polycarbonate (PC) ion- track templates by a two-step etching and electrodeposition method. In our experiment, the thickness of Ni shell can be effectively tuned through the etching time of templates. The core-shell structure was confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The X-ray diffraction (XRD) pattern elucidates the co-existence of characteristic peaks for both Cu and Ni, indicating no other phases were formed during preparation. Magnetic hysteresis loops measured via vibrating sample magnetometry (VSM) revealed that Cu-Ni core-shell nanowires with thinner Ni shell exhibited obviously diamagnetic character and together with a weak ferromagnetic activity, whereas ferromagnetic behavior was primarily measured for the wires with thicker Ni shell. With increasing Ni shell thickness, the squareness and coercivity value became smaller due to the shape anisotropy and the formation of multi-domain structure.展开更多
By the fractal dimension method, the polaron properties in cylindrical GaAs/AlxGa1-xAs core-shell nanowire are explored. In this study, the polaron effects in GaAs/AlxGa1-xAs core-shell nanowire at different values of...By the fractal dimension method, the polaron properties in cylindrical GaAs/AlxGa1-xAs core-shell nanowire are explored. In this study, the polaron effects in GaAs/AlxGa1-xAs core-shell nanowire at different values of shell width and aluminum concentration are discussed. The polaron binding energy, polaron mass shift and fractal dimension parameter are numerically worked out each as a function of core radius. The calculation results show that the binding energy and mass shift of the polaron first increase and then decrease as the core radius increases, forming their corresponding maximum values for different aluminum concentrations at a given shell width. Polaron problems in the cylindrical GaAs/AlxGa1-xAs core-shell nanowire are solved simply by using the fractal dimension method to avoid complex and lengthy calculations.展开更多
Germanium (Ge)-carbon (C) core-shell nanowires (NWs), 15 - 80 nm thick and <1 μm long, were grown using continuous-wave laser vaporization of Ge-graphite composite targets in high pressure (0.1 - 0.9 MPa) Ar gas. ...Germanium (Ge)-carbon (C) core-shell nanowires (NWs), 15 - 80 nm thick and <1 μm long, were grown using continuous-wave laser vaporization of Ge-graphite composite targets in high pressure (0.1 - 0.9 MPa) Ar gas. The NW core was crystalline Ge and the shell was amorphous C. The fraction of the NWs in deposits was changed significantly by the Ge content in the targets and had a maximum at the Ge content of 40 atomic %. With increasing Ar pressure, thicker NWs were grown. A strong correlation was evident between the two diameters of the NW and nanoparticle (NP) attached with the tip of the NW. The growth of the NWs can be explained by the formation of Ge-C liquid-like molten NPs having a specific range of size and composition and precipitation of Ge and C followed by phase separation.展开更多
Molecular dynamics(MD) simulations are performed to study the composition-dependent elastic modulus and thermal conductivity for carbon/silicon core/shell nanowires(NWs).For each concerned carbon/silicon core/shell NW...Molecular dynamics(MD) simulations are performed to study the composition-dependent elastic modulus and thermal conductivity for carbon/silicon core/shell nanowires(NWs).For each concerned carbon/silicon core/shell NW with a specified diameter,it is found that elastic modulus is reduced with a linear dependence on cross-sectional area ratio.The fact matches well with the results of theoretical model.Analysis based on the cross-sectional stress distribution indicates that the core region of core/shell NW is capable of functioning as a mechanical support.On the other hand,thermal conductivity also relies on the cross-sectional area ratio of amorphous silicon shell.The core/shell interface plays a considerable influence on the thermal transport property. The decreasing rate of thermal conductivity is gradually decreased as the composition of amorphous silicon shell increases.In addition,by calculating the phonon density of state,we demonstrate that the reduction in thermal conductivity of the core/shell NW stems from the increase of the low frequency modes and the depression of high-frequency nonpropagating diffusion modes.These results provide an effective way to modify the properties of core/shell NWs for related application.展开更多
High-perfo rmance anodes of sodium ion batteries(SIBs)largely depends on rational architecture design and binder-free smart hybridization.Herein,we report TiC/C core/shell nanowires arrays prepared by a one-step chemi...High-perfo rmance anodes of sodium ion batteries(SIBs)largely depends on rational architecture design and binder-free smart hybridization.Herein,we report TiC/C core/shell nanowires arrays prepared by a one-step chemical vapor deposition(CVD)method and apply it as the anode of SIBs for the first time.The conductive TiC core is intimately decorated with carbon shell.The as-obtained TiC/C nanowires are homogeneously grown on the substrate and show core/shell heterostructure and porous architecture with high electronic conductivity and reinforced stability.Owing to these merits,the TiC/C electrode displays good rate performance and outstanding cycling performance with a capacity of 135.3 mAh/g at 0.1 A/g and superior capacity retention of 90.14%after 1000 cycles at 2 A/g.The reported strategy would provide a promising way to construct binder-free arrays electrodes for sodium ion storage.展开更多
To meet the growing demand for wearable smart electronic devices,the development of flexible lithium-ion batteries(LIBs)is essential.Silicon is an ideal candidate for the anode material of flexible lithium-ion batteri...To meet the growing demand for wearable smart electronic devices,the development of flexible lithium-ion batteries(LIBs)is essential.Silicon is an ideal candidate for the anode material of flexible lithium-ion batteries due to its high specific capacity,low working potential,and earth abundance.The largest challenge in developing a flexible silicon anode is how to maintain structural integrity and ensure stable electrochemical reactions during external deformation.In this work,we propose a novel design for fabricating core–shell electrodes based on a copper nanowire(CuNW)array core and magnetron sputtered Si/C shell.The nanowire array structure has characteristics of bending under longitudinal stress and twisting under transverse stress,which helps to maintain the mechanical stability of the structure during electrode bending and cycling.The low-temperature annealing generates a small amount of Cu3Si alloy,which enhances the connection strength between Si and the conductive network and solves the poor conductivity problem of Si,which is known as a semiconductor material.This unique configuration design of CuNW@Si@C-400℃ leads to stable long cycle performance of 1109 mAh∙g^(-1) after 1000 cycles and excellent rate performance of 500 mAh∙g^(-1) at a current density of 10 A∙g^(-1).Furthermore,the CuNW@Si@C-400℃||LiFePO_(4)(LFP)full battery demonstrates excellent flexibility,with a capacity retention of more than 96%after 100 bends.This study provides a promising strategy for the development of flexible lithium-ion batteries.展开更多
Polaron effects in cylindrical GaAs/AlxGa1-xAs core-shell nanowires are studied by applying the fractal dimension method. In this paper, the polaron properties of GaAs/AlxGa1-xAs core-shell nanowires with different co...Polaron effects in cylindrical GaAs/AlxGa1-xAs core-shell nanowires are studied by applying the fractal dimension method. In this paper, the polaron properties of GaAs/AlxGa1-xAs core-shell nanowires with different core radii and aluminum concentrations are discussed. The polaron binding energy, polaron mass shift, and fractal dimension parameter are numerically determined as functions of shell width. The calculation results reveal that the binding energy and mass shift of the polaron first increase and then decrease as the shell width increases. A maximum value appears at a certain shell width for different aluminum concentrations and a given core radius. By using the fractal dimension method, polaron problems in cylindrical GaAs/AlxGa1-xAs core-shell nanowires are solved in a simple manner that avoids complex and lengthy calculations.展开更多
The β-SiC/SiO2 core-shell nanowires with the 'stem-and-node' structure were synthesized in the presence of cerium oxide by the carbothermal reduction of the starch-SiO2 hybrids gel.The samples were characteri...The β-SiC/SiO2 core-shell nanowires with the 'stem-and-node' structure were synthesized in the presence of cerium oxide by the carbothermal reduction of the starch-SiO2 hybrids gel.The samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),high-resolution transmission electron microscopy(HRTEM) and energy-dispersed X-ray(EDX).The results showed that the nanowires consisted of a 20-35 nm diameter crystalline β-SiC core wrapped with a 2-5 n...展开更多
The bind-free carbon cloth-supported electrodes hold the promises for high-performance electrochemical capacitors with high specific capacitance and good cyclic stability.Considering the close connection between their...The bind-free carbon cloth-supported electrodes hold the promises for high-performance electrochemical capacitors with high specific capacitance and good cyclic stability.Considering the close connection between their performance and the amount of carbon material loaded on the electrodes,in this work,NiCo_(2)O_(4) nanowires were firstly grown on the substrate of active carbon cloth to provide the necessary surface area in the longitudinal direction.Then,the quinone-rich nitrogen-doped carbon shell structure was formed around NiCo_(2)O_(4) nanowires,and the obtained composite was used as electrode for electric double layer capacitor.The results showed that the composite electrode displayed an area-specific capacitance of 1794 mF·cm^(-2) at the current density of 1 mA·cm^(-2).The assembled symmetric electric double layer capacitor achieved a high energy density of 6.55 mW·h·cm^(-3) at a power density of 180 mW·cm^(-3).The assembled symmetric capacitor exhibited a capacitance retention of 88.96%after 10000 charge/discharge cycles at the current density of 20 mA·cm^(-2).These results indicated the potentials in the preparation of the carbon electrode materials with high energy density and good cycling stability.展开更多
Semiconductor nanowires(NWs) are sub-wavelength structures which exhibit strong optical(Mie)resonances in the visible range.In addition to such optical resonances,the localized surface plasmon resonances(LSPRs) in met...Semiconductor nanowires(NWs) are sub-wavelength structures which exhibit strong optical(Mie)resonances in the visible range.In addition to such optical resonances,the localized surface plasmon resonances(LSPRs) in metal-semiconductor core-shell(CS) and core-multishell(CMS) NWs can be tailored to achieve novel negative-index metamaterials(N1M),extreme absorbers,invisibility cloaks and sensors.Particularly,in this review,we focus on our recent theoretical studies which highlight the versatility of CS and CMS NWs for:1) the design of negative-index metamaterials in the visible range and2) plasmonic light harvesting in ultrathin photocatalyst layers for water splitting.Utilizing the LSPR in the metal layer and the magnetic dipole(Mie) resonance in the semiconductor shell under transverse electric(TE) polarization,semiconductor-metal-semiconductor CMS NWs can be designed to exhibit spectrally overlapping electric and magnetic resonances in the visible range.NWs exhibiting such double resonances can be considered as meta-atoms and arrayed to form polarization dependent,low-loss NIM.Alternatively,by tuning the LSPR in the TE polarization and the optical resonance in the transverse magnetic(TM) polarization of metal-photocatalyst CS and semiconductor-metal-photocatalyst CMS NWs,the absorption within ultrathin(sub-50 nm) photocatalyst layers can be substantially enhanced.Notably,aluminum and copper based NWs provide absorption enhancement remarkably close to silver and gold based NWs,respectively.Further,such absorption is polarization independent and remains high over a large range of incidence angles and permittivity of the medium.Therefore,due to the tunability of their optical properties,CS and CMS NWs are expected to be vital components for the design of nanophotonic devices.展开更多
Carbon nanotubes (CNTs)/mesostructured silica core-shell nanowires with a carbon nanotube core and controllable highly ordered periodic mesoporous silica shell are syntheiszed via the interfacial surfac- tant template...Carbon nanotubes (CNTs)/mesostructured silica core-shell nanowires with a carbon nanotube core and controllable highly ordered periodic mesoporous silica shell are syntheiszed via the interfacial surfac- tant template. The core-shell nanowires are characterized by transmission electron microscope (TEM), X-ray diffraction pattern (XRD) and nitrogen sorption/desorption. The results indicate that the core-shell nanowires have highly ordered periodic mesoporous silica shell (space group p6mm), high BET sur- face area and narrow pore size distribution. Moreover, the morphology of core-shell nanowires can be controlled by the pH value. The core-shell nanowires have promising applications in biosensors, nanoprobes and energy storage due to their good dispersibility in polar solvents.展开更多
The development of highly efficient and stable Pd-based catalysts is crucial to improve their sluggish oxygen reduction reaction(ORR)kinetics in acid media.To improve ORR activity and utilization efficiency of Pd,an i...The development of highly efficient and stable Pd-based catalysts is crucial to improve their sluggish oxygen reduction reaction(ORR)kinetics in acid media.To improve ORR activity and utilization efficiency of Pd,an ideal catalyst should have ORR-favorable chemical environment,optimized geometric structure,and long periods of operation.In this work,we first synthesize a novel trimetallic Au@PdPb core–shell catalyst consisting of PdPb alloy nano-layers grown on the surface of ultrathin Au nanowires(NWs)by a two-step water-bath method.The Au@PdPb NWs have the merits of anisotropic one-dimensional nanostructure,high utilization efficiency of Pd atoms and doping of Pb atoms.Because of the structural and multiple compositional advantages,Au@PdPb NWs exhibit remarkably enhanced ORR activity with a high haIf-wave potential(0.827 V),much better than those of commercial Pd black(0.788 V)and bimetallic Au@Pd NWs(0.803 V).Moreover,Au@PdPb NWs display better electrocatalytic stability for the ORR than those of Pd black and Au@Pd NWs.This study demonstrates the validity of our approach for deriving highly ORR-active Pd-based catalysts by modifying their structure and composition.展开更多
基金supported by "973" Program (No.2012CB619301 and 2011CB925600)the National Natural Science Foundations of China (No.61227009,61106008,61106118,90921002,and 60827004)+1 种基金the Natural Science Foundations of Fujian Provincethe fundamental research funds for the central universities (No.2011121042 and 2011121026)
文摘Nanowire-based photovoltaic devices have the advantages over planar devices in light absorption and charge transport and collection.Recently,a new strategy relying on type-Ⅱ band alignment has been proposed to facilitate efficient charge separation in core/shell nanowire solar cells.This paper reviews the type-Ⅱ heterojunction solar cells based on core/shell nanowire arrays,and specifically focuses on the progress of theoretical design and fabrication of type-Ⅱ Zn O/Zn Se core/shell nanowire-based solar cells.A strong photoresponse associated with the type-Ⅱ interfacial transition exhibits a threshold of 1.6 e V,which demonstrates the feasibility and great potential for exploring all-inorganic versions of type-Ⅱ heterojunction solar cells using wide bandgap semiconductors.Future prospects in this area are also outlooked.
基金financial support for this work from the National Natural Science Foundation of China (21422303, 21573049, 21872043, 81602643)Beijing Natural Science Foundation (2142036)+1 种基金Youth Innovation Promotion AssociationSpecial Program of “One Belt One Road” of CAS~~
文摘Simultaneously improving the efficiency and stability on a large scale is significant for the development of photoelectrochemical(PEC)water splitting systems.Here,we demonstrated a novel design of GaP/GaPN core/shell nanowire(NW)decorated p-Si photocathode for improved PEC hydrogen production performance compared to that of bare p-Si photocathode.The formation of the p-n junction between p-Si and GaP NW promotes charge separation,and the lower conduction band position of GaPN relative to that of GaP further facilitates the transfer of photogenerated electrons to the electrode surface.In addition,the NW morphology both shortens the carrier collection distance and increases the specific surface area,which result in superior reaction kinetics.Moreover,introduction of N in GaP is beneficial for enhancing the light absorption as well as stability.Our efficient and facile strategy can be applied to other solar energy conversion systems as well.
基金supported by the National Basic Research Program of China ("973" Program, No. 2012CB720302)the National Key Research and Development Program of China (No 2016YFF0102503)
文摘In this study, we designed and synthesized a novel battery-type electrode featuring three-dimensional(3D) hierarchical ZnO@Ni_xCo_(1-x)(OH)_y core/shell nanowire/nanosheet arrays arranged on Nifoam substrate via a two-step protocol including a wet chemical process followed by electro-deposition. We then characterized its composition, structure and surface morphology by X-ray diff raction, energy-dispersive X-ray spectrometry(EDS), X-ray photoelectron spectroscopy, scanning electron microscopy(SEM), transmission electron microscopy, EDS elemental mapping. Our electrochemical measurements show that the ZnO@Ni_(0.67)Co_(0.33)(OH)_y electrode material exhibited a noticeably high specific capacity of as much as 255(mA ·h)/g at 1 A/g. Additionally, it demonstrated a superior rate capability, as well as an excellent cycling stability with 81.6% capacity retention over 2000 cycles at 5 A/g. This sample delivered a high energy density of 64 W·h/kg and a power density of 250 W/kg at a current density of 1 A/g. With such remarkable electrochemical properties, we expect the 3D hierarchical hybrid electrode material presented in this work to have promising applications for the next generation of energy storage systems.
基金supported by the National Natural Science Foundation of China (grant no. 51728204, 51772272 and 51502263)Qianjiang Talents Plan D (grant. no. QJD1602029)+2 种基金the Startup Foundation for Hundred-Talent Program of Zhejiang Universitysupport by the Program for Innovative Research Team in University of Ministry of Education of China (IRT13037)the Key Science and Technology Innovation Team of Zhejiang Province (2010R50013)
文摘Rational design of advanced cost-effective electrocatalysts is vital for the development of water electrolysis. Herein, we report a novel binder-free efficient CoS@CoOcore/shell electrocatalysts for oxygen evolution reaction(OER) via a combined hydrothermal-sulfurization method. The sulfurized net-like CoSnanoflakes are strongly anchored on the CoOnanowire core forming self-supported binder-free core/shell electrocatalysts. Positive advantages including larger active surface area of CoSnanoflakes,and reinforced structural stability are achieved in the CoS@CoOcore/shell arrays. The OER performances of the CoS@CoOcore/shell arrays are thoroughly tested and enhanced electrocatalytic performance with lower over-potential(260 m V at 20 m A cm) and smaller Tafel slopes(56 mV dec-1) as well as long-term durability are demonstrated in alkaline medium. Our proposed core/shell smart design may provide a new way to construct other advanced binder-free electrocatalysts for applications in electrochemical catalysis.
基金Project supported by National Natural Science Foundation of China (Grant No. 60876027)Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200800010054)
文摘This paper studies an oxide/silicon core/shell nanowire MOSFET (OS-CSNM). Through three-dimensional device simulations, we have demonstrated that the OS-CSNM has a lower leakage current and higher Ion/Ioff ratio after intro- ducing the oxide core into a traditional nanowire MOSFET (TNM). The oxide/silicon OS-CSNM structure suppresses threshold voltage roll-off, drain induced barrier lowering and subthreshold swing degradation. Smaller intrinsic device delay is also observed in OS-CSNM in comparison with that of TNM.
基金the financial support from National Natural Science Foundation of China (No. 21972102)National Key Research and Development Program of China (2021YFA0910400)+3 种基金Natural Science Foundation of Jiangsu Province (BK20200991)Suzhou Science and Technology Planning Project (SS202016)the USTS starting fund (No.332012104)the Natural Science Foundation of Suzhou University of Science and Technology (No.342134401)。
文摘Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance.
基金Funded by the National Natural Science Foundation of China(Nos.11175221,11179003,11005134,11375241,and 11275237)the West Light Foundation of Chinese Academy of Sciences(CAS)
文摘Cu-Ni core-shell nanowires, with an inner Cu core diameter of about 60 nm and varying Ni shell thicknesses (10, 30, 50, 60, and 80 nm), were successfully fabricated in porous polycarbonate (PC) ion- track templates by a two-step etching and electrodeposition method. In our experiment, the thickness of Ni shell can be effectively tuned through the etching time of templates. The core-shell structure was confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The X-ray diffraction (XRD) pattern elucidates the co-existence of characteristic peaks for both Cu and Ni, indicating no other phases were formed during preparation. Magnetic hysteresis loops measured via vibrating sample magnetometry (VSM) revealed that Cu-Ni core-shell nanowires with thinner Ni shell exhibited obviously diamagnetic character and together with a weak ferromagnetic activity, whereas ferromagnetic behavior was primarily measured for the wires with thicker Ni shell. With increasing Ni shell thickness, the squareness and coercivity value became smaller due to the shape anisotropy and the formation of multi-domain structure.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10574011 and 10974017)
文摘By the fractal dimension method, the polaron properties in cylindrical GaAs/AlxGa1-xAs core-shell nanowire are explored. In this study, the polaron effects in GaAs/AlxGa1-xAs core-shell nanowire at different values of shell width and aluminum concentration are discussed. The polaron binding energy, polaron mass shift and fractal dimension parameter are numerically worked out each as a function of core radius. The calculation results show that the binding energy and mass shift of the polaron first increase and then decrease as the core radius increases, forming their corresponding maximum values for different aluminum concentrations at a given shell width. Polaron problems in the cylindrical GaAs/AlxGa1-xAs core-shell nanowire are solved simply by using the fractal dimension method to avoid complex and lengthy calculations.
文摘Germanium (Ge)-carbon (C) core-shell nanowires (NWs), 15 - 80 nm thick and <1 μm long, were grown using continuous-wave laser vaporization of Ge-graphite composite targets in high pressure (0.1 - 0.9 MPa) Ar gas. The NW core was crystalline Ge and the shell was amorphous C. The fraction of the NWs in deposits was changed significantly by the Ge content in the targets and had a maximum at the Ge content of 40 atomic %. With increasing Ar pressure, thicker NWs were grown. A strong correlation was evident between the two diameters of the NW and nanoparticle (NP) attached with the tip of the NW. The growth of the NWs can be explained by the formation of Ge-C liquid-like molten NPs having a specific range of size and composition and precipitation of Ge and C followed by phase separation.
基金the China Postdoctoral Science Foundation and Fundamental Research Funds for the Central Universities(No.HIT NSRIF 2013031)
文摘Molecular dynamics(MD) simulations are performed to study the composition-dependent elastic modulus and thermal conductivity for carbon/silicon core/shell nanowires(NWs).For each concerned carbon/silicon core/shell NW with a specified diameter,it is found that elastic modulus is reduced with a linear dependence on cross-sectional area ratio.The fact matches well with the results of theoretical model.Analysis based on the cross-sectional stress distribution indicates that the core region of core/shell NW is capable of functioning as a mechanical support.On the other hand,thermal conductivity also relies on the cross-sectional area ratio of amorphous silicon shell.The core/shell interface plays a considerable influence on the thermal transport property. The decreasing rate of thermal conductivity is gradually decreased as the composition of amorphous silicon shell increases.In addition,by calculating the phonon density of state,we demonstrate that the reduction in thermal conductivity of the core/shell NW stems from the increase of the low frequency modes and the depression of high-frequency nonpropagating diffusion modes.These results provide an effective way to modify the properties of core/shell NWs for related application.
基金supported by the National Natural Science Foundation of China(Nos.51772272,51728204)Fundamental Research Funds for the Central Universities(No.2018QNA4011)+4 种基金Qianjiang Talents Plan D(No.QJD1602029)Startup Foundation for Hundred-Talent Program of Zhejiang UniversityAnalysis Testing and Commonweal Project of Zhejiang Province(No.GC19E020005)the TEM support from Qiaohong He and Xiaokun DingSEM support from Fang Chen from Department of Chemistry,Zhejiang University。
文摘High-perfo rmance anodes of sodium ion batteries(SIBs)largely depends on rational architecture design and binder-free smart hybridization.Herein,we report TiC/C core/shell nanowires arrays prepared by a one-step chemical vapor deposition(CVD)method and apply it as the anode of SIBs for the first time.The conductive TiC core is intimately decorated with carbon shell.The as-obtained TiC/C nanowires are homogeneously grown on the substrate and show core/shell heterostructure and porous architecture with high electronic conductivity and reinforced stability.Owing to these merits,the TiC/C electrode displays good rate performance and outstanding cycling performance with a capacity of 135.3 mAh/g at 0.1 A/g and superior capacity retention of 90.14%after 1000 cycles at 2 A/g.The reported strategy would provide a promising way to construct binder-free arrays electrodes for sodium ion storage.
基金Financial supports from the National Natural Science Foundation of China(No.22209075)the Natural Science Foundation of Chongqing(No.2022NSCQ-MSX4268)+1 种基金the Postdoctoral Innovation Talents Support Plan of Chongqing(No.CQBX2021012)the Scientific Research Project of Fujian Provincial Department of Education(No.JAT220530)are acknowledged.
文摘To meet the growing demand for wearable smart electronic devices,the development of flexible lithium-ion batteries(LIBs)is essential.Silicon is an ideal candidate for the anode material of flexible lithium-ion batteries due to its high specific capacity,low working potential,and earth abundance.The largest challenge in developing a flexible silicon anode is how to maintain structural integrity and ensure stable electrochemical reactions during external deformation.In this work,we propose a novel design for fabricating core–shell electrodes based on a copper nanowire(CuNW)array core and magnetron sputtered Si/C shell.The nanowire array structure has characteristics of bending under longitudinal stress and twisting under transverse stress,which helps to maintain the mechanical stability of the structure during electrode bending and cycling.The low-temperature annealing generates a small amount of Cu3Si alloy,which enhances the connection strength between Si and the conductive network and solves the poor conductivity problem of Si,which is known as a semiconductor material.This unique configuration design of CuNW@Si@C-400℃ leads to stable long cycle performance of 1109 mAh∙g^(-1) after 1000 cycles and excellent rate performance of 500 mAh∙g^(-1) at a current density of 10 A∙g^(-1).Furthermore,the CuNW@Si@C-400℃||LiFePO_(4)(LFP)full battery demonstrates excellent flexibility,with a capacity retention of more than 96%after 100 bends.This study provides a promising strategy for the development of flexible lithium-ion batteries.
文摘Polaron effects in cylindrical GaAs/AlxGa1-xAs core-shell nanowires are studied by applying the fractal dimension method. In this paper, the polaron properties of GaAs/AlxGa1-xAs core-shell nanowires with different core radii and aluminum concentrations are discussed. The polaron binding energy, polaron mass shift, and fractal dimension parameter are numerically determined as functions of shell width. The calculation results reveal that the binding energy and mass shift of the polaron first increase and then decrease as the shell width increases. A maximum value appears at a certain shell width for different aluminum concentrations and a given core radius. By using the fractal dimension method, polaron problems in cylindrical GaAs/AlxGa1-xAs core-shell nanowires are solved in a simple manner that avoids complex and lengthy calculations.
基金supported by the National Key Technology R&D Program (2007BEA08B01)the Natural Science Foundation of Fujian Province of China (E0710004)Joint Research Program of Fuzhou University (DH-548)
文摘The β-SiC/SiO2 core-shell nanowires with the 'stem-and-node' structure were synthesized in the presence of cerium oxide by the carbothermal reduction of the starch-SiO2 hybrids gel.The samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),high-resolution transmission electron microscopy(HRTEM) and energy-dispersed X-ray(EDX).The results showed that the nanowires consisted of a 20-35 nm diameter crystalline β-SiC core wrapped with a 2-5 n...
基金the Natural Science Foundation of Shandong Province of China (Grant No.ZR2020MB024)for financially supporting this work.
文摘The bind-free carbon cloth-supported electrodes hold the promises for high-performance electrochemical capacitors with high specific capacitance and good cyclic stability.Considering the close connection between their performance and the amount of carbon material loaded on the electrodes,in this work,NiCo_(2)O_(4) nanowires were firstly grown on the substrate of active carbon cloth to provide the necessary surface area in the longitudinal direction.Then,the quinone-rich nitrogen-doped carbon shell structure was formed around NiCo_(2)O_(4) nanowires,and the obtained composite was used as electrode for electric double layer capacitor.The results showed that the composite electrode displayed an area-specific capacitance of 1794 mF·cm^(-2) at the current density of 1 mA·cm^(-2).The assembled symmetric electric double layer capacitor achieved a high energy density of 6.55 mW·h·cm^(-3) at a power density of 180 mW·cm^(-3).The assembled symmetric capacitor exhibited a capacitance retention of 88.96%after 10000 charge/discharge cycles at the current density of 20 mA·cm^(-2).These results indicated the potentials in the preparation of the carbon electrode materials with high energy density and good cycling stability.
基金support from the National Science Foundation ECCS 1118934
文摘Semiconductor nanowires(NWs) are sub-wavelength structures which exhibit strong optical(Mie)resonances in the visible range.In addition to such optical resonances,the localized surface plasmon resonances(LSPRs) in metal-semiconductor core-shell(CS) and core-multishell(CMS) NWs can be tailored to achieve novel negative-index metamaterials(N1M),extreme absorbers,invisibility cloaks and sensors.Particularly,in this review,we focus on our recent theoretical studies which highlight the versatility of CS and CMS NWs for:1) the design of negative-index metamaterials in the visible range and2) plasmonic light harvesting in ultrathin photocatalyst layers for water splitting.Utilizing the LSPR in the metal layer and the magnetic dipole(Mie) resonance in the semiconductor shell under transverse electric(TE) polarization,semiconductor-metal-semiconductor CMS NWs can be designed to exhibit spectrally overlapping electric and magnetic resonances in the visible range.NWs exhibiting such double resonances can be considered as meta-atoms and arrayed to form polarization dependent,low-loss NIM.Alternatively,by tuning the LSPR in the TE polarization and the optical resonance in the transverse magnetic(TM) polarization of metal-photocatalyst CS and semiconductor-metal-photocatalyst CMS NWs,the absorption within ultrathin(sub-50 nm) photocatalyst layers can be substantially enhanced.Notably,aluminum and copper based NWs provide absorption enhancement remarkably close to silver and gold based NWs,respectively.Further,such absorption is polarization independent and remains high over a large range of incidence angles and permittivity of the medium.Therefore,due to the tunability of their optical properties,CS and CMS NWs are expected to be vital components for the design of nanophotonic devices.
基金Supported by the Australian Research Council (ARC) through Discovery Project program (DP0452461)
文摘Carbon nanotubes (CNTs)/mesostructured silica core-shell nanowires with a carbon nanotube core and controllable highly ordered periodic mesoporous silica shell are syntheiszed via the interfacial surfac- tant template. The core-shell nanowires are characterized by transmission electron microscope (TEM), X-ray diffraction pattern (XRD) and nitrogen sorption/desorption. The results indicate that the core-shell nanowires have highly ordered periodic mesoporous silica shell (space group p6mm), high BET sur- face area and narrow pore size distribution. Moreover, the morphology of core-shell nanowires can be controlled by the pH value. The core-shell nanowires have promising applications in biosensors, nanoprobes and energy storage due to their good dispersibility in polar solvents.
基金supported by the Academic Research Fund(AcRF)Tier 1 Grant(No.RG105/19)from the Ministry of Education in Singapore,the National Natural Science Foundation of China(No.21875112)and the China Scholarship Council(No.201906090199).
文摘The development of highly efficient and stable Pd-based catalysts is crucial to improve their sluggish oxygen reduction reaction(ORR)kinetics in acid media.To improve ORR activity and utilization efficiency of Pd,an ideal catalyst should have ORR-favorable chemical environment,optimized geometric structure,and long periods of operation.In this work,we first synthesize a novel trimetallic Au@PdPb core–shell catalyst consisting of PdPb alloy nano-layers grown on the surface of ultrathin Au nanowires(NWs)by a two-step water-bath method.The Au@PdPb NWs have the merits of anisotropic one-dimensional nanostructure,high utilization efficiency of Pd atoms and doping of Pb atoms.Because of the structural and multiple compositional advantages,Au@PdPb NWs exhibit remarkably enhanced ORR activity with a high haIf-wave potential(0.827 V),much better than those of commercial Pd black(0.788 V)and bimetallic Au@Pd NWs(0.803 V).Moreover,Au@PdPb NWs display better electrocatalytic stability for the ORR than those of Pd black and Au@Pd NWs.This study demonstrates the validity of our approach for deriving highly ORR-active Pd-based catalysts by modifying their structure and composition.