A field study was conducted at the Agricultural Research Farm of Razi University, Kermanshah, Iran to investigate the effects of phosphate biofertilizer, row spacing and plant density on corn yield and weed growth. Th...A field study was conducted at the Agricultural Research Farm of Razi University, Kermanshah, Iran to investigate the effects of phosphate biofertilizer, row spacing and plant density on corn yield and weed growth. The experiment was a factorial with three factors arranged in a randomized complete block design with three replications. The first factor was phosphate biofertilizer (inoculation and non-inoculation), the second was row spacing (conventional (75 cm) and reduced (50 cm)) and the third was plant density (66,666 plants·ha–1 (conventional plant density) 83,333 and 99,999 plants·ha–1 (1.25 and 1.5 times the conventional plant density, respectively)). Results indicated that corn yield and weed growth were significantly influenced by row spacing and plant density. So that, corn yield improved and weed biomass diminished in response to increasing plant density and decreasing row spacing. However, phosphate biofertilizer had no significant effect on corn yield, whereas, weed biomass was notably increased when phosphate biofertilizer was applied. Overall, this study revealed that both yield and weed control in corn field can be improved by alteration of the planting arrangement.展开更多
In the field experiment, the effects of plant densities (75 000, 112 500 and 150 000 plants ha-1) on forage nutritive value of whole plant corn (WPC) were studied from 1999 to 2001. The results demonstrated that wit...In the field experiment, the effects of plant densities (75 000, 112 500 and 150 000 plants ha-1) on forage nutritive value of whole plant corn (WPC) were studied from 1999 to 2001. The results demonstrated that with the increasing of plant density, the forage matter yield per plant corn decreased significantly, while the fresh matter and dry matter per hectare corn increased significantly, and a higher grains yield was gotten at higher plant densities. Forage nutritive quality of whole plant corn was changed as plant density increased, the crude protein (CP), ether extract (EE), crude fiber (CF), nitrogen free extract (NFE) and general energy (GE) yields increased obviously. Increas- ing plant density reasonably with the application of plant growth regulators could improve plant properties, harvest more forage matter, and enhance forage nutritive value of WPC.展开更多
Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and promote plant growth by producing and secreting various chemical regulators in the rhizosphere. With the recent interest in sustainable agriculture,...Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and promote plant growth by producing and secreting various chemical regulators in the rhizosphere. With the recent interest in sustainable agriculture, an increasing number of researchers are investigating ways to improve the efficiency of PGPR use to reduce chemical fertilizer inputs needed for crop production. Accordingly, greenhouse studies were conducted to evaluate the impact of PGPR inoculants on biomass production and nitrogen (N) content of corn (Zea mays L.) under different N levels. Treatments included three PGPR inoculants (two mixtures of PGPR strains and one control without PGPR) and five N application levels (0%, 25%, 50%, 75%, and 100% of the recommended N rate of 135 kg N ha−1). Results showed that inoculation of PGPR significantly increased plant height, stem diameter, leaf area, and root morphology of corn compared to no PGPR application under the same N levels at the V6 growth stage, but few differences were observed at the V4 stage. PGPR with 50% of the full N rate produced corn biomass and N concentrations equivalent to or greater than that of the full N rate without inoculants at the VT stage. In conclusion, mixtures of PGPR can potentially reduce inorganic N fertilization without affecting corn plant growth parameters. Future research is needed under field conditions to determine if these PGPR inoculants can be integrated as a bio-fertilizer in crop production nutrient management strategies.展开更多
The use of pig compost (PC) in agricultural land has increased in Chile in the last years. This organic amendment is a valuable nutritional source for crops, but its applying must be done in a controlled manner since ...The use of pig compost (PC) in agricultural land has increased in Chile in the last years. This organic amendment is a valuable nutritional source for crops, but its applying must be done in a controlled manner since it exhibited high copper (Cu) and zinc (Zn) concentrations. A short-term field experiment was conducted out to study the effects of increasing PC rates on the production and quality corn crop in two soils located at south central Chile. Five treatments were evaluated: control without fertilization (C), conventional fertilization (CF) (350 kg N ha-1), and three increasing PC rates (15.33, 30.65, and 61.31 Mg·ha-1, corresponding to 350, 700, and 1400 kg N ha-1, respectively) in a split plot design with four replicates. The overall results indicated that dry matter production, grain yield, and plant Zn and Cu concentrations were similar among fertilization sources and rates. Extractable soil Zn concentration exhibited a rate-related increase of PC in both locations, while Cu concentration exhibited this behavior only at the soil located in Chillan. Nevertheless, the values obtained were below of those considered phytotoxic levels. Therefore, the contribution of Zn and Cu through PC applying at different rates to the soils studied showed a slight affect in soil extractable Zn and Cu values without negatively effects on quantity and quality corn crop. The organic amendment applied can be a good and cheaper substitute to conventional fertilization, although further monitoring of Zn and Cu soil levels should be carried out to avoid any environmental risk.展开更多
Nitrogen concentration in the ear leaf is a good indicator of corn (Zea mays L.) N nutrition status during late growing season. This study was done to examine the relationship of late-season ear leaf N concentration w...Nitrogen concentration in the ear leaf is a good indicator of corn (Zea mays L.) N nutrition status during late growing season. This study was done to examine the relationship of late-season ear leaf N concentration with early- to mid- season plant height of corn at Milan, TN from 2008 to 2010 using linear, quadratic, square root, logarithmic, and exponential models. Six N rate treatments (0, 62, 123, 185, 247, and 308 kg·N·ha-1) repeated four times were implemented each year in a randomized complete block design under four major cropping systems: corn after corn, corn after soybean [Glycine max (L.) Merr.], corn after cotton [Gossypium hirsutum (L.)], and irrigated corn after soybean. The relationship of ear leaf N concentration determined at the blister growth stage (R2) with plant height measured at the 6-leaf (V6), 10-leaf (V10), and 12-leaf (V12) growth stages was statistically significant and positive in non-irrigated corn under normal weather conditions. However, the strength of this relationship was weak to moderate with the determination coefficient (R2) values ranging from 0.21 to 0.51. This relationship was generally improved as the growing season progressed from V6 to V12. Irrigation and abnormal weather seemed to have adverse effects on this relationship. The five regression models performed similarly in the evaluation of this relationship regardless of growth stage, year, and cropping system. Our results suggest that unlike the relationship of corn yield at harvest with plant height measured during early- to mid-season or the relationship of leaf N concentration with plant height when both are measured simultaneously during early- to mid-season, the relationship of late-season ear leaf N concentration with early- to mid-season plant height may not be strong enough to be used to develop algorithms for variable-rate N applications on corn within a field no matter which regression model is used to describe this relationship.展开更多
[Objective] The aim was to research rational fertilization of corn in Yuanzhou District, Guyuan, Ningxia Hui Autonomous Region. [Method] Nutrient con- tents in soils in Yuanzhou District were measured with conventiona...[Objective] The aim was to research rational fertilization of corn in Yuanzhou District, Guyuan, Ningxia Hui Autonomous Region. [Method] Nutrient con- tents in soils in Yuanzhou District were measured with conventional analysis method and the suitable fertilization scheme of corn growth was proposed based on fertiliz- er-application rule of corn growth and nutrient balance. [Result] Soil in farmlands in Yuanzhou District was of alkalinity; organic matter, N, P and Zn were shortage; S was extremely insufficient; Fe and Mn were moderate; K was abundant; Cu would satisfy crop growth, [Conclusion] The research provides references for yield increase, reduction of chemical fertilizer and related pollution for corn growth.展开更多
In this study, a transgenic Bt maize hybrid (event MON 810 from Monsanto Company) expressing Cry1Ab protein derived from Bacillus thuringiensis (Bt) and its negative isoline hybrid were evaluated for control of the As...In this study, a transgenic Bt maize hybrid (event MON 810 from Monsanto Company) expressing Cry1Ab protein derived from Bacillus thuringiensis (Bt) and its negative isoline hybrid were evaluated for control of the Asian corn borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Pyralidae), in a field trial. Maize plants were artificially infested with neonate larvae of Asian corn borer at the mid-whorl (first-generation), pre-tassel (first- and/or second-generation), and silk (second-generation) growth stages. The transgenic Bt maize hybrid sustained significantly less leaf feeding damage (rating 1.0±0.0) than its negative isoline control (rating 7.3±0.1). With the Bt maize, 1.36.8% of plants were damaged by corn borer tunneling with <0.5 cm tunneling per stalk under different levels of infestation, compared with 100% of plants damaged with 9.325.0 cm tunneling per stalk for the negative isoline control. On average, transgenic Bt maize hybrids had only 0.010.05 tunnels per stalk and no stems were broken. In contrast, the negative isoline control had 3.118.36 tunnels per stalk and 31.273.9% of stems broken. Yields were significantly higher in transgenic Bt maize than in the control. These results demonstrate that transgenic Bt maize can significantly minimize yield losses caused by the Asian corn borer through resistance to the first- and second-generation larvae.展开更多
Using the split plot and multi-quadric regressive orthogonal cross-course rotary combination design, corn variety Denghai 6’s yield and yield components, important colony quality and physiological index, microclimate...Using the split plot and multi-quadric regressive orthogonal cross-course rotary combination design, corn variety Denghai 6’s yield and yield components, important colony quality and physiological index, microclimate index in field and technical planting for high yield were studied. Cultivation for high yield showed that Denghai 6 had the great potential of increase yield. The average yield of two years was展开更多
Information from actual farm fields can help corn producers understand the value and importance of establishing uniform crop emergence and within-row plant spacing. Thirty-eight fields planted with corn (Zea mays L.) ...Information from actual farm fields can help corn producers understand the value and importance of establishing uniform crop emergence and within-row plant spacing. Thirty-eight fields planted with corn (Zea mays L.) by North Dakota producers were evaluated to determine the effects of uneven plant emergence timing and within-row plant space variability, as well as identifying contributing factors. Rows within a planter’s width with the most variability yielded 6% less than the least variable rows. Individual ear weights decreased as the number of days after normal emergence (date when 50% of plant stand emerged) increased. Ears next to within-row gaps (>30.5 cm) weighed 11% more than the normally spaced plants. Combined ears from both plants situated <5.1 cm apart weighed 36% more than from a single ear from normally spaced plants. Surface residue and planting speed impacted stand establishment variability more often than other factors measured. Producers should assess each field environment individually in order to identify best practices to achieve uniform stand establishment.展开更多
Fifteen field trials were conducted from 2009 to 2011 in Ontario, Canada and Michigan, USA to determine how long glyphosate-resistant corn needs to be kept weed-free after emergence to prevent yield loss. Data were se...Fifteen field trials were conducted from 2009 to 2011 in Ontario, Canada and Michigan, USA to determine how long glyphosate-resistant corn needs to be kept weed-free after emergence to prevent yield loss. Data were separated into two environments based on when yield loss first occurred after glyphosate application. In Environment 1 (4/15 sites) yield was not reduced when corn was kept weed-free until the 4-leaf stage. However, in Environment 2 (11/15 sites) there was no yield loss when corn was kept weed-free up to the 2-leaf stage. The most prominent weeds were velvetleaf, redroot pigweed, common ragweed, common lambsquarters and foxtail species. While later emerging weeds did not necessarily impact corn yield, weeds emerging after the 2- and 4-leaf corn stage likely produced seed that was added to the soil seed bank. Weeds emerging after 6-, 8-, and 10-leaf corn growth stages were small (low biomass/seedlings) and most likely did not reach reproductive maturity. Based on this research, corn must be maintained weed-free up to the 4-leaf stage. Any weeds emerging after that did not influence corn yield.展开更多
[Objectives] This study was conducted to improve the efficiency of genetic transformation using growing points of corn sprouts. [Methods] A mixed liquid of plant hormones 6-BA and KT at a suitable concentration and ra...[Objectives] This study was conducted to improve the efficiency of genetic transformation using growing points of corn sprouts. [Methods] A mixed liquid of plant hormones 6-BA and KT at a suitable concentration and ratio was added dropwise to the growing points of corn sprouts, followed by culture under appropriate conditions. [Results] Corn sprouts could be induced to form multiple plants, thereby improving the transformation efficiency of growing points in corn sprouts. [Conclusions] This study provides a breeding method using growing points of corn sprouts as transformation receptors for direct plantlet formation without tissue culture by the Agrobacterium transgenic technology.展开更多
When sowing summer corn without tillage,it is necessary to ensure that the furrow opener is free from straw congestion and that the spacing of the sowing can be adjusted according to the breeds of corn and the preset ...When sowing summer corn without tillage,it is necessary to ensure that the furrow opener is free from straw congestion and that the spacing of the sowing can be adjusted according to the breeds of corn and the preset seeding rate per acre.On the basis of the structural features of newly developed no-tillage corn fertilizers,an intelligent fuzzy monitoring system for corn planters was developed in this study.The system facilitates automatic control of the spacing adjustment and the status monitor for the fertilizer tank,seed tank,and seeding orifice.According to the preset number of rows,line spacing,number of plants per acre,and seed germination rate,the control rate can be calculated through designing in surveillance software.The control rate is output to the fuzzy controller through the digital output module of the CAN bus.Fuzzy control is applied to the DC motor for stepless adjustment of the spacing.A system for video surveillance of the working status of a planter is developed for displaying a real-time video image of the planter operation and achieving an anti-congestion status monitoring of a no-tillage planting operation in a dusty environment.Through field trials,the detection accuracy was 91.4%.The seed-clogging fault-alarm accuracy was 96.0%.The entire system remained stable and reliable.展开更多
Corn and soybeans should be sown between 5 cm and 10 cm apart in mixed cultivation to increase protein content and improve productivity of the forage.However,existing sowers cannot plant at intervals of less than 20 c...Corn and soybeans should be sown between 5 cm and 10 cm apart in mixed cultivation to increase protein content and improve productivity of the forage.However,existing sowers cannot plant at intervals of less than 20 cm.Consequently,mixed cultivation of corn and soybeans is currently performed by first sowing corn seeds with a tractor and then manually planting soybean seeds.This method results in irregular intervals between the seeds,it is laborious and time consuming.This study aimed at developing a seeder that can simultaneously,precisely and efficiently plant corn and soybean.The geometrical and rheological properties of corn and soybeans were initially measured.The seed conveying equipment were designed using the EDEM software.The sowing interval between seeds,depth of soil over planted seed,and sowing performance were analyzed.The EDEM simulation results indicated that a 6-mm-wide and 3-mm-deep grooved seed-delivering roller had the highest particle mobility of the designs considered,with a 2.5%misplanting rate.A performance test showed that no misplanting occurred in the sections sowed with soybean seeds at a seeding interval that averaged 32 mm(321 seeds sown in 10 m)and that misplanting occurred in one section sowed with corn at a seeding interval that averaged 247 mm(40 seeds sown over 10 m).The sowing efficiency for both corn and soybeans was found to be 0.42 h/hm2.The average depth of soil over seed was 32.7 mm for soybean and 39.7 mm for corn.These average depths are within the stipulated range for the depth of soil over seed,which is 5 to 10 times the seed size.This study developed an efficient seeding machine that can simultaneously plant soybean and corn precisely,consequently improving forage yield and saving man-hours.展开更多
New joint venture strengthens China’s position against international seed companies Yuan Longping Hi-Tech Agriculture Co.Ltd.(Longping Hi-Tech),named after the father of hybrid rice in China,announced on February 10 ...New joint venture strengthens China’s position against international seed companies Yuan Longping Hi-Tech Agriculture Co.Ltd.(Longping Hi-Tech),named after the father of hybrid rice in China,announced on February 10 the establishment of a joint venture(JV) with a subsidiary of Vilmorin & Cie.展开更多
A two-year field experiment was conducted to evaluate the effects of plant density on tassel and ear differentiation, anthesissilking interval(ASI), and grain yield formation of two types of modern maize hybrids(Zhong...A two-year field experiment was conducted to evaluate the effects of plant density on tassel and ear differentiation, anthesissilking interval(ASI), and grain yield formation of two types of modern maize hybrids(Zhongdan 909(ZD909) as tolerant hybrid to crowding stress, Jidan 209(JD209) and Neidan 4(ND4) as intolerant hybrids to crowding stress) in Northeast China. Plant densities of 4.50×104(D1), 6.75×104(D2), 9.00×104(D3), 11.25×104(D4), and 13.50×104(D5) plants ha-1had no significant effects on initial time of tassel and ear differentiation of maize. Instead, higher plant density delayed the tassel and ear development during floret differentiation and sexual organ formation stage, subsequently resulting in ASI increments at the rate of 1.2–2.9 days on average for ZD909 in 2013–2014, 0.7–4.2 days for JD209 in 2013, and 0.5–3.7 days for ND4 in 2014, respectively, under the treatments of D2, D3, D4, and D5 compared to that under the D1 treatment. Total florets, silking florets, and silking rates of ear showed slightly decrease trends with the plant density increasing, whereas the normal kernels seriously decreased at the rate of 11.0–44.9% on average for ZD909 in 2013–2014, 2.0–32.6% for JD209 in 2013, and 9.7–28.3% for ND4 in 2014 with the plant density increased compared to that under the D1 treatment due to increased florets abortive rates. It was also observed that 100-kernel weight of ZD909 showed less decrease trend compared that of JD209 and ND4 along with the plant densities increase. As a consequence, ZD909 gained its highest grain yield by 13.7 t ha-1on average at the plant density of 9.00×104 plants ha-1, whereas JD209 and ND4 reached their highest grain yields by 11.7 and 10.2 t ha-1at the plant density of 6.75×104 plants ha-1, respectively. Our experiment demonstrated that hybrids with lower ASI, higher kernel number potential per ear, and relative constant 100-kernel weight(e.g., ZD909) could achieve higher yield under dense planting in high latitude area(e.g., Northeast China).展开更多
The effect of decumbenones A (1), B (2) and C (3) from the marine-derived strain of the fungus Aspergillus sulphureus on the growth of seedling roots of buckwheat, wheat, barley and corn at the concentration range 10...The effect of decumbenones A (1), B (2) and C (3) from the marine-derived strain of the fungus Aspergillus sulphureus on the growth of seedling roots of buckwheat, wheat, barley and corn at the concentration range 10﹣5 - 10﹣18 M was studied. It was shown that decumbenone B had a stimulatory effect on the growth of seedling roots of buckwheat, decumbenone A—on the growth of seedling roots of spring soft wheat, decumbenone C—on the growth of seedling roots of spring barley, decumbenone A, B and C —on the growth of seedling roots of corn. The stimulatory effect for some substances was shown at ultra-low concentrations 10﹣12 - 10﹣18 M. It is possible to recommend decumbenones A, B and C for studying in field conditions as growth factors of buckwheat, wheat, barley and corn.展开更多
文摘A field study was conducted at the Agricultural Research Farm of Razi University, Kermanshah, Iran to investigate the effects of phosphate biofertilizer, row spacing and plant density on corn yield and weed growth. The experiment was a factorial with three factors arranged in a randomized complete block design with three replications. The first factor was phosphate biofertilizer (inoculation and non-inoculation), the second was row spacing (conventional (75 cm) and reduced (50 cm)) and the third was plant density (66,666 plants·ha–1 (conventional plant density) 83,333 and 99,999 plants·ha–1 (1.25 and 1.5 times the conventional plant density, respectively)). Results indicated that corn yield and weed growth were significantly influenced by row spacing and plant density. So that, corn yield improved and weed biomass diminished in response to increasing plant density and decreasing row spacing. However, phosphate biofertilizer had no significant effect on corn yield, whereas, weed biomass was notably increased when phosphate biofertilizer was applied. Overall, this study revealed that both yield and weed control in corn field can be improved by alteration of the planting arrangement.
基金financia1ly supported by the National Natural Science Foundation of China(30170546)the Agricultural Science and Technology Spanning Program([2003]No.19),China.
文摘In the field experiment, the effects of plant densities (75 000, 112 500 and 150 000 plants ha-1) on forage nutritive value of whole plant corn (WPC) were studied from 1999 to 2001. The results demonstrated that with the increasing of plant density, the forage matter yield per plant corn decreased significantly, while the fresh matter and dry matter per hectare corn increased significantly, and a higher grains yield was gotten at higher plant densities. Forage nutritive quality of whole plant corn was changed as plant density increased, the crude protein (CP), ether extract (EE), crude fiber (CF), nitrogen free extract (NFE) and general energy (GE) yields increased obviously. Increas- ing plant density reasonably with the application of plant growth regulators could improve plant properties, harvest more forage matter, and enhance forage nutritive value of WPC.
文摘Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and promote plant growth by producing and secreting various chemical regulators in the rhizosphere. With the recent interest in sustainable agriculture, an increasing number of researchers are investigating ways to improve the efficiency of PGPR use to reduce chemical fertilizer inputs needed for crop production. Accordingly, greenhouse studies were conducted to evaluate the impact of PGPR inoculants on biomass production and nitrogen (N) content of corn (Zea mays L.) under different N levels. Treatments included three PGPR inoculants (two mixtures of PGPR strains and one control without PGPR) and five N application levels (0%, 25%, 50%, 75%, and 100% of the recommended N rate of 135 kg N ha−1). Results showed that inoculation of PGPR significantly increased plant height, stem diameter, leaf area, and root morphology of corn compared to no PGPR application under the same N levels at the V6 growth stage, but few differences were observed at the V4 stage. PGPR with 50% of the full N rate produced corn biomass and N concentrations equivalent to or greater than that of the full N rate without inoculants at the VT stage. In conclusion, mixtures of PGPR can potentially reduce inorganic N fertilization without affecting corn plant growth parameters. Future research is needed under field conditions to determine if these PGPR inoculants can be integrated as a bio-fertilizer in crop production nutrient management strategies.
文摘The use of pig compost (PC) in agricultural land has increased in Chile in the last years. This organic amendment is a valuable nutritional source for crops, but its applying must be done in a controlled manner since it exhibited high copper (Cu) and zinc (Zn) concentrations. A short-term field experiment was conducted out to study the effects of increasing PC rates on the production and quality corn crop in two soils located at south central Chile. Five treatments were evaluated: control without fertilization (C), conventional fertilization (CF) (350 kg N ha-1), and three increasing PC rates (15.33, 30.65, and 61.31 Mg·ha-1, corresponding to 350, 700, and 1400 kg N ha-1, respectively) in a split plot design with four replicates. The overall results indicated that dry matter production, grain yield, and plant Zn and Cu concentrations were similar among fertilization sources and rates. Extractable soil Zn concentration exhibited a rate-related increase of PC in both locations, while Cu concentration exhibited this behavior only at the soil located in Chillan. Nevertheless, the values obtained were below of those considered phytotoxic levels. Therefore, the contribution of Zn and Cu through PC applying at different rates to the soils studied showed a slight affect in soil extractable Zn and Cu values without negatively effects on quantity and quality corn crop. The organic amendment applied can be a good and cheaper substitute to conventional fertilization, although further monitoring of Zn and Cu soil levels should be carried out to avoid any environmental risk.
文摘Nitrogen concentration in the ear leaf is a good indicator of corn (Zea mays L.) N nutrition status during late growing season. This study was done to examine the relationship of late-season ear leaf N concentration with early- to mid- season plant height of corn at Milan, TN from 2008 to 2010 using linear, quadratic, square root, logarithmic, and exponential models. Six N rate treatments (0, 62, 123, 185, 247, and 308 kg·N·ha-1) repeated four times were implemented each year in a randomized complete block design under four major cropping systems: corn after corn, corn after soybean [Glycine max (L.) Merr.], corn after cotton [Gossypium hirsutum (L.)], and irrigated corn after soybean. The relationship of ear leaf N concentration determined at the blister growth stage (R2) with plant height measured at the 6-leaf (V6), 10-leaf (V10), and 12-leaf (V12) growth stages was statistically significant and positive in non-irrigated corn under normal weather conditions. However, the strength of this relationship was weak to moderate with the determination coefficient (R2) values ranging from 0.21 to 0.51. This relationship was generally improved as the growing season progressed from V6 to V12. Irrigation and abnormal weather seemed to have adverse effects on this relationship. The five regression models performed similarly in the evaluation of this relationship regardless of growth stage, year, and cropping system. Our results suggest that unlike the relationship of corn yield at harvest with plant height measured during early- to mid-season or the relationship of leaf N concentration with plant height when both are measured simultaneously during early- to mid-season, the relationship of late-season ear leaf N concentration with early- to mid-season plant height may not be strong enough to be used to develop algorithms for variable-rate N applications on corn within a field no matter which regression model is used to describe this relationship.
基金Supported by Programs for Science and Technology Development in Ningxia Hui Autonomous Region(NKJ2010-168-177)~~
文摘[Objective] The aim was to research rational fertilization of corn in Yuanzhou District, Guyuan, Ningxia Hui Autonomous Region. [Method] Nutrient con- tents in soils in Yuanzhou District were measured with conventional analysis method and the suitable fertilization scheme of corn growth was proposed based on fertiliz- er-application rule of corn growth and nutrient balance. [Result] Soil in farmlands in Yuanzhou District was of alkalinity; organic matter, N, P and Zn were shortage; S was extremely insufficient; Fe and Mn were moderate; K was abundant; Cu would satisfy crop growth, [Conclusion] The research provides references for yield increase, reduction of chemical fertilizer and related pollution for corn growth.
基金This research was supported in part by National 973 Program(001CB109004)National 863 Program(2002AA212161)+1 种基金National Natural Science Foundation of China(39970489)Mon-santo LLC.
文摘In this study, a transgenic Bt maize hybrid (event MON 810 from Monsanto Company) expressing Cry1Ab protein derived from Bacillus thuringiensis (Bt) and its negative isoline hybrid were evaluated for control of the Asian corn borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Pyralidae), in a field trial. Maize plants were artificially infested with neonate larvae of Asian corn borer at the mid-whorl (first-generation), pre-tassel (first- and/or second-generation), and silk (second-generation) growth stages. The transgenic Bt maize hybrid sustained significantly less leaf feeding damage (rating 1.0±0.0) than its negative isoline control (rating 7.3±0.1). With the Bt maize, 1.36.8% of plants were damaged by corn borer tunneling with <0.5 cm tunneling per stalk under different levels of infestation, compared with 100% of plants damaged with 9.325.0 cm tunneling per stalk for the negative isoline control. On average, transgenic Bt maize hybrids had only 0.010.05 tunnels per stalk and no stems were broken. In contrast, the negative isoline control had 3.118.36 tunnels per stalk and 31.273.9% of stems broken. Yields were significantly higher in transgenic Bt maize than in the control. These results demonstrate that transgenic Bt maize can significantly minimize yield losses caused by the Asian corn borer through resistance to the first- and second-generation larvae.
文摘Using the split plot and multi-quadric regressive orthogonal cross-course rotary combination design, corn variety Denghai 6’s yield and yield components, important colony quality and physiological index, microclimate index in field and technical planting for high yield were studied. Cultivation for high yield showed that Denghai 6 had the great potential of increase yield. The average yield of two years was
文摘Information from actual farm fields can help corn producers understand the value and importance of establishing uniform crop emergence and within-row plant spacing. Thirty-eight fields planted with corn (Zea mays L.) by North Dakota producers were evaluated to determine the effects of uneven plant emergence timing and within-row plant space variability, as well as identifying contributing factors. Rows within a planter’s width with the most variability yielded 6% less than the least variable rows. Individual ear weights decreased as the number of days after normal emergence (date when 50% of plant stand emerged) increased. Ears next to within-row gaps (>30.5 cm) weighed 11% more than the normally spaced plants. Combined ears from both plants situated <5.1 cm apart weighed 36% more than from a single ear from normally spaced plants. Surface residue and planting speed impacted stand establishment variability more often than other factors measured. Producers should assess each field environment individually in order to identify best practices to achieve uniform stand establishment.
文摘Fifteen field trials were conducted from 2009 to 2011 in Ontario, Canada and Michigan, USA to determine how long glyphosate-resistant corn needs to be kept weed-free after emergence to prevent yield loss. Data were separated into two environments based on when yield loss first occurred after glyphosate application. In Environment 1 (4/15 sites) yield was not reduced when corn was kept weed-free until the 4-leaf stage. However, in Environment 2 (11/15 sites) there was no yield loss when corn was kept weed-free up to the 2-leaf stage. The most prominent weeds were velvetleaf, redroot pigweed, common ragweed, common lambsquarters and foxtail species. While later emerging weeds did not necessarily impact corn yield, weeds emerging after the 2- and 4-leaf corn stage likely produced seed that was added to the soil seed bank. Weeds emerging after 6-, 8-, and 10-leaf corn growth stages were small (low biomass/seedlings) and most likely did not reach reproductive maturity. Based on this research, corn must be maintained weed-free up to the 4-leaf stage. Any weeds emerging after that did not influence corn yield.
基金Supported by Natural Science Foundation of Hebei Province(C2017301071)Financial Project of Hebei Province(2017039339)
文摘[Objectives] This study was conducted to improve the efficiency of genetic transformation using growing points of corn sprouts. [Methods] A mixed liquid of plant hormones 6-BA and KT at a suitable concentration and ratio was added dropwise to the growing points of corn sprouts, followed by culture under appropriate conditions. [Results] Corn sprouts could be induced to form multiple plants, thereby improving the transformation efficiency of growing points in corn sprouts. [Conclusions] This study provides a breeding method using growing points of corn sprouts as transformation receptors for direct plantlet formation without tissue culture by the Agrobacterium transgenic technology.
基金This research was funded by Program Sub-topic of the National 12th Five-Year Plan Science and Technology Supporting Project(No.2011BAD20B09-02)Shandong Province Excellent Youth Scientists Research Reward Funding(No.BS2010NY014).
文摘When sowing summer corn without tillage,it is necessary to ensure that the furrow opener is free from straw congestion and that the spacing of the sowing can be adjusted according to the breeds of corn and the preset seeding rate per acre.On the basis of the structural features of newly developed no-tillage corn fertilizers,an intelligent fuzzy monitoring system for corn planters was developed in this study.The system facilitates automatic control of the spacing adjustment and the status monitor for the fertilizer tank,seed tank,and seeding orifice.According to the preset number of rows,line spacing,number of plants per acre,and seed germination rate,the control rate can be calculated through designing in surveillance software.The control rate is output to the fuzzy controller through the digital output module of the CAN bus.Fuzzy control is applied to the DC motor for stepless adjustment of the spacing.A system for video surveillance of the working status of a planter is developed for displaying a real-time video image of the planter operation and achieving an anti-congestion status monitoring of a no-tillage planting operation in a dusty environment.Through field trials,the detection accuracy was 91.4%.The seed-clogging fault-alarm accuracy was 96.0%.The entire system remained stable and reliable.
基金Korea Institute of Planning and Evaluation for Technology in Food,Agriculture,Forestry and Fisheries(IPET)through Agri-Bio Industry Technology Development Program,funded by Ministry of Agriculture,Food and Rural Affairs(MAFRA)(314024-3)Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2014R1A1A2057491).
文摘Corn and soybeans should be sown between 5 cm and 10 cm apart in mixed cultivation to increase protein content and improve productivity of the forage.However,existing sowers cannot plant at intervals of less than 20 cm.Consequently,mixed cultivation of corn and soybeans is currently performed by first sowing corn seeds with a tractor and then manually planting soybean seeds.This method results in irregular intervals between the seeds,it is laborious and time consuming.This study aimed at developing a seeder that can simultaneously,precisely and efficiently plant corn and soybean.The geometrical and rheological properties of corn and soybeans were initially measured.The seed conveying equipment were designed using the EDEM software.The sowing interval between seeds,depth of soil over planted seed,and sowing performance were analyzed.The EDEM simulation results indicated that a 6-mm-wide and 3-mm-deep grooved seed-delivering roller had the highest particle mobility of the designs considered,with a 2.5%misplanting rate.A performance test showed that no misplanting occurred in the sections sowed with soybean seeds at a seeding interval that averaged 32 mm(321 seeds sown in 10 m)and that misplanting occurred in one section sowed with corn at a seeding interval that averaged 247 mm(40 seeds sown over 10 m).The sowing efficiency for both corn and soybeans was found to be 0.42 h/hm2.The average depth of soil over seed was 32.7 mm for soybean and 39.7 mm for corn.These average depths are within the stipulated range for the depth of soil over seed,which is 5 to 10 times the seed size.This study developed an efficient seeding machine that can simultaneously plant soybean and corn precisely,consequently improving forage yield and saving man-hours.
文摘New joint venture strengthens China’s position against international seed companies Yuan Longping Hi-Tech Agriculture Co.Ltd.(Longping Hi-Tech),named after the father of hybrid rice in China,announced on February 10 the establishment of a joint venture(JV) with a subsidiary of Vilmorin & Cie.
基金supported by the National Basic Research Program of China (2015CB150404)the National Natural Science Foundation of China (31671642)+1 种基金the Key Program of Science and Technology Department of Jilin Province, China (LFGC14205)the Innovation Project of Chinese Academy of Agricultural Sciences (CAAS-XTCX2016008)
文摘A two-year field experiment was conducted to evaluate the effects of plant density on tassel and ear differentiation, anthesissilking interval(ASI), and grain yield formation of two types of modern maize hybrids(Zhongdan 909(ZD909) as tolerant hybrid to crowding stress, Jidan 209(JD209) and Neidan 4(ND4) as intolerant hybrids to crowding stress) in Northeast China. Plant densities of 4.50×104(D1), 6.75×104(D2), 9.00×104(D3), 11.25×104(D4), and 13.50×104(D5) plants ha-1had no significant effects on initial time of tassel and ear differentiation of maize. Instead, higher plant density delayed the tassel and ear development during floret differentiation and sexual organ formation stage, subsequently resulting in ASI increments at the rate of 1.2–2.9 days on average for ZD909 in 2013–2014, 0.7–4.2 days for JD209 in 2013, and 0.5–3.7 days for ND4 in 2014, respectively, under the treatments of D2, D3, D4, and D5 compared to that under the D1 treatment. Total florets, silking florets, and silking rates of ear showed slightly decrease trends with the plant density increasing, whereas the normal kernels seriously decreased at the rate of 11.0–44.9% on average for ZD909 in 2013–2014, 2.0–32.6% for JD209 in 2013, and 9.7–28.3% for ND4 in 2014 with the plant density increased compared to that under the D1 treatment due to increased florets abortive rates. It was also observed that 100-kernel weight of ZD909 showed less decrease trend compared that of JD209 and ND4 along with the plant densities increase. As a consequence, ZD909 gained its highest grain yield by 13.7 t ha-1on average at the plant density of 9.00×104 plants ha-1, whereas JD209 and ND4 reached their highest grain yields by 11.7 and 10.2 t ha-1at the plant density of 6.75×104 plants ha-1, respectively. Our experiment demonstrated that hybrids with lower ASI, higher kernel number potential per ear, and relative constant 100-kernel weight(e.g., ZD909) could achieve higher yield under dense planting in high latitude area(e.g., Northeast China).
文摘The effect of decumbenones A (1), B (2) and C (3) from the marine-derived strain of the fungus Aspergillus sulphureus on the growth of seedling roots of buckwheat, wheat, barley and corn at the concentration range 10﹣5 - 10﹣18 M was studied. It was shown that decumbenone B had a stimulatory effect on the growth of seedling roots of buckwheat, decumbenone A—on the growth of seedling roots of spring soft wheat, decumbenone C—on the growth of seedling roots of spring barley, decumbenone A, B and C —on the growth of seedling roots of corn. The stimulatory effect for some substances was shown at ultra-low concentrations 10﹣12 - 10﹣18 M. It is possible to recommend decumbenones A, B and C for studying in field conditions as growth factors of buckwheat, wheat, barley and corn.