Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesi...Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesized by the “bottle around ship” methodology in this research by regulating the dissolution rate of Cu2O and the generation rate of metal-organic framework(MOF) materials. Cu2O@HKUST-1 was carbonized to form a Cu O@porous carbon(CuO@PC) composite material. CuO@PC was synthesized into a copper azide(CA) @PC composite energetic material through a gas-solid phase in-situ azidation reaction.CA is encapsulated in PC framework, which acts as a nanoscale Faraday cage, and its excellent electrical conductivity prevents electrostatic charges from accumulating on the energetic material’s surface. The CA@PC composite energetic material has a CA content of 89.6%, and its electrostatic safety is nearly 30times that of pure CA(1.47 mJ compared to 0.05 mJ). CA@PC delivers an outstanding balance of safety and energy density compared to similar materials.展开更多
A core-shell composite consisting of ZSM-5 zeolite as the core and ordered mesoporous silica as the shell was prepared by a surfactant-controlled sol-gel process and using tetradecylamine(TDA) as the template and Tetr...A core-shell composite consisting of ZSM-5 zeolite as the core and ordered mesoporous silica as the shell was prepared by a surfactant-controlled sol-gel process and using tetradecylamine(TDA) as the template and Tetraethylorthosilicate(TEOS) as the silica precursor.The pores of the silica shell were found to be ordered and perpendicular to the crystal faces of the zeolite core.The thickness of the shell in the coreshell structured composite can be adjusted in the range of 20-90 nm,while the surface morphology and the pore size distribution were modified by changing the mass ratio of TEOS to zeolite.The composite molecular sieves have higher surface area for capturing molecules than ZSM-5,and with the increase of mesoporous shell layer,the ZSM-5@SiO_(2)-x composites show stronger adsorption capacity of butyraldehyde.However,when the shell thickness exceeds 90 nm,the adsorption capacity of butyraldehyde decreases instead.The composites have a huge potential for environmental applications.展开更多
As a promising alternative anode material,silicon(Si)presents a larger capacity than the commercial anode to achieve large capacity lithium-ion batteries.However,the application of pure Si as anode is hampered by limi...As a promising alternative anode material,silicon(Si)presents a larger capacity than the commercial anode to achieve large capacity lithium-ion batteries.However,the application of pure Si as anode is hampered by limitations such as volume expansion,low conductivity and unstable solid electrolyte interphase.To break through these limitations,the core-shell Si@Li4Ti5O12nanocomposite,which was prepared via in-situ self-assembly reaction and decompressive boiling fast concentration method,was proposed in this work.This anode combines the advantages of nano-sized Si particle and pure Li4Ti5O12(LTO)coating layer,improving the performance of the lithium-ion batteries.The Si@Li4Ti5O12 anode displays a high initial discharge/charge specific capacity of 1756/1383 m Ahg^-1 at 500 mAg^-1(representing high initial coulombic efficiency of 78.8%),a large rate capability(specific capacity of 620 mAhg^-1 at4000 mAg^-1),an outstanding cycling stability(reversible specific capacity of 883 mAhg^-1 after 150 cycles)and a low volume expansion rate(only 3.3% after 150 cycles).Moreover,the synthesis process shows the merits of efficiency,simplicity,and economy,providing a reliable method to fabricate large capacity Si@Li4Ti5O12nanocomposite anode materials for practical lithium-ion batteries.展开更多
Cobalt ferrite has problems such as poor impedance matching and high density,which results in unsatisfactory electromagnetic wave(EMW)absorption performance.In this study,the CoFe_(2)O_(4)@C core-shell structure compo...Cobalt ferrite has problems such as poor impedance matching and high density,which results in unsatisfactory electromagnetic wave(EMW)absorption performance.In this study,the CoFe_(2)O_(4)@C core-shell structure composite was synthesized by a two-step hydrothermal method.X-ray diffraction,transmission electron microscopy,Fourier transform infrared spectroscopy,thermogravimetric analysis,and vector network analysis et al.were used to test the structure and EMW absorption properties of CoFe_(2)O_(4)@C composite.The results show that the reflection loss(RL)of the CoFe_(2)O_(4)@C composite reaches the maximum value of25.66 dB at 13.92 GHz,and the effective absorbing band(EAB)is 4.59 GHz(11.20-15.79 GHz)when the carbon mass content is 6.01%.The RL and EAB of CoFe_(2)O_(4)@C composite are increased by 219.55%and 4.59 GHz respectively,and the density is decreased by 20.78%compared with the cobalt ferrite.Such enhanced EMW absorption properties of CoFe_(2)O_(4)@C composite are attributed to the attenuation caused by the strong natural resonance of the cobalt ferrite,moreover,the carbon coating layer adjusts the impedance matching of the composite,and the introduced dipole polarization and interface polarization can cause multiple Debye relaxation processes.展开更多
The monodisperse Au@Ag bimetallic nanorod is encapsulated by crosslinked poly( N-isopropylacrylamide)( PNIPAM) to produce thermo-responsive composite microgel with well-defined core-shell structure( Au@ Ag NR@ PNIPAM ...The monodisperse Au@Ag bimetallic nanorod is encapsulated by crosslinked poly( N-isopropylacrylamide)( PNIPAM) to produce thermo-responsive composite microgel with well-defined core-shell structure( Au@ Ag NR@ PNIPAM microgel)by seed-precipitation polymerization method using butenoic acid modified Au @ Ag NRs as seeds. When the temperature of the aqueous medium increases from 20℃ to 50℃,the localized surface plasmon resonance( LSPR) band of the entrapped Au @ Ag NR is pronouncedly red-shifted because of the decreased spatial distances between them as a result of shrinkage of the microgels,leading to their plasmonic coupling. The temperature tunable plasmonic coupling is demonstrated by temperature dependence of the surface enhanced Raman spectroscopy( SERS) signal of 1-naphthol in aqueous solution. Different from static plasmonic coupling modes from nanostructured assembly or array system of noble metals,the proposed plasmonic coupling can be dynamically controlled by environmental temperature. Therefore, the thermo responsive hybrid microgels have potential applications in mobile LSPR or SERS microsensors for living tissues or cells.展开更多
A novel architectural Ti composite composed of network-woven structured TiB nanowires in a core-shell structured Ti matrix was fabricated to improve the strength of Ti matrix composites(TMCs),where the shell consists ...A novel architectural Ti composite composed of network-woven structured TiB nanowires in a core-shell structured Ti matrix was fabricated to improve the strength of Ti matrix composites(TMCs),where the shell consists of rich N solute atoms while the core is deficient of N solute atoms through spark plasma sintering of powder mixtures of Ti powder and BN nano-powder.The phase composition,morphology,element distribution,and mechanical properties of prepared samples were analyzed by X-ray diffraction(XRD),scanning electron microscope(SEM),electron probe microanalyzer(EPMA),and electronic universal material testing machine.The results indicate that the TMCs with designed architectures have been successfully achieved,and the as-prepared Ti-2BN(wt.%)composite exhibits an ultimate compressive strength of~1.8 GPa with a strain-to-fracture of~9%,while the Ti-1BN(wt.%)attains an ultimate compressive strength of~1.6 GPa and a strain-to-fracture of~20%.Moreover,the roles of the hybrid reinforcement structures in strengthening the Ti composites were discussed.展开更多
MXene is a new type of layered two-dimensional transition metal carbide materials differing from graphene, demonstrating intriguing chemical/physical properties. Here the chemical modification of MXene and next fabric...MXene is a new type of layered two-dimensional transition metal carbide materials differing from graphene, demonstrating intriguing chemical/physical properties. Here the chemical modification of MXene and next fabrication of core-shell MXene-COOH@(PEI/PAA)_n composites have been investigated. The obtained MXene-based composites were treated with gold nanoparticles to form MXene—COOH@(PEI/PAA)_n@AuNPs nanocomposites, and their catalytic properties for nitro-compounds were studied. The prepared nanocomposites demonstrated good catalytic activity and reproducibility, showing potential applications in composite catalysts and environmental fields.展开更多
Aluminum matrix composites(AMCs), reinforced with novel pre-synthesized Al/Cu Fe multi-layered coreshell particles, were fabricated by different consolidation techniques to investigate their effect on microstructure a...Aluminum matrix composites(AMCs), reinforced with novel pre-synthesized Al/Cu Fe multi-layered coreshell particles, were fabricated by different consolidation techniques to investigate their effect on microstructure and mechanical properties. To synthesize multi-layered Al/Cu Fe core-shell particles, Cu and Fe layers were deposited on Al powder particles by galvanic replacement and electroless plating method, respectively. The core-shell powder and sintered compacts were characterized by using X-ray diffraction(XRD), scanning electron microscopy(SEM) equipped with energy dispersive spectroscopy(EDX), pycnometer, microhardness and compression tests. The results revealed that a higher extent of interfacial reactions, due to the transformation of the deposited layer into intermetallic phases in spark plasma sintered composite, resulted in high relative density(99.26%), microhardness(165 HV0.3) and strength(572 MPa). Further, the presence of un-transformed Cu in the shell structure of hot-pressed composite resulted in the highest fracture strain(20.4%). The obtained results provide stronger implications for tailoring the microstructure of AMCs through selecting appropriate sintering paths to control mechanical properties.展开更多
The electrical resistance,flexural strength,and microstructure of carbon fiber reinforced cement composites(CFRC) were improved greatly by adding water-redispersible latex powder.The electrical resistance of CFRC wa...The electrical resistance,flexural strength,and microstructure of carbon fiber reinforced cement composites(CFRC) were improved greatly by adding water-redispersible latex powder.The electrical resistance of CFRC was investigated by two-probe method.The input range of CFRC based strain sensors was therefore increased,whereas electrical resistance was increased and remained in the perfect range of CFRC sensors.The analysis of scanning electron microscopy indicated that elastic latex bridges and a latex layer existed among the interspaces of the adjacent cement hydration products which were responsible for the enhancement of the flexural strength and electrical resistance.The formation mechanism of the elastic latex bridges was also discussed in detail.The continuous moving of two opposite interfaces of the latex solution-air along the interspaces of the adjacent hydrated crystals or colloids was attributed to the formation of the elastic latex bridges.展开更多
A group of heterogeneous latexes poly(butyl acrylate)/poly(styrene-co-methyl methacrylate)(PBA/P(St-co-MMA)) were prepared by a semi-continuous seeded emulsion polymerization process under monomer starved conditions.T...A group of heterogeneous latexes poly(butyl acrylate)/poly(styrene-co-methyl methacrylate)(PBA/P(St-co-MMA)) were prepared by a semi-continuous seeded emulsion polymerization process under monomer starved conditions.The glass transition temperature(T_g)and the mechanical properties of the film formed from the composite latex changed with the evolution of the particle morphology.A photon transmission method was used to monitor the phase structure evolution of films which were prepared from core-shell PBA/P(S...展开更多
Polysiloxane-polystyrene composite latexes were prepared by two-stage emulsionpolymerization. Polymerization of styrene in swollen polysiloxane latex particles were studied.Formation of simple polystyrene particle in ...Polysiloxane-polystyrene composite latexes were prepared by two-stage emulsionpolymerization. Polymerization of styrene in swollen polysiloxane latex particles were studied.Formation of simple polystyrene particle in the 2nd-stage polymerization depends on the particlesize of the lst-stage latex and the polymerization temperature. Polystyrene domains in thevulcanizates reinforce the silicone rubbers effectively.展开更多
The great major applications of thermal isolation are in the strip of drops and averages temperatures (up to 180 ℃), which is used from aggressive materials to the nature, such as glass wool, rock wool, polystyrene...The great major applications of thermal isolation are in the strip of drops and averages temperatures (up to 180 ℃), which is used from aggressive materials to the nature, such as glass wool, rock wool, polystyrene, EPS among others. In spite of the effectiveness in the retention of the flow of heat, such materials possess considerable cost and they are discarded for long years to be decomposed. In that context, to adapt to the world politics about the preservation of the environment, a study began with intention of developing a material composite with thermal properties, originating from insulating industrial residues. In this research, the behavior of this composite was analyzed, when it submitted traction efforts. For this, a term-mechanic was used (DMA), where the composite was differentiated under variation temperatures. It was also certain that the gradient temperature of the composite was the source of heat, the conductivity and thermal diffusion. Consequently, the function of the answers of the system was possible to be observed with the deformation of the composite with the tension and temperature variation, as well as the temperature gradient for each proportion of the composite.展开更多
Satisfactory ionic conductivity,excellent mechanical stability,and high-temperature resistance are the prerequisites for the safe application of solid polymer electrolytes(SPEs)in all-solid-state lithium metal batteri...Satisfactory ionic conductivity,excellent mechanical stability,and high-temperature resistance are the prerequisites for the safe application of solid polymer electrolytes(SPEs)in all-solid-state lithium metal batteries(ASSLMBs).In this study,a novel poly(m-phenylene isophthalamide)(PMIA)-core/poly(ethylene oxide)(PEO)-shell nanofiber membrane and the functional Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)ceramic nanopar-ticle are simultaneously introduced into the PEO-based SPEs to prepare composite polymer electrolytes(CPEs).The core PMIA layer of composite nanofibers can greatly improve the mechanical strength and thermal stability of the CPEs,while the shell PEO layer can provide the 3D continuous transport channels for lithium ions.In addition,the introduction of functional LLZTO nanoparticle not only reduces the crys-tallinity of PEO,but also promotes the dissociation of lithium salts and releases more Li^(+)ions through its interaction with the Lewis acid-base of anions,thereby overall improving the transport of lithium ions.Consequently,the optimized CPEs present high ionic conductivity of 1.38×10^(−4)S/cm at 30℃,signifi-cantly improved mechanical strength(8.5 MPa),remarkable thermal stability(without obvious shrinkage at 150℃),and conspicuous Li dendrites blocking ability(>1800 h).The CPEs also both have good com-patibility and cyclic stability with LiFePO_(4)(>2000 cycles)and high-voltage LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)(>500 cycles)cathodes.In addition,even at low temperature(40℃),the assembled LiFePO4/CPEs/Li bat-tery still can cycle stably.The novel design can provide an effective way to exploit high-performance solid-state electrolytes.展开更多
The composition and evolution of interfacial species play a key role during electrocatalytic process.Unveiling the structural evolution and intermediate during catalytic process by in situ characterization can shed ne...The composition and evolution of interfacial species play a key role during electrocatalytic process.Unveiling the structural evolution and intermediate during catalytic process by in situ characterization can shed new light on the electrocatalytic reaction mechanism and develop highly efficient catalyst.However,directly probing the interfacial species is extremely difficult for most spectroscopic techniques due to complicated interfacial environment and ultra-low surface concentration.Herein,electrochemical core-shell nanoparticle enhanced Raman spectroscopy is utilized to probe the composition and evolution processes of interfacial species on Au@Pt,Au@Co,and Au@PtCo core-shell nanoparticle surfaces.The spectral evidences of interfacial intermediates including hydroxide radical(OH*),superoxide ion(O_(2)^(−)),as well as metal oxide species are directly captured by in situ Raman spectroscopy,which are further confirmed by the both isotopic experiment and density functional theory calculation.These results provide a mechanistic guideline for the rational design of highly efficient electrocatalysts.展开更多
Rare earth -containing PSBR sheet was prepared by reaction of rare earth alkoxide with quaternary ammonium salt of pyridine modified SBR (PSBR) latex, and then it was blended with natural rubber (NR) to produce rare e...Rare earth -containing PSBR sheet was prepared by reaction of rare earth alkoxide with quaternary ammonium salt of pyridine modified SBR (PSBR) latex, and then it was blended with natural rubber (NR) to produce rare earth - containing composite elastomer. It is found that mechanical performance can be improved remarkably. Analyzed by infrared spectrometry (IR), differential scanning calorimetry (DSC) and cross-linking densitometry, the relationship between structure and performance was discussed.展开更多
n-Alkane isomerization is a critical reaction that can affect parameters in oil refining, such as the gasoline octane number and diesel oil solidifying point. In this study, a catalyst support, mordenite (MOR)/silicoa...n-Alkane isomerization is a critical reaction that can affect parameters in oil refining, such as the gasoline octane number and diesel oil solidifying point. In this study, a catalyst support, mordenite (MOR)/silicoaluminophosphate (SAPO)-11 composite zeolite with core/shell structure, was synthesized by hydrothermal method with MOR acting as the seed for crystallization. The crystal structure, elemental composition, surface area, pore volume, and acidity of the catalyst was thoroughly characterized. In addition, the catalytic performance of the as-obtained Pt/MOR/SAPO-11 in the hydroisomerization of n-dodecane was tested. The results indicated that the properties and catalytic performance of the composite molecular sieve were quite different from those of the pure zeolites and physical mixture of MOR and SAPO-11 (MOR+SAPO-11). Compared with the physical mixture, MOR and SAPO-11 were more tightly bound in MOR/SAPO-11 because of chemical bonding. Moreover, the acidity and pore structure were favorable to the catalytic hydroisomerization of n-dodecane. Pt/MOR/SAPO-11 exhibited higher isomerization activity than the Pt-loaded pristine MOR and MOR+SAPO-11. Thus, the core-shell composite molecular sieve has promising industrial applications as the catalyst support.展开更多
Dielectric properties of SiC/Ni nanocomposites prepared by a simple and facile electroless plating approach at X band are investigated. Compared to the original SiC nanopartieles (SiCp), the real part of the permitt...Dielectric properties of SiC/Ni nanocomposites prepared by a simple and facile electroless plating approach at X band are investigated. Compared to the original SiC nanopartieles (SiCp), the real part of the permittivity, ε', and the dielectric loss tangent tang δe of SiC/Ni nanocomposites are clearly enhanced by about 31% and 33%, respectively. The effective equations for complex permittivity of SiC/Ni nanoeomposites are proposed. We also calculate ε' and tan δe of SiC/Ni nanoeomposites and the calculated results are well consistent with the measured data.展开更多
Polyoxymethylene (POM)/elastomer/filler ternary composites were prepared, in which thermoplastic polyurethane (TPU) and inorganic filler, namely, CaCO3, were used to achieve balanced mechanical properties of POM. ...Polyoxymethylene (POM)/elastomer/filler ternary composites were prepared, in which thermoplastic polyurethane (TPU) and inorganic filler, namely, CaCO3, were used to achieve balanced mechanical properties of POM. The dispersion and phase morphology of POM/elastomer/filler composites were found to depend largely on processing method, CaCO3 content in masterbatch and the filler size. Two processing methods were employed to prepare POM/elastomer/filler ternary composites. One is called the one-step method, in which elastomer and the filler directly melt blended with POM matrix. The other is called the two-step method, in which the elastomer and the filler were mixed to get masterbatch first, which was then melt blended with pure POM of different content. The effect of phase morphology and processing method on impact strength was investigated. It was found that the two-step method results in an increase in impact strength but not for the one-step method. Additionally, the impact strength of POM ternary composites decreases with the increase in the size of CaCO3 particles.展开更多
In situ chemical oxidation polymerization of pyrrole on the surface of sulfur particles was carried out to synthesize a sulfur/polypyrrole (SIPPy) nanocomposite with core-shell structure. The composite was character...In situ chemical oxidation polymerization of pyrrole on the surface of sulfur particles was carried out to synthesize a sulfur/polypyrrole (SIPPy) nanocomposite with core-shell structure. The composite was characterized by elemental analysis, X-ray diffraction, scanning/transmission electron microscopy, and electrochemical measurements. XRD and FTIR results showed that sulfur well dispersed in the core-shell structure and PPy structure was successfully obtained via in situ oxidative polymerization of pyrrole on the surface of sulfur particles. TEM observation revealed that PPy was formed and fixed to the surface of sulfur nanoparticle after polymerization, developing a well-defined core-shell structure and the thickness of PPy coating layer was in the range of 20-30 nm. In the composite, PPy worked as a conducting matrix as well as a coating agent, which confined the active materials within the electrode. Consequently, the as prepared SIPPy composite cathode exhibited good cycling and rate performances for rechargeable lithium/sulfur batteries. The resulting cell containing SIPPy composite cathode yields a discharge capacity of 1039 mAh·g^-1 at the initial cycle and retains 59% of this value over 50 cycles at 0.1 C rate. At 1 C rate, the SIPPy composite showed good cycle stability, and the discharge capacity was 475 mAh·g^-1 after 50 cycles.展开更多
We put forward effective methods of increasing the tensile strain of cementitious composites with 2% PVA fiber and high fly ash content. The test results show that curing condition has a significantly effect on the te...We put forward effective methods of increasing the tensile strain of cementitious composites with 2% PVA fiber and high fly ash content. The test results show that curing condition has a significantly effect on the tensile performance. It is approved that the specimens incorporated appropriate volume fraction rubber powder and lightweight aggregate greatly increase the tensile strain of composites at medium-term age, but indefinitely at long-term age. To a certain extent, EVA can limitedly enhance the tensile performance of comentitious composites owing to the formation of polymer membrane and the hindered hydration of cement.展开更多
基金the financial support by Postgraduate Research & Practice Innovation Program from Jiangsu Science and Technology Department under Grant number KYCX19_0320。
文摘Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesized by the “bottle around ship” methodology in this research by regulating the dissolution rate of Cu2O and the generation rate of metal-organic framework(MOF) materials. Cu2O@HKUST-1 was carbonized to form a Cu O@porous carbon(CuO@PC) composite material. CuO@PC was synthesized into a copper azide(CA) @PC composite energetic material through a gas-solid phase in-situ azidation reaction.CA is encapsulated in PC framework, which acts as a nanoscale Faraday cage, and its excellent electrical conductivity prevents electrostatic charges from accumulating on the energetic material’s surface. The CA@PC composite energetic material has a CA content of 89.6%, and its electrostatic safety is nearly 30times that of pure CA(1.47 mJ compared to 0.05 mJ). CA@PC delivers an outstanding balance of safety and energy density compared to similar materials.
文摘A core-shell composite consisting of ZSM-5 zeolite as the core and ordered mesoporous silica as the shell was prepared by a surfactant-controlled sol-gel process and using tetradecylamine(TDA) as the template and Tetraethylorthosilicate(TEOS) as the silica precursor.The pores of the silica shell were found to be ordered and perpendicular to the crystal faces of the zeolite core.The thickness of the shell in the coreshell structured composite can be adjusted in the range of 20-90 nm,while the surface morphology and the pore size distribution were modified by changing the mass ratio of TEOS to zeolite.The composite molecular sieves have higher surface area for capturing molecules than ZSM-5,and with the increase of mesoporous shell layer,the ZSM-5@SiO_(2)-x composites show stronger adsorption capacity of butyraldehyde.However,when the shell thickness exceeds 90 nm,the adsorption capacity of butyraldehyde decreases instead.The composites have a huge potential for environmental applications.
基金the financial support from the National Natural Science Foundation of China (51876052, 51676128)
文摘As a promising alternative anode material,silicon(Si)presents a larger capacity than the commercial anode to achieve large capacity lithium-ion batteries.However,the application of pure Si as anode is hampered by limitations such as volume expansion,low conductivity and unstable solid electrolyte interphase.To break through these limitations,the core-shell Si@Li4Ti5O12nanocomposite,which was prepared via in-situ self-assembly reaction and decompressive boiling fast concentration method,was proposed in this work.This anode combines the advantages of nano-sized Si particle and pure Li4Ti5O12(LTO)coating layer,improving the performance of the lithium-ion batteries.The Si@Li4Ti5O12 anode displays a high initial discharge/charge specific capacity of 1756/1383 m Ahg^-1 at 500 mAg^-1(representing high initial coulombic efficiency of 78.8%),a large rate capability(specific capacity of 620 mAhg^-1 at4000 mAg^-1),an outstanding cycling stability(reversible specific capacity of 883 mAhg^-1 after 150 cycles)and a low volume expansion rate(only 3.3% after 150 cycles).Moreover,the synthesis process shows the merits of efficiency,simplicity,and economy,providing a reliable method to fabricate large capacity Si@Li4Ti5O12nanocomposite anode materials for practical lithium-ion batteries.
基金supported by the National Natural Science Foundation of China(51372108).
文摘Cobalt ferrite has problems such as poor impedance matching and high density,which results in unsatisfactory electromagnetic wave(EMW)absorption performance.In this study,the CoFe_(2)O_(4)@C core-shell structure composite was synthesized by a two-step hydrothermal method.X-ray diffraction,transmission electron microscopy,Fourier transform infrared spectroscopy,thermogravimetric analysis,and vector network analysis et al.were used to test the structure and EMW absorption properties of CoFe_(2)O_(4)@C composite.The results show that the reflection loss(RL)of the CoFe_(2)O_(4)@C composite reaches the maximum value of25.66 dB at 13.92 GHz,and the effective absorbing band(EAB)is 4.59 GHz(11.20-15.79 GHz)when the carbon mass content is 6.01%.The RL and EAB of CoFe_(2)O_(4)@C composite are increased by 219.55%and 4.59 GHz respectively,and the density is decreased by 20.78%compared with the cobalt ferrite.Such enhanced EMW absorption properties of CoFe_(2)O_(4)@C composite are attributed to the attenuation caused by the strong natural resonance of the cobalt ferrite,moreover,the carbon coating layer adjusts the impedance matching of the composite,and the introduced dipole polarization and interface polarization can cause multiple Debye relaxation processes.
基金National Natural Science Foundation of China(No.51373030)Chinese Universities Scientific Fund(No.CUSF-DH-D-2014023)
文摘The monodisperse Au@Ag bimetallic nanorod is encapsulated by crosslinked poly( N-isopropylacrylamide)( PNIPAM) to produce thermo-responsive composite microgel with well-defined core-shell structure( Au@ Ag NR@ PNIPAM microgel)by seed-precipitation polymerization method using butenoic acid modified Au @ Ag NRs as seeds. When the temperature of the aqueous medium increases from 20℃ to 50℃,the localized surface plasmon resonance( LSPR) band of the entrapped Au @ Ag NR is pronouncedly red-shifted because of the decreased spatial distances between them as a result of shrinkage of the microgels,leading to their plasmonic coupling. The temperature tunable plasmonic coupling is demonstrated by temperature dependence of the surface enhanced Raman spectroscopy( SERS) signal of 1-naphthol in aqueous solution. Different from static plasmonic coupling modes from nanostructured assembly or array system of noble metals,the proposed plasmonic coupling can be dynamically controlled by environmental temperature. Therefore, the thermo responsive hybrid microgels have potential applications in mobile LSPR or SERS microsensors for living tissues or cells.
基金supported by the Australian Research Council(No.LP130100913)the Baosteel-Australia Joint Research and Development Centre on the Project(No.BA110014LP)。
文摘A novel architectural Ti composite composed of network-woven structured TiB nanowires in a core-shell structured Ti matrix was fabricated to improve the strength of Ti matrix composites(TMCs),where the shell consists of rich N solute atoms while the core is deficient of N solute atoms through spark plasma sintering of powder mixtures of Ti powder and BN nano-powder.The phase composition,morphology,element distribution,and mechanical properties of prepared samples were analyzed by X-ray diffraction(XRD),scanning electron microscope(SEM),electron probe microanalyzer(EPMA),and electronic universal material testing machine.The results indicate that the TMCs with designed architectures have been successfully achieved,and the as-prepared Ti-2BN(wt.%)composite exhibits an ultimate compressive strength of~1.8 GPa with a strain-to-fracture of~9%,while the Ti-1BN(wt.%)attains an ultimate compressive strength of~1.6 GPa and a strain-to-fracture of~20%.Moreover,the roles of the hybrid reinforcement structures in strengthening the Ti composites were discussed.
基金financially supported by the National Natural Science Foundation of China (Nos.21473153 and 51771162)Support Program for the Top Young Talents of Hebei Province,China Postdoctoral Science Foundation (No.2015M580214)+1 种基金the Scientific and Technological Research and Development Program of Qinhuangdao City (No.201701B004)Undergraduate Training Programs for Innovation and Entrepreneurship of Yanshan University (No.CXXL2017227)
文摘MXene is a new type of layered two-dimensional transition metal carbide materials differing from graphene, demonstrating intriguing chemical/physical properties. Here the chemical modification of MXene and next fabrication of core-shell MXene-COOH@(PEI/PAA)_n composites have been investigated. The obtained MXene-based composites were treated with gold nanoparticles to form MXene—COOH@(PEI/PAA)_n@AuNPs nanocomposites, and their catalytic properties for nitro-compounds were studied. The prepared nanocomposites demonstrated good catalytic activity and reproducibility, showing potential applications in composite catalysts and environmental fields.
文摘Aluminum matrix composites(AMCs), reinforced with novel pre-synthesized Al/Cu Fe multi-layered coreshell particles, were fabricated by different consolidation techniques to investigate their effect on microstructure and mechanical properties. To synthesize multi-layered Al/Cu Fe core-shell particles, Cu and Fe layers were deposited on Al powder particles by galvanic replacement and electroless plating method, respectively. The core-shell powder and sintered compacts were characterized by using X-ray diffraction(XRD), scanning electron microscopy(SEM) equipped with energy dispersive spectroscopy(EDX), pycnometer, microhardness and compression tests. The results revealed that a higher extent of interfacial reactions, due to the transformation of the deposited layer into intermetallic phases in spark plasma sintered composite, resulted in high relative density(99.26%), microhardness(165 HV0.3) and strength(572 MPa). Further, the presence of un-transformed Cu in the shell structure of hot-pressed composite resulted in the highest fracture strain(20.4%). The obtained results provide stronger implications for tailoring the microstructure of AMCs through selecting appropriate sintering paths to control mechanical properties.
基金Funded by the Special Foundation of Shaanxi Key Discipline Construction, the Talented Persons Science and Technology Foundation of XAUAT(No. RC0915)the Basic Research Foundation of XAUAT(No.JC1007)the Youth Foundation of PuNai Education Scholarship(No.PN0805)
文摘The electrical resistance,flexural strength,and microstructure of carbon fiber reinforced cement composites(CFRC) were improved greatly by adding water-redispersible latex powder.The electrical resistance of CFRC was investigated by two-probe method.The input range of CFRC based strain sensors was therefore increased,whereas electrical resistance was increased and remained in the perfect range of CFRC sensors.The analysis of scanning electron microscopy indicated that elastic latex bridges and a latex layer existed among the interspaces of the adjacent cement hydration products which were responsible for the enhancement of the flexural strength and electrical resistance.The formation mechanism of the elastic latex bridges was also discussed in detail.The continuous moving of two opposite interfaces of the latex solution-air along the interspaces of the adjacent hydrated crystals or colloids was attributed to the formation of the elastic latex bridges.
基金This work was financially supported by the Natural Science Foundation of Henan Province(No.0211061600).
文摘A group of heterogeneous latexes poly(butyl acrylate)/poly(styrene-co-methyl methacrylate)(PBA/P(St-co-MMA)) were prepared by a semi-continuous seeded emulsion polymerization process under monomer starved conditions.The glass transition temperature(T_g)and the mechanical properties of the film formed from the composite latex changed with the evolution of the particle morphology.A photon transmission method was used to monitor the phase structure evolution of films which were prepared from core-shell PBA/P(S...
文摘Polysiloxane-polystyrene composite latexes were prepared by two-stage emulsionpolymerization. Polymerization of styrene in swollen polysiloxane latex particles were studied.Formation of simple polystyrene particle in the 2nd-stage polymerization depends on the particlesize of the lst-stage latex and the polymerization temperature. Polystyrene domains in thevulcanizates reinforce the silicone rubbers effectively.
文摘The great major applications of thermal isolation are in the strip of drops and averages temperatures (up to 180 ℃), which is used from aggressive materials to the nature, such as glass wool, rock wool, polystyrene, EPS among others. In spite of the effectiveness in the retention of the flow of heat, such materials possess considerable cost and they are discarded for long years to be decomposed. In that context, to adapt to the world politics about the preservation of the environment, a study began with intention of developing a material composite with thermal properties, originating from insulating industrial residues. In this research, the behavior of this composite was analyzed, when it submitted traction efforts. For this, a term-mechanic was used (DMA), where the composite was differentiated under variation temperatures. It was also certain that the gradient temperature of the composite was the source of heat, the conductivity and thermal diffusion. Consequently, the function of the answers of the system was possible to be observed with the deformation of the composite with the tension and temperature variation, as well as the temperature gradient for each proportion of the composite.
基金supported by the National Natural Science Foundation of China (Nos.52203066,51973157,61904123)the Tianjin Natural Science Foundation (No.18JCQNJC02900)+3 种基金National Innovation and Entrepreneurship Training Program for College students (No.202310058007)Tianjin Municipal College Students’ Innovation and Entrepreneurship Training Program (No.202310058088)Science & Technology Development Fund of Tianjin Education Commission for Higher Education (No.2018KJ196)State Key Laboratory of Membrane and Membrane Separation,Tiangong University
文摘Satisfactory ionic conductivity,excellent mechanical stability,and high-temperature resistance are the prerequisites for the safe application of solid polymer electrolytes(SPEs)in all-solid-state lithium metal batteries(ASSLMBs).In this study,a novel poly(m-phenylene isophthalamide)(PMIA)-core/poly(ethylene oxide)(PEO)-shell nanofiber membrane and the functional Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)ceramic nanopar-ticle are simultaneously introduced into the PEO-based SPEs to prepare composite polymer electrolytes(CPEs).The core PMIA layer of composite nanofibers can greatly improve the mechanical strength and thermal stability of the CPEs,while the shell PEO layer can provide the 3D continuous transport channels for lithium ions.In addition,the introduction of functional LLZTO nanoparticle not only reduces the crys-tallinity of PEO,but also promotes the dissociation of lithium salts and releases more Li^(+)ions through its interaction with the Lewis acid-base of anions,thereby overall improving the transport of lithium ions.Consequently,the optimized CPEs present high ionic conductivity of 1.38×10^(−4)S/cm at 30℃,signifi-cantly improved mechanical strength(8.5 MPa),remarkable thermal stability(without obvious shrinkage at 150℃),and conspicuous Li dendrites blocking ability(>1800 h).The CPEs also both have good com-patibility and cyclic stability with LiFePO_(4)(>2000 cycles)and high-voltage LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)(>500 cycles)cathodes.In addition,even at low temperature(40℃),the assembled LiFePO4/CPEs/Li bat-tery still can cycle stably.The novel design can provide an effective way to exploit high-performance solid-state electrolytes.
基金the National Key Research and Development Program of China(No.2020YFB1505800)the National Natural Science Foundation of China(Nos.21925404 and 22021001)+5 种基金the Shenzhen Science and Technology Research Grant(No.JCYJ20200109140416788)the Science and Technology Program of Fujian Province(No.2021Y01010295)the Youth Talent Support Program of Fujian Province(Eyas Plan of Fujian Province 2021)Research Initiation Fund of Jimei University(No.ZQ2021008)the Natural Science Foundation of Fujian Province of China(No.2021J06001)the China Postdoctoral Science Foundation(Nos.2021TQ0188 and 2021M691874).
文摘The composition and evolution of interfacial species play a key role during electrocatalytic process.Unveiling the structural evolution and intermediate during catalytic process by in situ characterization can shed new light on the electrocatalytic reaction mechanism and develop highly efficient catalyst.However,directly probing the interfacial species is extremely difficult for most spectroscopic techniques due to complicated interfacial environment and ultra-low surface concentration.Herein,electrochemical core-shell nanoparticle enhanced Raman spectroscopy is utilized to probe the composition and evolution processes of interfacial species on Au@Pt,Au@Co,and Au@PtCo core-shell nanoparticle surfaces.The spectral evidences of interfacial intermediates including hydroxide radical(OH*),superoxide ion(O_(2)^(−)),as well as metal oxide species are directly captured by in situ Raman spectroscopy,which are further confirmed by the both isotopic experiment and density functional theory calculation.These results provide a mechanistic guideline for the rational design of highly efficient electrocatalysts.
文摘Rare earth -containing PSBR sheet was prepared by reaction of rare earth alkoxide with quaternary ammonium salt of pyridine modified SBR (PSBR) latex, and then it was blended with natural rubber (NR) to produce rare earth - containing composite elastomer. It is found that mechanical performance can be improved remarkably. Analyzed by infrared spectrometry (IR), differential scanning calorimetry (DSC) and cross-linking densitometry, the relationship between structure and performance was discussed.
基金the National Natural Science Fund of China (2016-Z0030)the Natural Science Foundation of Liaoning Province (L2017LQN008, L2016020)the Fushun Science & Technology Program (2011ZX05039-003)
文摘n-Alkane isomerization is a critical reaction that can affect parameters in oil refining, such as the gasoline octane number and diesel oil solidifying point. In this study, a catalyst support, mordenite (MOR)/silicoaluminophosphate (SAPO)-11 composite zeolite with core/shell structure, was synthesized by hydrothermal method with MOR acting as the seed for crystallization. The crystal structure, elemental composition, surface area, pore volume, and acidity of the catalyst was thoroughly characterized. In addition, the catalytic performance of the as-obtained Pt/MOR/SAPO-11 in the hydroisomerization of n-dodecane was tested. The results indicated that the properties and catalytic performance of the composite molecular sieve were quite different from those of the pure zeolites and physical mixture of MOR and SAPO-11 (MOR+SAPO-11). Compared with the physical mixture, MOR and SAPO-11 were more tightly bound in MOR/SAPO-11 because of chemical bonding. Moreover, the acidity and pore structure were favorable to the catalytic hydroisomerization of n-dodecane. Pt/MOR/SAPO-11 exhibited higher isomerization activity than the Pt-loaded pristine MOR and MOR+SAPO-11. Thus, the core-shell composite molecular sieve has promising industrial applications as the catalyst support.
文摘Dielectric properties of SiC/Ni nanocomposites prepared by a simple and facile electroless plating approach at X band are investigated. Compared to the original SiC nanopartieles (SiCp), the real part of the permittivity, ε', and the dielectric loss tangent tang δe of SiC/Ni nanocomposites are clearly enhanced by about 31% and 33%, respectively. The effective equations for complex permittivity of SiC/Ni nanoeomposites are proposed. We also calculate ε' and tan δe of SiC/Ni nanoeomposites and the calculated results are well consistent with the measured data.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.20274028,50373030 and 20490220)This work is also partly supported by Ministry of Education of China for Doctoral Degree(No.20020610004).
文摘Polyoxymethylene (POM)/elastomer/filler ternary composites were prepared, in which thermoplastic polyurethane (TPU) and inorganic filler, namely, CaCO3, were used to achieve balanced mechanical properties of POM. The dispersion and phase morphology of POM/elastomer/filler composites were found to depend largely on processing method, CaCO3 content in masterbatch and the filler size. Two processing methods were employed to prepare POM/elastomer/filler ternary composites. One is called the one-step method, in which elastomer and the filler directly melt blended with POM matrix. The other is called the two-step method, in which the elastomer and the filler were mixed to get masterbatch first, which was then melt blended with pure POM of different content. The effect of phase morphology and processing method on impact strength was investigated. It was found that the two-step method results in an increase in impact strength but not for the one-step method. Additionally, the impact strength of POM ternary composites decreases with the increase in the size of CaCO3 particles.
基金supported by the Natural Science Foundation of Shaanxi Province,China(2013JM2009)
文摘In situ chemical oxidation polymerization of pyrrole on the surface of sulfur particles was carried out to synthesize a sulfur/polypyrrole (SIPPy) nanocomposite with core-shell structure. The composite was characterized by elemental analysis, X-ray diffraction, scanning/transmission electron microscopy, and electrochemical measurements. XRD and FTIR results showed that sulfur well dispersed in the core-shell structure and PPy structure was successfully obtained via in situ oxidative polymerization of pyrrole on the surface of sulfur particles. TEM observation revealed that PPy was formed and fixed to the surface of sulfur nanoparticle after polymerization, developing a well-defined core-shell structure and the thickness of PPy coating layer was in the range of 20-30 nm. In the composite, PPy worked as a conducting matrix as well as a coating agent, which confined the active materials within the electrode. Consequently, the as prepared SIPPy composite cathode exhibited good cycling and rate performances for rechargeable lithium/sulfur batteries. The resulting cell containing SIPPy composite cathode yields a discharge capacity of 1039 mAh·g^-1 at the initial cycle and retains 59% of this value over 50 cycles at 0.1 C rate. At 1 C rate, the SIPPy composite showed good cycle stability, and the discharge capacity was 475 mAh·g^-1 after 50 cycles.
基金Funded by National Basic Research Program of China (973 Program) (No. 2009CB623200)Hong Kong Research Grant Council under CERG 616405
文摘We put forward effective methods of increasing the tensile strain of cementitious composites with 2% PVA fiber and high fly ash content. The test results show that curing condition has a significantly effect on the tensile performance. It is approved that the specimens incorporated appropriate volume fraction rubber powder and lightweight aggregate greatly increase the tensile strain of composites at medium-term age, but indefinitely at long-term age. To a certain extent, EVA can limitedly enhance the tensile performance of comentitious composites owing to the formation of polymer membrane and the hindered hydration of cement.