A one-step ultrasonic mechanical method was used to synthesize a kind of atmospheric water harvesting material with high water harvesting performance in a wide relative humidity(RH)range,especially at low RH(RH<40%...A one-step ultrasonic mechanical method was used to synthesize a kind of atmospheric water harvesting material with high water harvesting performance in a wide relative humidity(RH)range,especially at low RH(RH<40%),namely,mesoporous silica capsule(MSC)with core-shell structure.Transmission electron microscopy(TEM),nitrogen adsorption and other characterization techniques were used to study the formation process of nano-microspheres.A new mechanism of self-adaptive concentration gradient regulation of silicon migration and recombination core-shell structure was proposed to explain the formation of a cavity in the MSC system.The core-shell design can enhance the specific surface area and pore volume while maintaining the monodispersity and mesoporous size.To study the water harvesting performance of MSC,solid silica nanoparticles(SSN)and mesoporous silica nanoparticles(MSN)were prepared.In a small atmospheric water collection test(25℃,40%RH),the water vapour adsorption and desorption kinetics of MSC,SSN,MSN and a commercial silica gel(CSG)were compared and analyzed.The results show that the MSC with mesoporous channels and core-shell structure can provide about 0.324 gwater/gadsorbent,79%higher than the CSG(0.181 gwater/gadsorbent).It is 25.1%higher than that of 0.259 gwater/gadsorbentof un-hollowed MSN and 980%higher than that of0.03 gwater/gadsorbentof un-hollowed SSN.The material has a large specific surface area and pore volume,simple preparation method and low cost,which provides a feasible idea for realising atmospheric water collection in arid and semi-arid regions.展开更多
The synthesis of cobalt-carbon core-shell microspheres in supercritical carbon dioxide system was investi- gated. Cobalt-carbon core-shell microspheres with diameter of about 1μm were prepared at 350 ℃ for 12 h in a...The synthesis of cobalt-carbon core-shell microspheres in supercritical carbon dioxide system was investi- gated. Cobalt-carbon core-shell microspheres with diameter of about 1μm were prepared at 350 ℃ for 12 h in a closed vessel containing an appropriate amount of bis(cyclopentadienyl)cobalt powder and dry ice. Characterization by a variety of techniques, including X-ray powder diffraction, X-ray photoelectron spectroscopy, TransmissiOn electron microscope, Fourier transform infrared spectrum and Raman spectroscopy analysis reveals that each cobalt-carbon core-shell microsphere is made up of an amorphous cobalt core with diameter less than 1 μm and an amorphous carbon shell with thickness of about 200 nm. The possible growth mechanism of cobalt-carbon core-shell microspheres is discussed, based on the pyrolysis of bis(cyclopentadienyl)cobalt in supercritical carbon dioxide and the deposition of carbon or carbon clusters with odd electrons on the surface of magnetic cobalt cores due to magnetic attraction. Magnetic measurements show 141.41 emu/g of saturation magnetization of a typical sample, which is lower than the 168 emu/g of the corresponding metal cobalt bulk material. This is attributed to the considerable mass of the carbon shell and amorphous nature of the magnetic core. Control of magnetism in the cobalt-carbon core-shell microspheres was achieved by annealing treatments.展开更多
Silica sol prepared by sol-gel method was introduced into poly (butyl acrylate) (PBA)/poly (butyl acrylate-styrene-methacryloxypropyl trimethoxysilane) (PSBM) core-shell emulsions to prepare a series of paper surface ...Silica sol prepared by sol-gel method was introduced into poly (butyl acrylate) (PBA)/poly (butyl acrylate-styrene-methacryloxypropyl trimethoxysilane) (PSBM) core-shell emulsions to prepare a series of paper surface sizing agents. The rheological measurement indicated that PSBM emulsions exhibited shear-thinning behavior, and the phenomena became more pronounced with increasing silica sol concentration. Dynamic mechanical analysis (DMA) demonstrated that the stronger interfacial interaction between silica sol and polymer matrix, but microphase separation took place with excess silica sol. Thereby the tensile strength and thermal stability of emulsion films were increased with desirable silica sol concentration, and when silica sol concentration was greater than 6 wt%, the tensile strength leveled off and the decomposition temperature decreased from 351.19℃ to 331.63℃. The degree of crystallinity increased from 5.12% to 10.98% with 4% silica sol addition, resulting in enhanced rigidity of films. Furthermore, the interaction between polymer and fiber was improved with certain amount of silica sol, resulting in improved sizing degree, ring crush strength, surface strength and folding strength. However, excessive crosslinking will be harmful for the properties of sized paper.展开更多
t A self-templating method was employed to synthesize core-shell nanoparticles with octylmethoxycinamate(OMC), a well-known organic UV absorber, as core and nanosilica particles as shell. The characteristic of this ...t A self-templating method was employed to synthesize core-shell nanoparticles with octylmethoxycinamate(OMC), a well-known organic UV absorber, as core and nanosilica particles as shell. The characteristic of this method is that the whole process requires neither surface treatment for nanosilica particles nor additional surfactant or stabilizer, and all the reactions could be finished in one-pot, which exempts removing template and reduces reaction steps compared to the conventional process. The morphology, structure, particle size distribution, chemical composition and optical property of OMC-SiO2 nanoparticles were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), dynamic light scattering(DLS), FTIR spectrometry and UV absorption spectrometry, respectively. Experiment results indicate that the resulting OMC-SiO2 nanoparticles were perfectly spherical with smooth particle surfaces, and had clear core-shell structures. The particle size could be tuned by altering reaction conditions. In addition, the mechanism of the self-templating method for forming core-shell nanoparticles was discussed.展开更多
Silica and montmorillonite-supported silica nanoparticles were prepared via an acid one step sol-gel process. The synthesized solids were characterized using XRD, FTIR, TEM and N2 adsorption. The effect of preparing t...Silica and montmorillonite-supported silica nanoparticles were prepared via an acid one step sol-gel process. The synthesized solids were characterized using XRD, FTIR, TEM and N2 adsorption. The effect of preparing temperatures on the structure and properties of the silica nanoparticles were studied. The results show that the increase of annealing temperature from 25 to 200℃, don’t change amorphous state of silica. While for montmorillonite-supported silica the clay platelets are delaminated during the sol-gel process. TEM results showed that the average particle size of silica is increased by increasing temperature due to the particle sintering and the clay-silica nanoparticles possessed core–shell morphology with diameter of 29 nm. The surface area measurements showed that by increasing annealing temperature the surface area was decreased due to aggregation of particle. The clay-silica sample showed lower average pore width than that of the silica prepared at 200℃ indicating that it has a macropores structure. The adsorption efficiency of the prepared samples was tested by adsorption of protoporphyrin IX. The highest adsorption efficiency was found for SiO2 prepared at 200℃. Temkin model describe the equilibrium of adsorption of protoporphyrin IX on caly-silica nanoparticles under different conditions.展开更多
The hollow α-MnO2 nanoneedle-based microspheres coated with Pd nanoparticles were reported as a novel catalyst for rechargeable lithium-air batteries. The hollow microspheres are composed ofα-MnO2 nanoneedles. Pd na...The hollow α-MnO2 nanoneedle-based microspheres coated with Pd nanoparticles were reported as a novel catalyst for rechargeable lithium-air batteries. The hollow microspheres are composed ofα-MnO2 nanoneedles. Pd nanoparticles are deposited on the hollow microspheres through an aqueous-solution reduction of PdCl2 with NaBH4 at room temperature. The results of TEM, XRD, and EDS show that the Pd nanoparticles are coated on the surface ofα-MnO2 nanoneedles uniformly and the mass fraction of Pd in the Pd-coated α-MnO2 catalyst is about 8.88%. Compared with the counterpart of the hollow α-MnO2 catalyst, the hollow Pd-coated α-MnO2 catalyst improves the energy conversion efficiency and the charge-discharge cycling performance of the air electrode. The initial specific discharge capacity of an air electrode composed of Super P carbon and the as-prepared Pd-coatedα-MnO2 catalyst is 1220 mA&#183;h/g (based on the total electrode mass) at a current density of 0.1 mA/cm2, and the capacity retention rate is about 47.3% after 13 charge-discharge cycles. The results of charge-discharge cycling tests demonstrate that this novel Pd-coatedα-MnO2 catalyst with a hierarchical core-shell structure is a promising catalyst for the lithium-air battery.展开更多
The aim of this work is to develop a venlafaxine hydrochloride sustained release system based on hollow mesoporous silica microspheres(HMSMs).HMSMs were innovatively prepared with tetraethyl silicate(TEOS)as the precu...The aim of this work is to develop a venlafaxine hydrochloride sustained release system based on hollow mesoporous silica microspheres(HMSMs).HMSMs were innovatively prepared with tetraethyl silicate(TEOS)as the precursor and volatile n-heptane as a soft template.The obtained HMSMs show a well-defined hollow structure with an average size of 967 nm and pore volume of 0.85 cm^(3)/g,implying it is a potential drug carrier.Subsequently,venlafaxine hydrochloride(VF)was absorbed in the HMSMs with a content of 37.67% or so.The sustained release effect is further measured by the dissolution in-strument at 37℃ and 50 rpm in ultrapure water.The results showed that the HMSMs/VF system shows good sustained release properties compared with sustained release tablets with hydroxypropyl meth-ylcellulose as the main component.This HMSMs sustained release system appears to be a promising candidate for a sustained drug release.展开更多
TiO2@Ni(OH)2 core-shell microspheres were synthesized by a facile strategy to obtain a perfect 3D flower-like nanostructure with well-arranged Ni(OH)2 nanoflakes on the surfaces of TiO2 microspheres;this arrangement l...TiO2@Ni(OH)2 core-shell microspheres were synthesized by a facile strategy to obtain a perfect 3D flower-like nanostructure with well-arranged Ni(OH)2 nanoflakes on the surfaces of TiO2 microspheres;this arrangement led to a six-fold enhancement in photocatalytic hydrogen evolution. The unique p-n type heterostructure not only promotes the separation and transfer of photogenerated charge carriers significantly, but also offers more active sites for photocatalytic hydrogen production. A photocatalytic mechanism is proposed based on the results of electrochemical measurements and X-ray photoelectron spectroscopy.展开更多
Simultaneous achievement in high solid content and high microsphere yield is deemed a challenge in the fabrication of monodisperse microspheres by precipitation polymerization.We herein demonstrate that micro-sized mo...Simultaneous achievement in high solid content and high microsphere yield is deemed a challenge in the fabrication of monodisperse microspheres by precipitation polymerization.We herein demonstrate that micro-sized monodisperse poly(methacrylic monomer-divinylbenzene)microspheres containing epoxy,lauyl,carboxyl and hydroxyl functions can be fabricated by solvothermal precipitation copolymerization at 20%(mass)monomer loading with over 94%microsphere yield.The morphology and porosity of the obtained particles can be readily tuned by cosolvent-acetonitrile binary solvents.Addition of a small amount of cosolvent that has similar solubility parameter to that of the functional monomer can significantly improve the monodispersity of the obtained microspheres.When tetrahydrofuran was used as the co-solvent,the surface area of the highly porous microspheres achieved higher than 400 m^(2)·g^(-1).Solvothermal precipitation co-polymerization can be expected in scale-up fabrication of various monodisperse functional microspheres free of any surfactant and additive.展开更多
A facile and large-scale synthesis method to fabricate silver hollow microspheres with controllable morphologies and shell thickness is described using low-cost glass microspheres as templates. The method mainly invol...A facile and large-scale synthesis method to fabricate silver hollow microspheres with controllable morphologies and shell thickness is described using low-cost glass microspheres as templates. The method mainly involves two steps of the preparation of silver-coated glass microsphere core–shell particles by a controllable liquid reduced reaction of Ag[(NH3)2]+ solution, which only produces silver nanoparticles anchored on the surface of the thiolated glass microsphere templates, and the removal of glass microspheres by wet chemical etching with HF solution. The products are well characterized by field emitted scanning electron microscopy (SEM), transmitted electron microscopy (TEM), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) etc. The as-prepared core-shell particles and hollow particles have even and compact silver shells. The electromagnetic shielding coatings based on the silver hollow microspheres are demonstrated to have high conductivity, excellent shielding effectiveness and long durability, suggesting that the silver hollow microspheres obtained here are a novel light-weight electromagnetic shielding filler and will have extensive applications in the electromagnetic compatibility fields.展开更多
Engineering the structure and composition of electrode materials is one of the essential means for achieving excellent electrochemical performance.The rational design of Na+host materials is still a massive challenge ...Engineering the structure and composition of electrode materials is one of the essential means for achieving excellent electrochemical performance.The rational design of Na+host materials is still a massive challenge for sodium ion batteries(SIBs).Herein,MoSe_(2)/TiO_(2)heterostructure is integrated with N-doped carbon nanosheets to assemble into hierarchical flowerlike porous core-shell microspheres(MoSe_(2)/TiO_(2)@N-C),which is firstly reported by room-temperature stirring coupled with vulcanization treatment.The cavity of the core-shell structure could provide enough storage space for Na+and alleviate the volume expansion during charge/discharge processes.The apertures between nanosheets provide a guarantee for the rapid penetration of electrolyte to enhance the utilization rate of electrode materials.Furthermore,building heterostructures by combining different phase structures can facilitate electron transfer and accelerate reaction kinetics.Benefiting from the synergistic contributions of structure and composition,MoSe_(2)/TiO_(2)@N-C as SIBs anode material shows better reversible capacities of 302.5 mAh·g^(-1)at 1 A·g^(-1)for 400 cycles and 217.4 mAh·g^(-1)at 4 A·g^(-1)for 900 cycles.Strikingly,the reversible capacities can be restored entirely to the initial level after a high current density cycle.展开更多
Magnetic alumina composite microspheres with γ-Fe 2 O 3 core/Al 2 O 3 shell structure were prepared by the oil column method. A dense silica layer was deposited on the surface of γ-Fe 2 O 3 particles (denoted as γ...Magnetic alumina composite microspheres with γ-Fe 2 O 3 core/Al 2 O 3 shell structure were prepared by the oil column method. A dense silica layer was deposited on the surface of γ-Fe 2 O 3 particles (denoted as γ-Fe 2 O 3 /SiO 2 ) with a desired thickness to protect the iron oxide core against acidic or high temperature conditions. γ-Fe 2 O 3 /SiO 2 /Al 2 O 3 particles with about 85 wt% Al 2 O 3 were obtained and showed to be suitable for practical applications as a magnetic catalyst or catalyst support due to their magnetic properties and pore structure. The products were characterized with scanning electron microscope (SEM) and transmission electron microscope (TEM), nitrogen adsorption-desorption, and vibrating sample magnetometer (VSM). The specific surface area and pore volume of the γ-Fe 2 O 3 /SiO 2 /Al 2 O 3 composite microspheres calcined at 500 ? C were 200 m 2 /g and 0.77 cm 3 /g, respectively.展开更多
We have developed a controlled-release drug carrier. Smartly controlled-release polymer nanoparticles were firstly synthesized through RAFT polymerization as the controlled-release core. The structural and particle pr...We have developed a controlled-release drug carrier. Smartly controlled-release polymer nanoparticles were firstly synthesized through RAFT polymerization as the controlled-release core. The structural and particle properties of polymer nanoparticles were characterized by nuclear magnetic resonance spectroscopy (1H-NMR), scanning electron microscope (SEM) and X-ray spectroscopy (EDX). Mesoporous materials were selected as the shell materials to encapsulate the smart core as the stable shell. The mesoporous shell was characterized by transmission electron microscopy (TEM) and scanning electron microscope (SEM). All the results showed that a well-defined core-shell structure with mesoporous structure was obtained, and this controllable delivery system will have the great potential in nanomedicine.展开更多
Grafting of poly(methyl methacrylate)from narrow disperse polymer particles by surface-initiated atom transferradical polymerization(ATRP)was investigated.Polydivinylbenzene(PDVB)particles were prepared by dispersionp...Grafting of poly(methyl methacrylate)from narrow disperse polymer particles by surface-initiated atom transferradical polymerization(ATRP)was investigated.Polydivinylbenzene(PDVB)particles were prepared by dispersionpolymerization with poly(N-vinyl pyrrolidone)(PVP)as the stabilizer.Chloromethylated PDVB was used as initiating coresites for subsequent ATRP of methyl methacrylate with CuBr/bpy as catalyst system.It was found that poly(methylmethacrylate)was grafted not only from the particle surfaces but also from within a thin shell layer,leading to particles sizeincreases from 2.38-3.00 μm with a core-shell structure particles.The grafted core-shell particles were characterized withFTIR,SEM,DSC.展开更多
基金the National Natural Science Foundation of China(No.50772131)the National High-tech R&D Program of China(863 Program)(No.2011AA322100)+1 种基金the Key Project of Chinese Ministry of Education(No.106086)the Fundamental Research Funds for the Central Universities(No.2010YJ05)。
文摘A one-step ultrasonic mechanical method was used to synthesize a kind of atmospheric water harvesting material with high water harvesting performance in a wide relative humidity(RH)range,especially at low RH(RH<40%),namely,mesoporous silica capsule(MSC)with core-shell structure.Transmission electron microscopy(TEM),nitrogen adsorption and other characterization techniques were used to study the formation process of nano-microspheres.A new mechanism of self-adaptive concentration gradient regulation of silicon migration and recombination core-shell structure was proposed to explain the formation of a cavity in the MSC system.The core-shell design can enhance the specific surface area and pore volume while maintaining the monodispersity and mesoporous size.To study the water harvesting performance of MSC,solid silica nanoparticles(SSN)and mesoporous silica nanoparticles(MSN)were prepared.In a small atmospheric water collection test(25℃,40%RH),the water vapour adsorption and desorption kinetics of MSC,SSN,MSN and a commercial silica gel(CSG)were compared and analyzed.The results show that the MSC with mesoporous channels and core-shell structure can provide about 0.324 gwater/gadsorbent,79%higher than the CSG(0.181 gwater/gadsorbent).It is 25.1%higher than that of 0.259 gwater/gadsorbentof un-hollowed MSN and 980%higher than that of0.03 gwater/gadsorbentof un-hollowed SSN.The material has a large specific surface area and pore volume,simple preparation method and low cost,which provides a feasible idea for realising atmospheric water collection in arid and semi-arid regions.
基金ACKNOWLEDGMENT This work was supported Science Foundation of China by the National Natural (No.20273066).
文摘The synthesis of cobalt-carbon core-shell microspheres in supercritical carbon dioxide system was investi- gated. Cobalt-carbon core-shell microspheres with diameter of about 1μm were prepared at 350 ℃ for 12 h in a closed vessel containing an appropriate amount of bis(cyclopentadienyl)cobalt powder and dry ice. Characterization by a variety of techniques, including X-ray powder diffraction, X-ray photoelectron spectroscopy, TransmissiOn electron microscope, Fourier transform infrared spectrum and Raman spectroscopy analysis reveals that each cobalt-carbon core-shell microsphere is made up of an amorphous cobalt core with diameter less than 1 μm and an amorphous carbon shell with thickness of about 200 nm. The possible growth mechanism of cobalt-carbon core-shell microspheres is discussed, based on the pyrolysis of bis(cyclopentadienyl)cobalt in supercritical carbon dioxide and the deposition of carbon or carbon clusters with odd electrons on the surface of magnetic cobalt cores due to magnetic attraction. Magnetic measurements show 141.41 emu/g of saturation magnetization of a typical sample, which is lower than the 168 emu/g of the corresponding metal cobalt bulk material. This is attributed to the considerable mass of the carbon shell and amorphous nature of the magnetic core. Control of magnetism in the cobalt-carbon core-shell microspheres was achieved by annealing treatments.
文摘Silica sol prepared by sol-gel method was introduced into poly (butyl acrylate) (PBA)/poly (butyl acrylate-styrene-methacryloxypropyl trimethoxysilane) (PSBM) core-shell emulsions to prepare a series of paper surface sizing agents. The rheological measurement indicated that PSBM emulsions exhibited shear-thinning behavior, and the phenomena became more pronounced with increasing silica sol concentration. Dynamic mechanical analysis (DMA) demonstrated that the stronger interfacial interaction between silica sol and polymer matrix, but microphase separation took place with excess silica sol. Thereby the tensile strength and thermal stability of emulsion films were increased with desirable silica sol concentration, and when silica sol concentration was greater than 6 wt%, the tensile strength leveled off and the decomposition temperature decreased from 351.19℃ to 331.63℃. The degree of crystallinity increased from 5.12% to 10.98% with 4% silica sol addition, resulting in enhanced rigidity of films. Furthermore, the interaction between polymer and fiber was improved with certain amount of silica sol, resulting in improved sizing degree, ring crush strength, surface strength and folding strength. However, excessive crosslinking will be harmful for the properties of sized paper.
基金Supported by the National Natural Science Foundation of China(No.50673033)
文摘t A self-templating method was employed to synthesize core-shell nanoparticles with octylmethoxycinamate(OMC), a well-known organic UV absorber, as core and nanosilica particles as shell. The characteristic of this method is that the whole process requires neither surface treatment for nanosilica particles nor additional surfactant or stabilizer, and all the reactions could be finished in one-pot, which exempts removing template and reduces reaction steps compared to the conventional process. The morphology, structure, particle size distribution, chemical composition and optical property of OMC-SiO2 nanoparticles were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), dynamic light scattering(DLS), FTIR spectrometry and UV absorption spectrometry, respectively. Experiment results indicate that the resulting OMC-SiO2 nanoparticles were perfectly spherical with smooth particle surfaces, and had clear core-shell structures. The particle size could be tuned by altering reaction conditions. In addition, the mechanism of the self-templating method for forming core-shell nanoparticles was discussed.
文摘Silica and montmorillonite-supported silica nanoparticles were prepared via an acid one step sol-gel process. The synthesized solids were characterized using XRD, FTIR, TEM and N2 adsorption. The effect of preparing temperatures on the structure and properties of the silica nanoparticles were studied. The results show that the increase of annealing temperature from 25 to 200℃, don’t change amorphous state of silica. While for montmorillonite-supported silica the clay platelets are delaminated during the sol-gel process. TEM results showed that the average particle size of silica is increased by increasing temperature due to the particle sintering and the clay-silica nanoparticles possessed core–shell morphology with diameter of 29 nm. The surface area measurements showed that by increasing annealing temperature the surface area was decreased due to aggregation of particle. The clay-silica sample showed lower average pore width than that of the silica prepared at 200℃ indicating that it has a macropores structure. The adsorption efficiency of the prepared samples was tested by adsorption of protoporphyrin IX. The highest adsorption efficiency was found for SiO2 prepared at 200℃. Temkin model describe the equilibrium of adsorption of protoporphyrin IX on caly-silica nanoparticles under different conditions.
基金Project(20973124)supported by the National Natural Science Foundation of ChinaProject(KLAEMC-OP201101)supported by the Open Project of Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education(Nankai University),China
文摘The hollow α-MnO2 nanoneedle-based microspheres coated with Pd nanoparticles were reported as a novel catalyst for rechargeable lithium-air batteries. The hollow microspheres are composed ofα-MnO2 nanoneedles. Pd nanoparticles are deposited on the hollow microspheres through an aqueous-solution reduction of PdCl2 with NaBH4 at room temperature. The results of TEM, XRD, and EDS show that the Pd nanoparticles are coated on the surface ofα-MnO2 nanoneedles uniformly and the mass fraction of Pd in the Pd-coated α-MnO2 catalyst is about 8.88%. Compared with the counterpart of the hollow α-MnO2 catalyst, the hollow Pd-coated α-MnO2 catalyst improves the energy conversion efficiency and the charge-discharge cycling performance of the air electrode. The initial specific discharge capacity of an air electrode composed of Super P carbon and the as-prepared Pd-coatedα-MnO2 catalyst is 1220 mA&#183;h/g (based on the total electrode mass) at a current density of 0.1 mA/cm2, and the capacity retention rate is about 47.3% after 13 charge-discharge cycles. The results of charge-discharge cycling tests demonstrate that this novel Pd-coatedα-MnO2 catalyst with a hierarchical core-shell structure is a promising catalyst for the lithium-air battery.
基金supported by the National Natural Science Foundation of China(grant No.22075252).
文摘The aim of this work is to develop a venlafaxine hydrochloride sustained release system based on hollow mesoporous silica microspheres(HMSMs).HMSMs were innovatively prepared with tetraethyl silicate(TEOS)as the precursor and volatile n-heptane as a soft template.The obtained HMSMs show a well-defined hollow structure with an average size of 967 nm and pore volume of 0.85 cm^(3)/g,implying it is a potential drug carrier.Subsequently,venlafaxine hydrochloride(VF)was absorbed in the HMSMs with a content of 37.67% or so.The sustained release effect is further measured by the dissolution in-strument at 37℃ and 50 rpm in ultrapure water.The results showed that the HMSMs/VF system shows good sustained release properties compared with sustained release tablets with hydroxypropyl meth-ylcellulose as the main component.This HMSMs sustained release system appears to be a promising candidate for a sustained drug release.
基金supported by the National Natural Science Foundation of China(21773031)the Natural Science Foundation of Fujian Province(2018J01686)the State Key Laboratory of Photocatalysis on Energy and Environment(SKLPEE-2017A01 and SKLPEE-2017B02)~~
文摘TiO2@Ni(OH)2 core-shell microspheres were synthesized by a facile strategy to obtain a perfect 3D flower-like nanostructure with well-arranged Ni(OH)2 nanoflakes on the surfaces of TiO2 microspheres;this arrangement led to a six-fold enhancement in photocatalytic hydrogen evolution. The unique p-n type heterostructure not only promotes the separation and transfer of photogenerated charge carriers significantly, but also offers more active sites for photocatalytic hydrogen production. A photocatalytic mechanism is proposed based on the results of electrochemical measurements and X-ray photoelectron spectroscopy.
基金National Natural Science Foundation of China(51873079)for financial support。
文摘Simultaneous achievement in high solid content and high microsphere yield is deemed a challenge in the fabrication of monodisperse microspheres by precipitation polymerization.We herein demonstrate that micro-sized monodisperse poly(methacrylic monomer-divinylbenzene)microspheres containing epoxy,lauyl,carboxyl and hydroxyl functions can be fabricated by solvothermal precipitation copolymerization at 20%(mass)monomer loading with over 94%microsphere yield.The morphology and porosity of the obtained particles can be readily tuned by cosolvent-acetonitrile binary solvents.Addition of a small amount of cosolvent that has similar solubility parameter to that of the functional monomer can significantly improve the monodispersity of the obtained microspheres.When tetrahydrofuran was used as the co-solvent,the surface area of the highly porous microspheres achieved higher than 400 m^(2)·g^(-1).Solvothermal precipitation co-polymerization can be expected in scale-up fabrication of various monodisperse functional microspheres free of any surfactant and additive.
基金Supported by the National High Technology Research and Development Program of China (No. 2006AA03Z461)the National Defense Fundamental Scientific Research Program (No. A1420080185)
文摘A facile and large-scale synthesis method to fabricate silver hollow microspheres with controllable morphologies and shell thickness is described using low-cost glass microspheres as templates. The method mainly involves two steps of the preparation of silver-coated glass microsphere core–shell particles by a controllable liquid reduced reaction of Ag[(NH3)2]+ solution, which only produces silver nanoparticles anchored on the surface of the thiolated glass microsphere templates, and the removal of glass microspheres by wet chemical etching with HF solution. The products are well characterized by field emitted scanning electron microscopy (SEM), transmitted electron microscopy (TEM), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) etc. The as-prepared core-shell particles and hollow particles have even and compact silver shells. The electromagnetic shielding coatings based on the silver hollow microspheres are demonstrated to have high conductivity, excellent shielding effectiveness and long durability, suggesting that the silver hollow microspheres obtained here are a novel light-weight electromagnetic shielding filler and will have extensive applications in the electromagnetic compatibility fields.
基金This work was financially supported by the National Natural Science Foundation of China(No.U21A2077)the Taishan Scholar Project Foundation of Shandong Province(No.ts20190908+1 种基金the Natural Science Foundation of Shandong Province(Nos.ZR2021ZD05 and ZR2022QB200)Electronic Supplementary Material:Supplementary material。
文摘Engineering the structure and composition of electrode materials is one of the essential means for achieving excellent electrochemical performance.The rational design of Na+host materials is still a massive challenge for sodium ion batteries(SIBs).Herein,MoSe_(2)/TiO_(2)heterostructure is integrated with N-doped carbon nanosheets to assemble into hierarchical flowerlike porous core-shell microspheres(MoSe_(2)/TiO_(2)@N-C),which is firstly reported by room-temperature stirring coupled with vulcanization treatment.The cavity of the core-shell structure could provide enough storage space for Na+and alleviate the volume expansion during charge/discharge processes.The apertures between nanosheets provide a guarantee for the rapid penetration of electrolyte to enhance the utilization rate of electrode materials.Furthermore,building heterostructures by combining different phase structures can facilitate electron transfer and accelerate reaction kinetics.Benefiting from the synergistic contributions of structure and composition,MoSe_(2)/TiO_(2)@N-C as SIBs anode material shows better reversible capacities of 302.5 mAh·g^(-1)at 1 A·g^(-1)for 400 cycles and 217.4 mAh·g^(-1)at 4 A·g^(-1)for 900 cycles.Strikingly,the reversible capacities can be restored entirely to the initial level after a high current density cycle.
基金supported by the State Key Basic Research Program of PRC (2006CB202505)the National Natural Science Foundation of China (20806093)
文摘Magnetic alumina composite microspheres with γ-Fe 2 O 3 core/Al 2 O 3 shell structure were prepared by the oil column method. A dense silica layer was deposited on the surface of γ-Fe 2 O 3 particles (denoted as γ-Fe 2 O 3 /SiO 2 ) with a desired thickness to protect the iron oxide core against acidic or high temperature conditions. γ-Fe 2 O 3 /SiO 2 /Al 2 O 3 particles with about 85 wt% Al 2 O 3 were obtained and showed to be suitable for practical applications as a magnetic catalyst or catalyst support due to their magnetic properties and pore structure. The products were characterized with scanning electron microscope (SEM) and transmission electron microscope (TEM), nitrogen adsorption-desorption, and vibrating sample magnetometer (VSM). The specific surface area and pore volume of the γ-Fe 2 O 3 /SiO 2 /Al 2 O 3 composite microspheres calcined at 500 ? C were 200 m 2 /g and 0.77 cm 3 /g, respectively.
基金Funded by National Natural Science Foundation of China (Nos.51861135313,U1663225,U1662134,21711530705,21673282,21473246)Fundamental Research Funds for the Central Universities (Nos.19lgpy112,19lgzd16,2019IB005)+3 种基金National Key R&D Program of China (No.2017YFC1103800)Program for Changjiang Scholars and Innovative Research Team in University (No.IRT_15R52)International Science&Technology Cooperation Program of China (No.2015DFE52870)Jilin Province Science and Technology Development Plan (No.20180101208JC)
文摘We have developed a controlled-release drug carrier. Smartly controlled-release polymer nanoparticles were firstly synthesized through RAFT polymerization as the controlled-release core. The structural and particle properties of polymer nanoparticles were characterized by nuclear magnetic resonance spectroscopy (1H-NMR), scanning electron microscope (SEM) and X-ray spectroscopy (EDX). Mesoporous materials were selected as the shell materials to encapsulate the smart core as the stable shell. The mesoporous shell was characterized by transmission electron microscopy (TEM) and scanning electron microscope (SEM). All the results showed that a well-defined core-shell structure with mesoporous structure was obtained, and this controllable delivery system will have the great potential in nanomedicine.
基金This work was supported by the National Natural Science Foundation of China(No.20274018)Nankai University for their partly financial.
文摘Grafting of poly(methyl methacrylate)from narrow disperse polymer particles by surface-initiated atom transferradical polymerization(ATRP)was investigated.Polydivinylbenzene(PDVB)particles were prepared by dispersionpolymerization with poly(N-vinyl pyrrolidone)(PVP)as the stabilizer.Chloromethylated PDVB was used as initiating coresites for subsequent ATRP of methyl methacrylate with CuBr/bpy as catalyst system.It was found that poly(methylmethacrylate)was grafted not only from the particle surfaces but also from within a thin shell layer,leading to particles sizeincreases from 2.38-3.00 μm with a core-shell structure particles.The grafted core-shell particles were characterized withFTIR,SEM,DSC.