Ni@Pd core-shell nanoparticles with a mean particle size of 8–9 nm were prepared by solvothermal reduction of bivalent nickel and palladium in oleylamine and trioctylphosphine.Subsequently,the first-ever deposition o...Ni@Pd core-shell nanoparticles with a mean particle size of 8–9 nm were prepared by solvothermal reduction of bivalent nickel and palladium in oleylamine and trioctylphosphine.Subsequently,the first-ever deposition of Ni@Pd core-shell nanoparticles having different compositions on a metal-organic framework(MIL-101)was accomplished by wet impregnation in n-hexane.The Ni@Pd/MIL-101 materials were characterized by powder X-ray diffraction,Fourier transform infrared spectroscopy,transmission electron microscopy,and energy-dispersive X-ray spectroscopy and also investigated as catalysts for the hydrogenation of nitrobenzene under mild reaction conditions.At 30 °C and 0.1 MPa of H2 pressure,the Ni@Pd/MIL-101 gives a TOF as high as 375 h–1 for the hydrogenation of nitrobenzene and is applicable to a wide range of substituted nitroarenes.The exceptional performance of this catalyst is believed to result from the significant Ni-Pd interaction in the core-shell structure,together with promotion of the conversions of aromatics by uncoordinated Lewis acidic Cr sites on the MIL-101 support.展开更多
Cu2O@Cu2O core-shell nanoparticles (NPs) were prepared by using solution phase strategy. It was found that Cu2O@Cu2O NPs were easily converted to Cu2O@Cu NPs with the help of polyvinylpyrrolidine (PVP) and excessive a...Cu2O@Cu2O core-shell nanoparticles (NPs) were prepared by using solution phase strategy. It was found that Cu2O@Cu2O NPs were easily converted to Cu2O@Cu NPs with the help of polyvinylpyrrolidine (PVP) and excessive ascorbic acid (AA) in air at room temperature, which was an interesting phenomenon. The features of the two kinds of NPs were characterized by XRD, TEM and extinction spectra. Cu2O@Cu NPs with different shell thicknesses showed wide tunable optical properties for the localized surface plasmon (LSP) in metallic Cu. But Cu2O@Cu2O NPs did not indicate this feature. FTIR results reveal that Cu+ ions on the surface of Cu2O shell coordinate with N and O atoms in PVP and are further reduced to metallic Cu by excessive AA and then form a nucleation site on the surface of Cu2O nanocrystalline. PVP binds onto different sites to proceed with the reduction utill all the Cu sources in Cu2O shell are completely assumed.展开更多
The Ni@Au core-shell nanoparticles had been successfully synthesized from aqueous solution by one-step route at room temperature. The Ni@Au nanoparticles can be an excellent catalyst for Ullmann reaction. The advantag...The Ni@Au core-shell nanoparticles had been successfully synthesized from aqueous solution by one-step route at room temperature. The Ni@Au nanoparticles can be an excellent catalyst for Ullmann reaction. The advantage of Ni@Au is that the catalyst does not need additional reducing agents. The Au shell can effectively protect the Ni core from oxidation. The Ni core and Au shell have both composited in structure and cooperated in function.展开更多
Magnetic core-shell nanoparticles have been widely studied because of their excellent and convenient magnetic and electrical properties.In this present work core-shell magneticnanoparticles (MNPs) were synthesized by ...Magnetic core-shell nanoparticles have been widely studied because of their excellent and convenient magnetic and electrical properties.In this present work core-shell magneticnanoparticles (MNPs) were synthesized by simple chemical precipitation method. Firstly Mg(x)Fe(1–x)O (magnesiwuestite) nano powder samples were synthesised by low temperature chemical combustion method. Secondly the as synthesised Mg(x)Fe(1–x)O nanoparticles are used to synthesis magnetic core-shell Nano particles byusing 2-propanol, poly ethylene glycol (PEG), ammonia solution 30 wt%, tetraethyl orthosilicate (TEOS). Separation of the core-shell magnetic nanoparticles from the aqueous suspension using a centrifuge. The synthesised MNPs and core shell MNP were characterized by X-ray diffraction (XRD), Thermal gravimetric-differential thermal analyzer (TG-DTA), Transmission electron microscopy (TEM), scanning electron microscopy (SEM), (EDAX) for structural, thermal and morphological respectively. It is observed that the particle size of spherical sampleis 32.5 nm.展开更多
Co@Au core shell nanoparticles(NPs) of different shell thicknesses were fabricated by a combination of the displacement process and the reduction-deposition process in a microfluidic reactor. The effect of the shell t...Co@Au core shell nanoparticles(NPs) of different shell thicknesses were fabricated by a combination of the displacement process and the reduction-deposition process in a microfluidic reactor. The effect of the shell thickness on the fine structures(local atom arrangement) of core materials was investigated by X-ray Absorption Near Edge Structure(XANES) and Extended X-ray Absorption Fine Structure(EXAFS).The results indicate that the shell thickness affects the fine structure of the core materials by causing atomic re-arrangement between the hexagonal close pack(hcp) and the face centered cubic(fcc) structure, and forming Co-Au bonds in the core-shell interface.展开更多
The properties of Raman phonons are very important due to the fact that they can availably reflect some important physical information. An abnormal Raman peak is observed at about 558 cm-1 in In film composed of In/In...The properties of Raman phonons are very important due to the fact that they can availably reflect some important physical information. An abnormal Raman peak is observed at about 558 cm-1 in In film composed of In/InOx core-shell structured nanoparticles, and the phonon mode stays very stable when the temperature changes. Our results indicate that this Raman scattering is attributed to the existence of incomplete indium oxide in the oxide shell.展开更多
t A self-templating method was employed to synthesize core-shell nanoparticles with octylmethoxycinamate(OMC), a well-known organic UV absorber, as core and nanosilica particles as shell. The characteristic of this ...t A self-templating method was employed to synthesize core-shell nanoparticles with octylmethoxycinamate(OMC), a well-known organic UV absorber, as core and nanosilica particles as shell. The characteristic of this method is that the whole process requires neither surface treatment for nanosilica particles nor additional surfactant or stabilizer, and all the reactions could be finished in one-pot, which exempts removing template and reduces reaction steps compared to the conventional process. The morphology, structure, particle size distribution, chemical composition and optical property of OMC-SiO2 nanoparticles were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), dynamic light scattering(DLS), FTIR spectrometry and UV absorption spectrometry, respectively. Experiment results indicate that the resulting OMC-SiO2 nanoparticles were perfectly spherical with smooth particle surfaces, and had clear core-shell structures. The particle size could be tuned by altering reaction conditions. In addition, the mechanism of the self-templating method for forming core-shell nanoparticles was discussed.展开更多
Memory effect has been studied in the system using magnetic nanoparticles with Ni nanocore encapsulated by non-magnetic and oxidation-resistant Ni2P nanoshell acquired through surface-phosphatizing Ni nanoparticles. T...Memory effect has been studied in the system using magnetic nanoparticles with Ni nanocore encapsulated by non-magnetic and oxidation-resistant Ni2P nanoshell acquired through surface-phosphatizing Ni nanoparticles. The self-assembled array with interparticle spacing of about 6 nm shows memory effect up to 200 K below its average blocking temperature of 260 K. And reducing the interparticle spacing of the self-assembled array via annealing can further enlarge the temperature range of memory effect up to room-temperature. The memory effect can be understood based on the thermal relaxation theory of single-domain magnetic nanoparticles. Furthermore, the read-write magnetic coding is realized based on the temperature changes, using the memory effect up to room-temperature, which may be useful for future memory devices.展开更多
Unlike previous emulsion polymerization, we used grafting reactions in soap-free emulsion systems. In this study, we synthesized grafted PMMA/PEI core-shell nanoparticles by varying the MMA/PEI content and molecular w...Unlike previous emulsion polymerization, we used grafting reactions in soap-free emulsion systems. In this study, we synthesized grafted PMMA/PEI core-shell nanoparticles by varying the MMA/PEI content and molecular weight of PEI (M<sub>n</sub> = 600, 8000, and 10,000). The size and morphology of the core-shell nanoparticles were characterized by a particle size analyzer and scanning electron microscopy. The nanoparticles were 178 - 408 nm in diameter and swelled in water or methanol by 30 - 75 nm. The size of the nanoparticles increased with MMA contents, whereas the size distribution progressively became homogeneous with increasing molecular weight of PEI. Lastly, we measured CO<sub>2</sub> adsorption capacity of the grafted PMMA/PEI core-shell nanoparticles, and we found the capacity to be limited at a level of 0.69 mg, which occurred for nanoparticles prepared from emulsions at a pH value of 11.展开更多
The selected area electron diffraction (SAED) pattern of magnetic iron oxide core/gold shell nanoparticles has been studied. For the composite particles with mean size less than 10 nm, their SAED pattern is found to...The selected area electron diffraction (SAED) pattern of magnetic iron oxide core/gold shell nanoparticles has been studied. For the composite particles with mean size less than 10 nm, their SAED pattern is found to be different from either the pattern of pure Fe oxide nanoparticles or that of pure Au particles. Based on the fact that the ring diameters of these composite particles fit the characteristic relation for the fcc structure, the Au atoms on surfaces of the concerned particles are supposed to pack in a way more tightly than they usually do in pure Au nanoparticles. The driving force for this is the coherency strain which enables the shell material at the heterostructured interface to adapt the lattice parameters of the core.展开更多
Silica and montmorillonite-supported silica nanoparticles were prepared via an acid one step sol-gel process. The synthesized solids were characterized using XRD, FTIR, TEM and N2 adsorption. The effect of preparing t...Silica and montmorillonite-supported silica nanoparticles were prepared via an acid one step sol-gel process. The synthesized solids were characterized using XRD, FTIR, TEM and N2 adsorption. The effect of preparing temperatures on the structure and properties of the silica nanoparticles were studied. The results show that the increase of annealing temperature from 25 to 200℃, don’t change amorphous state of silica. While for montmorillonite-supported silica the clay platelets are delaminated during the sol-gel process. TEM results showed that the average particle size of silica is increased by increasing temperature due to the particle sintering and the clay-silica nanoparticles possessed core–shell morphology with diameter of 29 nm. The surface area measurements showed that by increasing annealing temperature the surface area was decreased due to aggregation of particle. The clay-silica sample showed lower average pore width than that of the silica prepared at 200℃ indicating that it has a macropores structure. The adsorption efficiency of the prepared samples was tested by adsorption of protoporphyrin IX. The highest adsorption efficiency was found for SiO2 prepared at 200℃. Temkin model describe the equilibrium of adsorption of protoporphyrin IX on caly-silica nanoparticles under different conditions.展开更多
Bimetallic gold-silver core-shell nanoparticles were prepared by chemical reduction in aqueous solution, following a method that was friendly to the environment, allowing us to use this for medicinal purposes. Gold na...Bimetallic gold-silver core-shell nanoparticles were prepared by chemical reduction in aqueous solution, following a method that was friendly to the environment, allowing us to use this for medicinal purposes. Gold nanoparticles were synthesized, and silver cations were then reduced on the nanoparticles. Using the optical properties of metallic nanoparticles, surface plasmon resonance was determined by UV-Vis spectroscopy, and the values obtained for gold and silver were approximately 520 nm and 400 nm in wavelength, respectively. The absorption peaks of the surface plasmon band show a clear red-shift due to size effect in the case of the silver surface, and a plasmon coupling effect, in the case of gold. To obtain a better understanding of the coating conditions, high resolution transmission electron microscopy was used. The average hydrodynamic size and the size distribution of the synthesized nanoparticles were obtained by dynamic light scattering. The development of this process, which is benign for the environment, opens the possibility for many applications in the areas of renewable energy, medicine and biology.展开更多
Magnetic core-shell nanoparticles of type Fe3O4@Ag were synthesized in gram scale following a combined co-precipitation phase-transfer method and afterwards, processed to nanoparticle polymer (polypropylene and polyam...Magnetic core-shell nanoparticles of type Fe3O4@Ag were synthesized in gram scale following a combined co-precipitation phase-transfer method and afterwards, processed to nanoparticle polymer (polypropylene and polyamide) composites. These composites were used as sheath material for the fabrication of core-sheath fibers. During the melt spinning process, a magnetic field was applied around the roving, whereby the particles move in the still liquid sheath polymer towards the surface. The produced fiber materials were investigated by AFM showing a nanostructuring of the surface, which was indirectly confirmed by determination of a slight surface tension lowering. Nanoparticle movement was shown by cross-section SEM and EDX measurements. The antibacterial activity of the spun fibers was proven by contacting them with Escherichia coli. A long-term stability of this effect was observable by carrying out a standard washability test. In contrast to previous works this new approach uses no deposition technique to introduce surface changes. It rather applies a magnetic force to move appropriately equipped nanoparticles from the inside of the fiber to the surface. This leads in only one step to a strong superficial anchoring of the particles resulting in a unique combination of long-term stable antibacterial and improved anti-soiling effects.展开更多
The monodisperse Au@Ag bimetallic nanorod is encapsulated by crosslinked poly( N-isopropylacrylamide)( PNIPAM) to produce thermo-responsive composite microgel with well-defined core-shell structure( Au@ Ag NR@ PNIPAM ...The monodisperse Au@Ag bimetallic nanorod is encapsulated by crosslinked poly( N-isopropylacrylamide)( PNIPAM) to produce thermo-responsive composite microgel with well-defined core-shell structure( Au@ Ag NR@ PNIPAM microgel)by seed-precipitation polymerization method using butenoic acid modified Au @ Ag NRs as seeds. When the temperature of the aqueous medium increases from 20℃ to 50℃,the localized surface plasmon resonance( LSPR) band of the entrapped Au @ Ag NR is pronouncedly red-shifted because of the decreased spatial distances between them as a result of shrinkage of the microgels,leading to their plasmonic coupling. The temperature tunable plasmonic coupling is demonstrated by temperature dependence of the surface enhanced Raman spectroscopy( SERS) signal of 1-naphthol in aqueous solution. Different from static plasmonic coupling modes from nanostructured assembly or array system of noble metals,the proposed plasmonic coupling can be dynamically controlled by environmental temperature. Therefore, the thermo responsive hybrid microgels have potential applications in mobile LSPR or SERS microsensors for living tissues or cells.展开更多
We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectroly...We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectrolyte (PE) multilayers,for which Au@Ag-NRs were controlled by adjusting the silver layer thickness.The effect of silver layer thickness of Au@Ag-NRs on the SERS performance of the fiber probe was investigated.The SERS fiber probe shows the best performance when the silver layer thickness is controlled at 8.57 nm.Under the condition of optimizing silver layer thickness,the fiber probe exhibits ultra-high sensitivity (i e,10^(-10) M crystalline violet,CV),good reproducibility (i e,RSD of 3.5%) and stability.Besides,electromagnetic field distribution of the SERS fiber probe was also investigated.The strongest enhancement is found within the core of fiber,whereas a weakened electromagnetic field exists in the fiber cladding layer.The SERS fiber probe can be a good candidate in ultra-trace detection for biomedical and environmental areas.展开更多
Hierarchical magnetic-dielectric composites are promising functional materials with prospective applications in microwave absorption(MA)field.Herein,a three-dimension hierarchical“nanotubes on microrods,”core–shell...Hierarchical magnetic-dielectric composites are promising functional materials with prospective applications in microwave absorption(MA)field.Herein,a three-dimension hierarchical“nanotubes on microrods,”core–shell magnetic metal–carbon composite is rationally constructed for the first time via a fast metal–organic frameworksbased ligand exchange strategy followed by a carbonization treatment with melamine.Abundant magnetic CoFe nanoparticles are embedded within one-dimensional graphitized carbon/carbon nanotubes supported on micro-scale Mo2N rod(Mo2N@CoFe@C/CNT),constructing a special multi-dimension hierarchical MA material.Ligand exchange reaction is found to determine the formation of hierarchical magnetic-dielectric composite,which is assembled by dielectric Mo2N as core and spatially dispersed CoFe nanoparticles within C/CNTs as shell.Mo2N@CoFe@C/CNT composites exhibit superior MA performance with maximum reflection loss of−53.5 dB at 2 mm thickness and show a broad effective absorption bandwidth of 5.0 GHz.The Mo2N@CoFe@C/CNT composites hold the following advantages:(1)hierarchical core–shell structure offers plentiful of heterojunction interfaces and triggers interfacial polarization,(2)unique electronic migration/hop paths in the graphitized C/CNTs and Mo2N rod facilitate conductive loss,(3)highly dispersed magnetic CoFe nanoparticles within“tubes on rods”matrix build multi-scale magnetic coupling network and reinforce magnetic response capability,confirmed by the off-axis electron holography.展开更多
Polyvinyl alcohol coated magnetic particles (PVA ferrofluids) have been synthesized by chemical co-precipitation of Fe(II)/Fe(III) salts in 1.5 mol/L NH4OH solution at 70 degreesC in the presence of PVA. The resultant...Polyvinyl alcohol coated magnetic particles (PVA ferrofluids) have been synthesized by chemical co-precipitation of Fe(II)/Fe(III) salts in 1.5 mol/L NH4OH solution at 70 degreesC in the presence of PVA. The resultant colloidal particles have core-shell structures, in which the iron oxide crystallites form the cores and PVA chains form the shells. The hydrodynamic diameter of the colloidal particles is in the range of 108 to 155 nm, which increases with increasing PVA concentration from 5 wt% to 20 wt%, The size of the magnetic cores is ca. 5-10 nm, which is relatively independent of PVA concentration. Under transmission electron microscopic (TEM) examination, the magnetic cores exhibit somewhat irregular shapes varying from spherical, oval, to cubic. Magnetometry measurement revealed that the PVA coated magnetic particles are superparamagnetic. The saturation magnetization of 5 wt% and 20 wt% PVA ferrofluids at 300 K is 54 and 49 emu/g, respectively. All the PVA ferrofluids exhibited excellent colloidal stability in pure water and phosphate buffer saline (PBS, pH = 7.4). The ferrofluids can remain stable in above solutions for more than three months at 4 degreesC.展开更多
Rational construction of carbon-based materials with high-efficiency bifunctionality and low cost as the substitute of precious metal catalyst shows a highly practical value for rechargeable Zn-air batteries(ZABs)yet ...Rational construction of carbon-based materials with high-efficiency bifunctionality and low cost as the substitute of precious metal catalyst shows a highly practical value for rechargeable Zn-air batteries(ZABs)yet it still remains challenging.Herein,this study employs a simple mixing-calcination strategy to fabricate a high-performance bifunctional composite catalyst composed of N-doped graphitic carbon encapsulating Co nanoparticles(Co@NrC).Benefiting from the core-shell architectural and compositional advantages of favorable electronic configuration,more exposed active sites,sufficient electric conductivity,rich defects,and excellent charge transport,the optimal Co@NrC hybrid(Co@NrC-0.3)presents outstanding catalytic activity and stability toward oxygen-related electrochemical reactions(oxygen reduction and evolution reactions,i.e.,ORR and OER),with a low potential gap of 0.766 V.Besides,the rechargeable liquid ZAB assembled with this hybrid electrocatalyst delivers a high peak power density of 168 mW cm^(−2),a small initial discharge-charge potential gap of 0.45 V at 10 mA cm^(−2),and a good rate performance.Furthermore,a relatively large power density of 108 mW cm^(−2) is also obtained with the Co@NrC-0.3-based flexible solid-state ZAB,which can well power LED lights.Such work offers insights in developing excellent bifunctional electrocatalysts for both OER and ORR and highlights their potential applications in metal-air batteries and other energy-conversion/storage devices.展开更多
As a promising alternative anode material,silicon(Si)presents a larger capacity than the commercial anode to achieve large capacity lithium-ion batteries.However,the application of pure Si as anode is hampered by limi...As a promising alternative anode material,silicon(Si)presents a larger capacity than the commercial anode to achieve large capacity lithium-ion batteries.However,the application of pure Si as anode is hampered by limitations such as volume expansion,low conductivity and unstable solid electrolyte interphase.To break through these limitations,the core-shell Si@Li4Ti5O12nanocomposite,which was prepared via in-situ self-assembly reaction and decompressive boiling fast concentration method,was proposed in this work.This anode combines the advantages of nano-sized Si particle and pure Li4Ti5O12(LTO)coating layer,improving the performance of the lithium-ion batteries.The Si@Li4Ti5O12 anode displays a high initial discharge/charge specific capacity of 1756/1383 m Ahg^-1 at 500 mAg^-1(representing high initial coulombic efficiency of 78.8%),a large rate capability(specific capacity of 620 mAhg^-1 at4000 mAg^-1),an outstanding cycling stability(reversible specific capacity of 883 mAhg^-1 after 150 cycles)and a low volume expansion rate(only 3.3% after 150 cycles).Moreover,the synthesis process shows the merits of efficiency,simplicity,and economy,providing a reliable method to fabricate large capacity Si@Li4Ti5O12nanocomposite anode materials for practical lithium-ion batteries.展开更多
A simple electrochemical method for the in situ preparation of homogeneously dispersed gold-polyaniline core/shell nanocomposite particles with controlled size on the highly oriented pyrolytic graphite(HOPG)was demons...A simple electrochemical method for the in situ preparation of homogeneously dispersed gold-polyaniline core/shell nanocomposite particles with controlled size on the highly oriented pyrolytic graphite(HOPG)was demonstrated.The HOPG surface was modified preferentially by covalent bonding of a two-dimensional 4-aminophenyl monolayer employing diazonium chemistry.AuCl4 -ions were attached to the Ar-NH2 termination and reduced electrochemically.This results in the formation of Au nuclei that could be further grown into gold nanoparticles.The formation of polyaniline as the shell wrap of Au nanoparticle was established by localized electro-polymerization.These core-shell nanocomposites prepared were characterized by AFM and cyclic voltammetry.The results show that the gold-polyaniline core-shell composites on HOPG have a mean particle size of 100 nm in diameter and the polyaniline shell thickness is about 15 nm.展开更多
基金supported by the National Natural Science Foundation of China(21322606 and 21436005)the Specialized Research Fund for the Doctoral Program of Higher Education(20120172110012)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Natural Science Foundation of Guangdong Province(S2011020002397 and 2013B090500027)~~
文摘Ni@Pd core-shell nanoparticles with a mean particle size of 8–9 nm were prepared by solvothermal reduction of bivalent nickel and palladium in oleylamine and trioctylphosphine.Subsequently,the first-ever deposition of Ni@Pd core-shell nanoparticles having different compositions on a metal-organic framework(MIL-101)was accomplished by wet impregnation in n-hexane.The Ni@Pd/MIL-101 materials were characterized by powder X-ray diffraction,Fourier transform infrared spectroscopy,transmission electron microscopy,and energy-dispersive X-ray spectroscopy and also investigated as catalysts for the hydrogenation of nitrobenzene under mild reaction conditions.At 30 °C and 0.1 MPa of H2 pressure,the Ni@Pd/MIL-101 gives a TOF as high as 375 h–1 for the hydrogenation of nitrobenzene and is applicable to a wide range of substituted nitroarenes.The exceptional performance of this catalyst is believed to result from the significant Ni-Pd interaction in the core-shell structure,together with promotion of the conversions of aromatics by uncoordinated Lewis acidic Cr sites on the MIL-101 support.
基金Projects(41172110,61107090)supported by the National Natural Science Foundation of China
文摘Cu2O@Cu2O core-shell nanoparticles (NPs) were prepared by using solution phase strategy. It was found that Cu2O@Cu2O NPs were easily converted to Cu2O@Cu NPs with the help of polyvinylpyrrolidine (PVP) and excessive ascorbic acid (AA) in air at room temperature, which was an interesting phenomenon. The features of the two kinds of NPs were characterized by XRD, TEM and extinction spectra. Cu2O@Cu NPs with different shell thicknesses showed wide tunable optical properties for the localized surface plasmon (LSP) in metallic Cu. But Cu2O@Cu2O NPs did not indicate this feature. FTIR results reveal that Cu+ ions on the surface of Cu2O shell coordinate with N and O atoms in PVP and are further reduced to metallic Cu by excessive AA and then form a nucleation site on the surface of Cu2O nanocrystalline. PVP binds onto different sites to proceed with the reduction utill all the Cu sources in Cu2O shell are completely assumed.
基金Supported by the Natural Science Foundation of Jiangsu Province (BK2009678)
文摘The Ni@Au core-shell nanoparticles had been successfully synthesized from aqueous solution by one-step route at room temperature. The Ni@Au nanoparticles can be an excellent catalyst for Ullmann reaction. The advantage of Ni@Au is that the catalyst does not need additional reducing agents. The Au shell can effectively protect the Ni core from oxidation. The Ni core and Au shell have both composited in structure and cooperated in function.
文摘Magnetic core-shell nanoparticles have been widely studied because of their excellent and convenient magnetic and electrical properties.In this present work core-shell magneticnanoparticles (MNPs) were synthesized by simple chemical precipitation method. Firstly Mg(x)Fe(1–x)O (magnesiwuestite) nano powder samples were synthesised by low temperature chemical combustion method. Secondly the as synthesised Mg(x)Fe(1–x)O nanoparticles are used to synthesis magnetic core-shell Nano particles byusing 2-propanol, poly ethylene glycol (PEG), ammonia solution 30 wt%, tetraethyl orthosilicate (TEOS). Separation of the core-shell magnetic nanoparticles from the aqueous suspension using a centrifuge. The synthesised MNPs and core shell MNP were characterized by X-ray diffraction (XRD), Thermal gravimetric-differential thermal analyzer (TG-DTA), Transmission electron microscopy (TEM), scanning electron microscopy (SEM), (EDAX) for structural, thermal and morphological respectively. It is observed that the particle size of spherical sampleis 32.5 nm.
基金support from National Science Foundation of China(NSFC,Grant No.50971010)the Fundamental Research Funds for the Central Universities(YWF-11-03-Q-002)
文摘Co@Au core shell nanoparticles(NPs) of different shell thicknesses were fabricated by a combination of the displacement process and the reduction-deposition process in a microfluidic reactor. The effect of the shell thickness on the fine structures(local atom arrangement) of core materials was investigated by X-ray Absorption Near Edge Structure(XANES) and Extended X-ray Absorption Fine Structure(EXAFS).The results indicate that the shell thickness affects the fine structure of the core materials by causing atomic re-arrangement between the hexagonal close pack(hcp) and the face centered cubic(fcc) structure, and forming Co-Au bonds in the core-shell interface.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11374069 and 61006078), the National Basic Research Program of China (Grant Nos. 2010CB934102 and 2010CB934101), and the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA09020300).
文摘The properties of Raman phonons are very important due to the fact that they can availably reflect some important physical information. An abnormal Raman peak is observed at about 558 cm-1 in In film composed of In/InOx core-shell structured nanoparticles, and the phonon mode stays very stable when the temperature changes. Our results indicate that this Raman scattering is attributed to the existence of incomplete indium oxide in the oxide shell.
基金Supported by the National Natural Science Foundation of China(No.50673033)
文摘t A self-templating method was employed to synthesize core-shell nanoparticles with octylmethoxycinamate(OMC), a well-known organic UV absorber, as core and nanosilica particles as shell. The characteristic of this method is that the whole process requires neither surface treatment for nanosilica particles nor additional surfactant or stabilizer, and all the reactions could be finished in one-pot, which exempts removing template and reduces reaction steps compared to the conventional process. The morphology, structure, particle size distribution, chemical composition and optical property of OMC-SiO2 nanoparticles were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), dynamic light scattering(DLS), FTIR spectrometry and UV absorption spectrometry, respectively. Experiment results indicate that the resulting OMC-SiO2 nanoparticles were perfectly spherical with smooth particle surfaces, and had clear core-shell structures. The particle size could be tuned by altering reaction conditions. In addition, the mechanism of the self-templating method for forming core-shell nanoparticles was discussed.
基金Funded by the National Natural Science Foundation of China(No.11174092)
文摘Memory effect has been studied in the system using magnetic nanoparticles with Ni nanocore encapsulated by non-magnetic and oxidation-resistant Ni2P nanoshell acquired through surface-phosphatizing Ni nanoparticles. The self-assembled array with interparticle spacing of about 6 nm shows memory effect up to 200 K below its average blocking temperature of 260 K. And reducing the interparticle spacing of the self-assembled array via annealing can further enlarge the temperature range of memory effect up to room-temperature. The memory effect can be understood based on the thermal relaxation theory of single-domain magnetic nanoparticles. Furthermore, the read-write magnetic coding is realized based on the temperature changes, using the memory effect up to room-temperature, which may be useful for future memory devices.
文摘Unlike previous emulsion polymerization, we used grafting reactions in soap-free emulsion systems. In this study, we synthesized grafted PMMA/PEI core-shell nanoparticles by varying the MMA/PEI content and molecular weight of PEI (M<sub>n</sub> = 600, 8000, and 10,000). The size and morphology of the core-shell nanoparticles were characterized by a particle size analyzer and scanning electron microscopy. The nanoparticles were 178 - 408 nm in diameter and swelled in water or methanol by 30 - 75 nm. The size of the nanoparticles increased with MMA contents, whereas the size distribution progressively became homogeneous with increasing molecular weight of PEI. Lastly, we measured CO<sub>2</sub> adsorption capacity of the grafted PMMA/PEI core-shell nanoparticles, and we found the capacity to be limited at a level of 0.69 mg, which occurred for nanoparticles prepared from emulsions at a pH value of 11.
文摘The selected area electron diffraction (SAED) pattern of magnetic iron oxide core/gold shell nanoparticles has been studied. For the composite particles with mean size less than 10 nm, their SAED pattern is found to be different from either the pattern of pure Fe oxide nanoparticles or that of pure Au particles. Based on the fact that the ring diameters of these composite particles fit the characteristic relation for the fcc structure, the Au atoms on surfaces of the concerned particles are supposed to pack in a way more tightly than they usually do in pure Au nanoparticles. The driving force for this is the coherency strain which enables the shell material at the heterostructured interface to adapt the lattice parameters of the core.
文摘Silica and montmorillonite-supported silica nanoparticles were prepared via an acid one step sol-gel process. The synthesized solids were characterized using XRD, FTIR, TEM and N2 adsorption. The effect of preparing temperatures on the structure and properties of the silica nanoparticles were studied. The results show that the increase of annealing temperature from 25 to 200℃, don’t change amorphous state of silica. While for montmorillonite-supported silica the clay platelets are delaminated during the sol-gel process. TEM results showed that the average particle size of silica is increased by increasing temperature due to the particle sintering and the clay-silica nanoparticles possessed core–shell morphology with diameter of 29 nm. The surface area measurements showed that by increasing annealing temperature the surface area was decreased due to aggregation of particle. The clay-silica sample showed lower average pore width than that of the silica prepared at 200℃ indicating that it has a macropores structure. The adsorption efficiency of the prepared samples was tested by adsorption of protoporphyrin IX. The highest adsorption efficiency was found for SiO2 prepared at 200℃. Temkin model describe the equilibrium of adsorption of protoporphyrin IX on caly-silica nanoparticles under different conditions.
文摘Bimetallic gold-silver core-shell nanoparticles were prepared by chemical reduction in aqueous solution, following a method that was friendly to the environment, allowing us to use this for medicinal purposes. Gold nanoparticles were synthesized, and silver cations were then reduced on the nanoparticles. Using the optical properties of metallic nanoparticles, surface plasmon resonance was determined by UV-Vis spectroscopy, and the values obtained for gold and silver were approximately 520 nm and 400 nm in wavelength, respectively. The absorption peaks of the surface plasmon band show a clear red-shift due to size effect in the case of the silver surface, and a plasmon coupling effect, in the case of gold. To obtain a better understanding of the coating conditions, high resolution transmission electron microscopy was used. The average hydrodynamic size and the size distribution of the synthesized nanoparticles were obtained by dynamic light scattering. The development of this process, which is benign for the environment, opens the possibility for many applications in the areas of renewable energy, medicine and biology.
基金We acknowledge the Bundesministerium fur Wirtschaft und Technologie(BMWi)for the financial support of this research(grant no.MF 130037).
文摘Magnetic core-shell nanoparticles of type Fe3O4@Ag were synthesized in gram scale following a combined co-precipitation phase-transfer method and afterwards, processed to nanoparticle polymer (polypropylene and polyamide) composites. These composites were used as sheath material for the fabrication of core-sheath fibers. During the melt spinning process, a magnetic field was applied around the roving, whereby the particles move in the still liquid sheath polymer towards the surface. The produced fiber materials were investigated by AFM showing a nanostructuring of the surface, which was indirectly confirmed by determination of a slight surface tension lowering. Nanoparticle movement was shown by cross-section SEM and EDX measurements. The antibacterial activity of the spun fibers was proven by contacting them with Escherichia coli. A long-term stability of this effect was observable by carrying out a standard washability test. In contrast to previous works this new approach uses no deposition technique to introduce surface changes. It rather applies a magnetic force to move appropriately equipped nanoparticles from the inside of the fiber to the surface. This leads in only one step to a strong superficial anchoring of the particles resulting in a unique combination of long-term stable antibacterial and improved anti-soiling effects.
基金National Natural Science Foundation of China(No.51373030)Chinese Universities Scientific Fund(No.CUSF-DH-D-2014023)
文摘The monodisperse Au@Ag bimetallic nanorod is encapsulated by crosslinked poly( N-isopropylacrylamide)( PNIPAM) to produce thermo-responsive composite microgel with well-defined core-shell structure( Au@ Ag NR@ PNIPAM microgel)by seed-precipitation polymerization method using butenoic acid modified Au @ Ag NRs as seeds. When the temperature of the aqueous medium increases from 20℃ to 50℃,the localized surface plasmon resonance( LSPR) band of the entrapped Au @ Ag NR is pronouncedly red-shifted because of the decreased spatial distances between them as a result of shrinkage of the microgels,leading to their plasmonic coupling. The temperature tunable plasmonic coupling is demonstrated by temperature dependence of the surface enhanced Raman spectroscopy( SERS) signal of 1-naphthol in aqueous solution. Different from static plasmonic coupling modes from nanostructured assembly or array system of noble metals,the proposed plasmonic coupling can be dynamically controlled by environmental temperature. Therefore, the thermo responsive hybrid microgels have potential applications in mobile LSPR or SERS microsensors for living tissues or cells.
基金Funded by National Natural Science Foundation of China (Nos.51372179, 51772224)the Open Projects Foundation of Yangtze Optical Fiber and Cable Joint Stock Limited Company (YOFC)(No.SKLD1705)。
文摘We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectrolyte (PE) multilayers,for which Au@Ag-NRs were controlled by adjusting the silver layer thickness.The effect of silver layer thickness of Au@Ag-NRs on the SERS performance of the fiber probe was investigated.The SERS fiber probe shows the best performance when the silver layer thickness is controlled at 8.57 nm.Under the condition of optimizing silver layer thickness,the fiber probe exhibits ultra-high sensitivity (i e,10^(-10) M crystalline violet,CV),good reproducibility (i e,RSD of 3.5%) and stability.Besides,electromagnetic field distribution of the SERS fiber probe was also investigated.The strongest enhancement is found within the core of fiber,whereas a weakened electromagnetic field exists in the fiber cladding layer.The SERS fiber probe can be a good candidate in ultra-trace detection for biomedical and environmental areas.
基金This work was supported by the Ministry of Science and Technology of China(973 Project No.2018YFA0209102)the National Natural Science Foundation of China(11727807,51725101,51672050,61790581).
文摘Hierarchical magnetic-dielectric composites are promising functional materials with prospective applications in microwave absorption(MA)field.Herein,a three-dimension hierarchical“nanotubes on microrods,”core–shell magnetic metal–carbon composite is rationally constructed for the first time via a fast metal–organic frameworksbased ligand exchange strategy followed by a carbonization treatment with melamine.Abundant magnetic CoFe nanoparticles are embedded within one-dimensional graphitized carbon/carbon nanotubes supported on micro-scale Mo2N rod(Mo2N@CoFe@C/CNT),constructing a special multi-dimension hierarchical MA material.Ligand exchange reaction is found to determine the formation of hierarchical magnetic-dielectric composite,which is assembled by dielectric Mo2N as core and spatially dispersed CoFe nanoparticles within C/CNTs as shell.Mo2N@CoFe@C/CNT composites exhibit superior MA performance with maximum reflection loss of−53.5 dB at 2 mm thickness and show a broad effective absorption bandwidth of 5.0 GHz.The Mo2N@CoFe@C/CNT composites hold the following advantages:(1)hierarchical core–shell structure offers plentiful of heterojunction interfaces and triggers interfacial polarization,(2)unique electronic migration/hop paths in the graphitized C/CNTs and Mo2N rod facilitate conductive loss,(3)highly dispersed magnetic CoFe nanoparticles within“tubes on rods”matrix build multi-scale magnetic coupling network and reinforce magnetic response capability,confirmed by the off-axis electron holography.
基金This work was financially supported by Education Ministry Foundation for Returned Overseas Scientists and NSF of Fujian Province.
文摘Polyvinyl alcohol coated magnetic particles (PVA ferrofluids) have been synthesized by chemical co-precipitation of Fe(II)/Fe(III) salts in 1.5 mol/L NH4OH solution at 70 degreesC in the presence of PVA. The resultant colloidal particles have core-shell structures, in which the iron oxide crystallites form the cores and PVA chains form the shells. The hydrodynamic diameter of the colloidal particles is in the range of 108 to 155 nm, which increases with increasing PVA concentration from 5 wt% to 20 wt%, The size of the magnetic cores is ca. 5-10 nm, which is relatively independent of PVA concentration. Under transmission electron microscopic (TEM) examination, the magnetic cores exhibit somewhat irregular shapes varying from spherical, oval, to cubic. Magnetometry measurement revealed that the PVA coated magnetic particles are superparamagnetic. The saturation magnetization of 5 wt% and 20 wt% PVA ferrofluids at 300 K is 54 and 49 emu/g, respectively. All the PVA ferrofluids exhibited excellent colloidal stability in pure water and phosphate buffer saline (PBS, pH = 7.4). The ferrofluids can remain stable in above solutions for more than three months at 4 degreesC.
基金the Theme-based Scheme(project number:T23-601/17-R)from Research Grant Council,University Grants Committee,Hong Kong SAR,China.
文摘Rational construction of carbon-based materials with high-efficiency bifunctionality and low cost as the substitute of precious metal catalyst shows a highly practical value for rechargeable Zn-air batteries(ZABs)yet it still remains challenging.Herein,this study employs a simple mixing-calcination strategy to fabricate a high-performance bifunctional composite catalyst composed of N-doped graphitic carbon encapsulating Co nanoparticles(Co@NrC).Benefiting from the core-shell architectural and compositional advantages of favorable electronic configuration,more exposed active sites,sufficient electric conductivity,rich defects,and excellent charge transport,the optimal Co@NrC hybrid(Co@NrC-0.3)presents outstanding catalytic activity and stability toward oxygen-related electrochemical reactions(oxygen reduction and evolution reactions,i.e.,ORR and OER),with a low potential gap of 0.766 V.Besides,the rechargeable liquid ZAB assembled with this hybrid electrocatalyst delivers a high peak power density of 168 mW cm^(−2),a small initial discharge-charge potential gap of 0.45 V at 10 mA cm^(−2),and a good rate performance.Furthermore,a relatively large power density of 108 mW cm^(−2) is also obtained with the Co@NrC-0.3-based flexible solid-state ZAB,which can well power LED lights.Such work offers insights in developing excellent bifunctional electrocatalysts for both OER and ORR and highlights their potential applications in metal-air batteries and other energy-conversion/storage devices.
基金the financial support from the National Natural Science Foundation of China (51876052, 51676128)
文摘As a promising alternative anode material,silicon(Si)presents a larger capacity than the commercial anode to achieve large capacity lithium-ion batteries.However,the application of pure Si as anode is hampered by limitations such as volume expansion,low conductivity and unstable solid electrolyte interphase.To break through these limitations,the core-shell Si@Li4Ti5O12nanocomposite,which was prepared via in-situ self-assembly reaction and decompressive boiling fast concentration method,was proposed in this work.This anode combines the advantages of nano-sized Si particle and pure Li4Ti5O12(LTO)coating layer,improving the performance of the lithium-ion batteries.The Si@Li4Ti5O12 anode displays a high initial discharge/charge specific capacity of 1756/1383 m Ahg^-1 at 500 mAg^-1(representing high initial coulombic efficiency of 78.8%),a large rate capability(specific capacity of 620 mAhg^-1 at4000 mAg^-1),an outstanding cycling stability(reversible specific capacity of 883 mAhg^-1 after 150 cycles)and a low volume expansion rate(only 3.3% after 150 cycles).Moreover,the synthesis process shows the merits of efficiency,simplicity,and economy,providing a reliable method to fabricate large capacity Si@Li4Ti5O12nanocomposite anode materials for practical lithium-ion batteries.
基金Project(50721003)supported by the Creative Research Group of National Natural Science Foundation of ChinaProject(50825102)supported by the National Science Fund for Distinguished Young Scholars,China
文摘A simple electrochemical method for the in situ preparation of homogeneously dispersed gold-polyaniline core/shell nanocomposite particles with controlled size on the highly oriented pyrolytic graphite(HOPG)was demonstrated.The HOPG surface was modified preferentially by covalent bonding of a two-dimensional 4-aminophenyl monolayer employing diazonium chemistry.AuCl4 -ions were attached to the Ar-NH2 termination and reduced electrochemically.This results in the formation of Au nuclei that could be further grown into gold nanoparticles.The formation of polyaniline as the shell wrap of Au nanoparticle was established by localized electro-polymerization.These core-shell nanocomposites prepared were characterized by AFM and cyclic voltammetry.The results show that the gold-polyaniline core-shell composites on HOPG have a mean particle size of 100 nm in diameter and the polyaniline shell thickness is about 15 nm.