Color tunable quantum dots(QDs) based on the Cu, Mn, Ag co-doped Zn In S core and Zn S outer-shell were synthesized by using an eco-friendly method. Core-shell doped QDs with the average size of 3.85 nm were obtaine...Color tunable quantum dots(QDs) based on the Cu, Mn, Ag co-doped Zn In S core and Zn S outer-shell were synthesized by using an eco-friendly method. Core-shell doped QDs with the average size of 3.85 nm were obtained by using a one-pot synthesis followed by a hot injection with n-dodecanethiol(DDT) and oleylamine(OLA) as stabilizers in oil phase. Cu, Mn and Ag ions were introduced as single-dopant or co-dopants during the synthesis, providing an effective means to control the emission color of the QDs. The as-synthesized QDs showed photoluminescence emission ranging from green(530 nm) to near-red(613 nm), adjusted by doping components, dopant concentration, and Zn/In ratio. Importantly, quasi-white emission has been achieved by controlling the concentration of co-doped metal ions(Mn, Cu and Ag). The primary results demonstrated the promising potential of co-doped QDs as alternative materials for future high quality white LED applications.展开更多
We investigated the optical properties of hybrid exciton–plasmon coupling ensembles composed of ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution. We modulated their average interval by changing the rati...We investigated the optical properties of hybrid exciton–plasmon coupling ensembles composed of ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution. We modulated their average interval by changing the ratio of quantum dots and Ag nanoparticles. The transition from dramatic PL enhancement to PL quenching state was experimentally observed, according to the continuous decrease of the PL lifetime. The PL enhancement rate exceeded 10, with the Purcell factor of 3.5. Meanwhile, the proportion of fast decay increased from 0.3 to 0.6, corresponding to the proportion of slow decay decreased from 0.7 to 0.4. Our experiment is important for the hybrid exciton–plasmon coupling system to be practicable in optoelectronic application.展开更多
Mn:ZnSe/ZnS/L-Cys core-shell quantum dots(QDs)sensitized La-doped nano-TiO2 thin film(QDSTF)was prepared.X-ray photoelectron spectroscopy(XPS),nanosecond transient photovoltaic(TPV),and steady state surface photovolta...Mn:ZnSe/ZnS/L-Cys core-shell quantum dots(QDs)sensitized La-doped nano-TiO2 thin film(QDSTF)was prepared.X-ray photoelectron spectroscopy(XPS),nanosecond transient photovoltaic(TPV),and steady state surface photovoltaic(SPV)technologies were used for probing the photoelectron behaviors in the Mn-doped QDSTF.The results revealed that the Mn-doped QDSTF had a p-type TPV characteristic.The bottom of the conduction band of the QDs as a sensitizer was just 0.86 eV above that of the La-doped nano-TiO2 thin film,while the acceptor level of the doped Mn2+ions was located at about 0.39 eV below and near the bottom of the conduction band of the QDs.The intensity of the SPV response of the Mn-doped QDSTF at a specific wavelength was ~2.1 times higher than that of the undoped QDSTF.The region of the SPV response of the Mn-doped QDSTF was extended by 191 nm to almost the whole visible region as compared with the undoped QDSTF one.And the region of the TPV response of the Mn-doped QDSTF was also obviously wider than that of the undoped QDSTF.These PV characteristics of the Mn-doped QDSTF may be due to the prolonged lifetime and extended diffusion length of photogenerated free charge carriers injected into the sensitized La-doped nano-TiO2 thin film.展开更多
This study is to report a ZnSe quantum dot with a large two-photon absorption cross section and good biocompatibility,which can be used in bioimaging.Fluorescence emission at 410 nm is observed in the quantum dot unde...This study is to report a ZnSe quantum dot with a large two-photon absorption cross section and good biocompatibility,which can be used in bioimaging.Fluorescence emission at 410 nm is observed in the quantum dot under 760-nm laser excitation.These biocompatible quantum dots exhibit a two-photon cross-section of 9.1×105 GM(1 GM=10-50 cm4·s/photon).Two-photon excited laser scanning microscopic images show that cells co-cultured with ZnSe quantum dots are found in the blue channel at a fluorescence intensity that is 14.5 times that of control cells not cocultured with quantum dots.After incubating zebrafish larvae with ZnSe quantum dots for 24 h,the fluorescence intensity of the yolk sac stimulated by ultraviolet light is 2.9 times that of the control group.The proposed material shows a great potential application in biological imaging.展开更多
To date, the instability of organometal halide perovskite solar cells(PSCs) has become the focus issue that limits the development and long-term application of PSCs. Both the ultraviolet(UV) rays in sunlight and m...To date, the instability of organometal halide perovskite solar cells(PSCs) has become the focus issue that limits the development and long-term application of PSCs. Both the ultraviolet(UV) rays in sunlight and moisture in air can significantly accelerate the disintegration of the perovskite. Here, we introduced a Zn Se quantum dots layer as downshifting materials, which was spin-coated onto the backside of PSCs.This layer converted the UV rays into visible light to prevent the destruction of PSCs as well as increase the light harvesting of the perovskite layer. Under the UV irradiation in the moisture ambient(40%), the destruction speed of the unencapsulated perovskite films were also delayed evidently. In addition, the power conversion efficiency(PCE) of the PSCs was increased from 16.6% to 17.3% due to the increase of the visible light absorbance of the perovskite.展开更多
Photoanodic properties greatly determine the overall performance of quantum-dot-sensitized solar cells(QDSCs). In the present report, the microdynamic behaviors of carriers in the nanocomposite thin-film, a Zn Se QD...Photoanodic properties greatly determine the overall performance of quantum-dot-sensitized solar cells(QDSCs). In the present report, the microdynamic behaviors of carriers in the nanocomposite thin-film, a Zn Se QD-sensitized mesoporous La-doped nano-TiO2 thin-film, as a potential candidate for photoanode, are probed via nanosecond transient photovoltaic(TPV) spectroscopy. The results confirm that the L-Cys ligand has a dual function serving as a stabilizer and molecular linker. Large quantities of interface states are located at the energy level with a photoelectric threshold of1.58 eV and a quantum well(QW) depth of 0.67 eV. This QW depth is approximately 0.14 eV deeper than the depth of QW buried in the Zn Se QDs, and a deeper QW results in a higher quantum confinement energy. A strong quantum confinement effect of the interface state may be responsible for the excellent TPV characteristics of the photoanode. For example, the peak intensity of the TPV response of the QD-sensitized thin-film lasts a long time, from 9.40 × 10^(-7) s to 2.96 × 10^(-4) s,and the end time of the PTV response of the QD-sensitized thin-film is extended by approximately an order of magnitude compared with those of the TiO2 substrate and the QDs. The TPV characteristics of the QD-sensitized thin-film change from p-type to n-type for the QDs before and after sensitizing. These properties strongly depend on the extended diffusion length of the photogenerated carries and the reduced recombination rate of photogenerated electron-hole pairs, resulting in prolonged carrier lifetime and an increased level of electron injection into the TiO2 thin-film substrate.展开更多
The potential use of large-size ZnSe quantum dots as blue emitters for display applications has greatly inspired the colloidal synthesis.Herein,we report the negative effects of side reactions of large-size ZnSe quant...The potential use of large-size ZnSe quantum dots as blue emitters for display applications has greatly inspired the colloidal synthesis.Herein,we report the negative effects of side reactions of large-size ZnSe quantum dots.The side reactions between oleic acid and oleylamine generated amidation products and H_(2)O,which led to the hydrolysis of Zn(OA)2 to Zn(OH)2 and the subsequent formation of zinc oxide(ZnO)and zinc bis[diphenylphosphinate](Zn(DPPA)2)precipitates.These side reactions resulted in the formation of a defective surface including a Se-rich surface and oxygen-related defects.Such negative effects can be overcome by adopting an etching strategy using potassium fluoride and myristic acid in combination.By overcoating a ZnS shell,blue emissive ZnSe/ZnS quantum dots with a maximum photoluminescence quantum yield of up to 91%were obtained.We further fabricated ZnSe quantum dots-based blue light-emitting diodes with an emission peak at 456 nm.The device showed a turn-on voltage of 2.7 V with a maximum external quantum efficiency of 4.2%and a maximum luminance of 1223 cd·m^(−2).展开更多
Hydrogen peroxide(H_(2)O_(2))has gained widespread attention as a versatile oxidant and a mild disin-fectant.Here,an electrostatic self-assembly method is applied to couple ZnSe quantum dots(QDs)with a flower-like cov...Hydrogen peroxide(H_(2)O_(2))has gained widespread attention as a versatile oxidant and a mild disin-fectant.Here,an electrostatic self-assembly method is applied to couple ZnSe quantum dots(QDs)with a flower-like covalent organic framework(COF)to form a step-scheme(S-scheme)photocata-lyst for H_(2)O_(2)production.The as-prepared S-scheme photocatalyst exhibits a broad light absorption range with an edge at 810 nm owing to the synergistic effect between the ZnSe QDs and COF.The S-scheme charge-carrier transfer mechanism is validated by performing Fermi level calculations and in-situ X-ray photoelectron and femtosecond transient absorption spectroscopies.Photolumi-nescence,time-resolved photoluminescence,photocurrent response,electrochemical impedance spectroscopy,and electron paramagnetic resonance results show that the S-scheme heterojunction not only promotes charge carrier separation but also boosts the redox ability,resulting in enhanced photocatalytic performance.Remarkably,a 10%-ZnSe QD/COF has excellent photocatalytic H_(2)O_(2)-production activity,and the optimal S-scheme composite with ethanol as the hole scavenger yields a H_(2)O_(2)-production rate of 1895 mol g^(-1)h^(-1).This study presents an example of a high-performance organic/inorganic S-scheme photocatalyst for H_(2)O_(2)production.展开更多
Tb3+-doped ZnSe and ZnSe/ZnS nanocrystals were synthesized using modified hot-injection method. The observation of the characteristic quantum dots absorption features in a time-gated excitation spectrum was recorded ...Tb3+-doped ZnSe and ZnSe/ZnS nanocrystals were synthesized using modified hot-injection method. The observation of the characteristic quantum dots absorption features in a time-gated excitation spectrum was recorded while monitoring Tb3+ emission at 545 nm provided direct evidence for successful incorporation of dopant ions into semiconductor host. Relatively long decay time (-1.5 ms) of Tb3+ emission indicated that dopant ions were well protected from interaction with surface ligands. Emission properties of core ZnSe:Tb3+ nanocrystals were only slightly modified upon growth of ZnS shell.展开更多
基金Projects(61675049,61377046,61144010,61177021) supported by the National Natural Science Foundation of China
文摘Color tunable quantum dots(QDs) based on the Cu, Mn, Ag co-doped Zn In S core and Zn S outer-shell were synthesized by using an eco-friendly method. Core-shell doped QDs with the average size of 3.85 nm were obtained by using a one-pot synthesis followed by a hot injection with n-dodecanethiol(DDT) and oleylamine(OLA) as stabilizers in oil phase. Cu, Mn and Ag ions were introduced as single-dopant or co-dopants during the synthesis, providing an effective means to control the emission color of the QDs. The as-synthesized QDs showed photoluminescence emission ranging from green(530 nm) to near-red(613 nm), adjusted by doping components, dopant concentration, and Zn/In ratio. Importantly, quasi-white emission has been achieved by controlling the concentration of co-doped metal ions(Mn, Cu and Ag). The primary results demonstrated the promising potential of co-doped QDs as alternative materials for future high quality white LED applications.
基金Project supported by the National Key R&D Program of China(Grant No.2018YFA0306304)the National Natural Science Foundation of China(Grant No.11674069)
文摘We investigated the optical properties of hybrid exciton–plasmon coupling ensembles composed of ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution. We modulated their average interval by changing the ratio of quantum dots and Ag nanoparticles. The transition from dramatic PL enhancement to PL quenching state was experimentally observed, according to the continuous decrease of the PL lifetime. The PL enhancement rate exceeded 10, with the Purcell factor of 3.5. Meanwhile, the proportion of fast decay increased from 0.3 to 0.6, corresponding to the proportion of slow decay decreased from 0.7 to 0.4. Our experiment is important for the hybrid exciton–plasmon coupling system to be practicable in optoelectronic application.
基金Project supported by the Natural Science Foundation of Hebei Province,China(Grant No.E2017203029)。
文摘Mn:ZnSe/ZnS/L-Cys core-shell quantum dots(QDs)sensitized La-doped nano-TiO2 thin film(QDSTF)was prepared.X-ray photoelectron spectroscopy(XPS),nanosecond transient photovoltaic(TPV),and steady state surface photovoltaic(SPV)technologies were used for probing the photoelectron behaviors in the Mn-doped QDSTF.The results revealed that the Mn-doped QDSTF had a p-type TPV characteristic.The bottom of the conduction band of the QDs as a sensitizer was just 0.86 eV above that of the La-doped nano-TiO2 thin film,while the acceptor level of the doped Mn2+ions was located at about 0.39 eV below and near the bottom of the conduction band of the QDs.The intensity of the SPV response of the Mn-doped QDSTF at a specific wavelength was ~2.1 times higher than that of the undoped QDSTF.The region of the SPV response of the Mn-doped QDSTF was extended by 191 nm to almost the whole visible region as compared with the undoped QDSTF one.And the region of the TPV response of the Mn-doped QDSTF was also obviously wider than that of the undoped QDSTF.These PV characteristics of the Mn-doped QDSTF may be due to the prolonged lifetime and extended diffusion length of photogenerated free charge carriers injected into the sensitized La-doped nano-TiO2 thin film.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61774062 and U20A20206)the Science and Techology Program of Guangzhou City,China(Grant No.2019050001)the Natural Science Foundation of Guangdong Province,China(Grant Nos.2018A030313854 and2016A030308010)。
文摘This study is to report a ZnSe quantum dot with a large two-photon absorption cross section and good biocompatibility,which can be used in bioimaging.Fluorescence emission at 410 nm is observed in the quantum dot under 760-nm laser excitation.These biocompatible quantum dots exhibit a two-photon cross-section of 9.1×105 GM(1 GM=10-50 cm4·s/photon).Two-photon excited laser scanning microscopic images show that cells co-cultured with ZnSe quantum dots are found in the blue channel at a fluorescence intensity that is 14.5 times that of control cells not cocultured with quantum dots.After incubating zebrafish larvae with ZnSe quantum dots for 24 h,the fluorescence intensity of the yolk sac stimulated by ultraviolet light is 2.9 times that of the control group.The proposed material shows a great potential application in biological imaging.
基金supported by the National Science Foundation of China (51774034, 51772026, 51611130063)the Fundamental Research Funds for the Central Universities (FRF-BD-16-012A)111 Project (No. B17003)
文摘To date, the instability of organometal halide perovskite solar cells(PSCs) has become the focus issue that limits the development and long-term application of PSCs. Both the ultraviolet(UV) rays in sunlight and moisture in air can significantly accelerate the disintegration of the perovskite. Here, we introduced a Zn Se quantum dots layer as downshifting materials, which was spin-coated onto the backside of PSCs.This layer converted the UV rays into visible light to prevent the destruction of PSCs as well as increase the light harvesting of the perovskite layer. Under the UV irradiation in the moisture ambient(40%), the destruction speed of the unencapsulated perovskite films were also delayed evidently. In addition, the power conversion efficiency(PCE) of the PSCs was increased from 16.6% to 17.3% due to the increase of the visible light absorbance of the perovskite.
基金supported by the Natural Science Foundation of Hebei Province,China(Grant Nos.E2013203296 and E2017203029)
文摘Photoanodic properties greatly determine the overall performance of quantum-dot-sensitized solar cells(QDSCs). In the present report, the microdynamic behaviors of carriers in the nanocomposite thin-film, a Zn Se QD-sensitized mesoporous La-doped nano-TiO2 thin-film, as a potential candidate for photoanode, are probed via nanosecond transient photovoltaic(TPV) spectroscopy. The results confirm that the L-Cys ligand has a dual function serving as a stabilizer and molecular linker. Large quantities of interface states are located at the energy level with a photoelectric threshold of1.58 eV and a quantum well(QW) depth of 0.67 eV. This QW depth is approximately 0.14 eV deeper than the depth of QW buried in the Zn Se QDs, and a deeper QW results in a higher quantum confinement energy. A strong quantum confinement effect of the interface state may be responsible for the excellent TPV characteristics of the photoanode. For example, the peak intensity of the TPV response of the QD-sensitized thin-film lasts a long time, from 9.40 × 10^(-7) s to 2.96 × 10^(-4) s,and the end time of the PTV response of the QD-sensitized thin-film is extended by approximately an order of magnitude compared with those of the TiO2 substrate and the QDs. The TPV characteristics of the QD-sensitized thin-film change from p-type to n-type for the QDs before and after sensitizing. These properties strongly depend on the extended diffusion length of the photogenerated carries and the reduced recombination rate of photogenerated electron-hole pairs, resulting in prolonged carrier lifetime and an increased level of electron injection into the TiO2 thin-film substrate.
基金supported by the National Natural Science Foundation of China(No.U23A20683)the Beijing Natural Science Foundation(No.Z210018).
文摘The potential use of large-size ZnSe quantum dots as blue emitters for display applications has greatly inspired the colloidal synthesis.Herein,we report the negative effects of side reactions of large-size ZnSe quantum dots.The side reactions between oleic acid and oleylamine generated amidation products and H_(2)O,which led to the hydrolysis of Zn(OA)2 to Zn(OH)2 and the subsequent formation of zinc oxide(ZnO)and zinc bis[diphenylphosphinate](Zn(DPPA)2)precipitates.These side reactions resulted in the formation of a defective surface including a Se-rich surface and oxygen-related defects.Such negative effects can be overcome by adopting an etching strategy using potassium fluoride and myristic acid in combination.By overcoating a ZnS shell,blue emissive ZnSe/ZnS quantum dots with a maximum photoluminescence quantum yield of up to 91%were obtained.We further fabricated ZnSe quantum dots-based blue light-emitting diodes with an emission peak at 456 nm.The device showed a turn-on voltage of 2.7 V with a maximum external quantum efficiency of 4.2%and a maximum luminance of 1223 cd·m^(−2).
文摘Hydrogen peroxide(H_(2)O_(2))has gained widespread attention as a versatile oxidant and a mild disin-fectant.Here,an electrostatic self-assembly method is applied to couple ZnSe quantum dots(QDs)with a flower-like covalent organic framework(COF)to form a step-scheme(S-scheme)photocata-lyst for H_(2)O_(2)production.The as-prepared S-scheme photocatalyst exhibits a broad light absorption range with an edge at 810 nm owing to the synergistic effect between the ZnSe QDs and COF.The S-scheme charge-carrier transfer mechanism is validated by performing Fermi level calculations and in-situ X-ray photoelectron and femtosecond transient absorption spectroscopies.Photolumi-nescence,time-resolved photoluminescence,photocurrent response,electrochemical impedance spectroscopy,and electron paramagnetic resonance results show that the S-scheme heterojunction not only promotes charge carrier separation but also boosts the redox ability,resulting in enhanced photocatalytic performance.Remarkably,a 10%-ZnSe QD/COF has excellent photocatalytic H_(2)O_(2)-production activity,and the optimal S-scheme composite with ethanol as the hole scavenger yields a H_(2)O_(2)-production rate of 1895 mol g^(-1)h^(-1).This study presents an example of a high-performance organic/inorganic S-scheme photocatalyst for H_(2)O_(2)production.
基金Project supported by Wroclaw Research Centre EIT+within the project"The Application of Nanotechnology in Advanced Materials”-Nano Mat(POIG.01.01.02-02-002/08) co-financed by the European Regional Development Fund(Operational Programme Innovative Economy,1.1.2)
文摘Tb3+-doped ZnSe and ZnSe/ZnS nanocrystals were synthesized using modified hot-injection method. The observation of the characteristic quantum dots absorption features in a time-gated excitation spectrum was recorded while monitoring Tb3+ emission at 545 nm provided direct evidence for successful incorporation of dopant ions into semiconductor host. Relatively long decay time (-1.5 ms) of Tb3+ emission indicated that dopant ions were well protected from interaction with surface ligands. Emission properties of core ZnSe:Tb3+ nanocrystals were only slightly modified upon growth of ZnS shell.