期刊文献+
共找到74,680篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of integration of mechanical ball milling and flue gas desulfurization gypsum on dealkalization of bauxite residue
1
作者 Feng ZHU Xu-yao GUO +6 位作者 Jun JIANG Kai-bin CHEN Xuan-zhi ZHU Dan-dan DENG Yu-jun WU Yu-wei HUANG Sheng-guo XUE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2702-2713,共12页
The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and micr... The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and microtopography.The results showed a significant decrease in Na_(2)O content(>30 wt.%)of FGD gypsum-treated bauxite residue after 30 min of mechanical ball milling.Mechanical ball milling resulted in differentiation of the elemental distribution,modification of the minerals in crystalline structure,and promotion in the dissolution of alkaline minerals,thus enhancing the acid neutralization capacity of bauxite residue.5 wt.%FGD gypsum combined with 30 min mechanical ball milling was optimal for the dealkalization of bauxite residue. 展开更多
关键词 bauxite residue alkalinity regulation flue gas desulfurization gypsum mechanical activation soil formation of bauxite residue
下载PDF
Corrosion behavior of co-gasification slag of furfural residue and coal on alumina-silica refractories
2
作者 MA Xiaotong WANG Zhigang +8 位作者 LU Hao LIU Wei WANG Yanxia ZHAO Jiangshan SUN Lingmin YAN Jingchong ZHUANG Shujuan LI Huaizhu KONG Lingxue 《燃料化学学报(中英文)》 EI CAS CSCD 北大核心 2024年第10期1387-1397,共11页
Gasification of furfural residue with coal can realize its efficient and clean utilization.But the high alkali metal content in furfural slag is easy to cause the corrosion of gasifier refractory.Two gasification coal... Gasification of furfural residue with coal can realize its efficient and clean utilization.But the high alkali metal content in furfural slag is easy to cause the corrosion of gasifier refractory.Two gasification coals with different silica alumina ratio and a furfural residue were selected in the study.The effects of furfural residue additions on corrosion of silica brick,corundum brick,high alumina brick and mullite brick were investigated by using XRD,SEM-EDS and Factsage Software,and the corrosion mechanism was analyzed.With increasing furfural residue addition,the permeability of the slags to high-aluminium-bearing refractories first decreases and then increases,while the permeability on silica brick shows a slight decrease trend.Leucite(KAlSi_(2)O_(6))with high-melting temperature is generated from the reaction of K_(2)O and SiO_(2)in slag with Al_(2)O_(3)in refractories after furfural residue is added,which hinders the infiltration of slag in refractories.Kaliophilite(KAlSiO_(4))of low-melting point is formed when K_(2)O content increases,and this contributes to the infiltration of slag in refractories.The acid-base reaction between slag and silica brick is distinctly occurred,more slag reacts with SiO_(2)in the silicon brick,resulting in a decrease in the amount of slag infiltrating into the silicon brick as furfural residue is added.The corrosion of silica brick is mainly caused by the acid-base reaction,while the corrosion of three alumina based refractory bricks of corundum,mullite and high alumina brick is determined by slag infiltration.A linear correlation between the percolation rate and slag viscosity is established,the slag permeability increases with decreasing viscosity,resulting in stronger permeability for the high Si/Al ratio slag with lower viscosity. 展开更多
关键词 furfural residue CO-GASIFICATION SLAG REFRACTORY corrosion
下载PDF
Making waste profitable: Efficient recovery of metallic iron from jarosite residues
3
作者 Songshan Zhou Yunhui Han +11 位作者 Rong Huang Yin Huang Qingyuan Dong Haiyin Gang Jinchuan Qin Xi Yu Xiangfei Zeng Wenxing Cao Jiqin Wang Shaoqin Chen Rong Wang Mengjun Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期66-76,共11页
To address the hazardous by-product of zinc smelting and resource utilization of jarosite residue,this study applies an electric field-assisted hot acid treatment to completely recycle iron(Fe).This innovative approac... To address the hazardous by-product of zinc smelting and resource utilization of jarosite residue,this study applies an electric field-assisted hot acid treatment to completely recycle iron(Fe).This innovative approach aims to enhance the leaching efficiency of Fe from jarosite residue.The introduction of an electric field changes the charge distribution on the surface of the particles to enhance ions and electrons exchange and promotes the collision between particles to strengthen reaction kinetics.Based on the above,the leaching efficiency of Fe in jarosite under sulfuric acid attack has improved observably.The result shows that Fe leaching efficiency reaches 98.83%,which is increased by 28%under the optimal experimental conditions:current density of 30 mA·cm^(-2),H_(2)SO_(4) concentration of 1.5 mol·L^(-1),solid-liquid ratio of 70 g·L^(-1),temperature of 80℃ and time of 12 h.Leaching kinetics calculations show that the apparent activation energy is 16.97 kJ·mol^(-1) and the leaching of jarosite residue is controlled by a mixture of chemical reaction and diffusion,as well as the temperature and concentration of the leaching solution have an influence on leaching.This work provides a feasible idea for the efficient leaching of Fe from jarosite residue. 展开更多
关键词 Jarosite residue Electric filed Leaching kinetics
下载PDF
A short overview of the lead iodide residue impact and regulation strategies in perovskite solar cells
4
作者 Eng Liang Lim Zhanhua Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期504-510,I0012,共8页
Lead iodide(PbI2) is a vital raw material for preparing perovskite solar cells(PSCs),and it not only takes part in forming the light absorption layer but also remains in the grain boundary as a passivator.In other wor... Lead iodide(PbI2) is a vital raw material for preparing perovskite solar cells(PSCs),and it not only takes part in forming the light absorption layer but also remains in the grain boundary as a passivator.In other words,the PbI2 content in the precursor and as formed film will affect the efficiency and stability of the PSCs.With moderate residual PbI2,it passivates the bulk/surface defects of perovskite,reduces the interfacial recombination,promotes the perovskite stability,minimizes the device hysteresis,and so on.Deficient PbI2 residue will reduce the interfacial passivation effect and device performance.In addition to facilitating the non-radiative recombination,over PbI2 residue can also lead to electronic insulation in the grain boundary and deteriorate the device performance.However,the impact and regulation of PbI2 residue on the device performance and stability is still not fully understood.Herein,a comprehensive and detailed review is presented by discussing the PbI2 residue impact and its regulation strategies(i.e., elimination,facilitation and conversion of the residue PbI2) to manipulate the PbI2 content,distribution and forms.Finally,we also show future outlooks in this field,with an aim to help further the progression of high-efficiency and stable PSCs. 展开更多
关键词 Lead iodide residue REGULATION Perovskite solar cells Efficiency Stability
下载PDF
Co-pyrolysis of Sewage Sludge with Distillation Residue: Kinetics Analysis via Iso-conversional Methods
5
作者 ZHOU Shangqun ZHAO Qinglin +1 位作者 YU Tian YAO Xiaojie 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1188-1198,共11页
This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analy... This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric analysis with mass spectrometry(TGA-MS).The results reveal the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/DR.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in ash fractions,while the antagonistic effect is mainly due to the melting of DR on the surface of SS particles during pyrolysis and the reaction of SS ash with alkali metals to form inert substances.SS/DR co-pyrolysis reduces the yielding of coke and gas while increasing tar production.This study will promote the reduction,recycling,and harmless treatment of hazardous solid waste. 展开更多
关键词 sewage sludge CO-PYROLYSIS distillation residue KINETICS evolved gas analysis
下载PDF
A molecular insight into coke formation process of vacuum residue in thermal cracking reaction
6
作者 Ji-Guang Li Xin Guo Huan-Di Hou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期2130-2138,共9页
Understanding the coking behaviors has been considered to be really essential for developing better vacuum residue processing technologies.A battery of thermal cracking tests of typical vacuum residue at 410℃ with va... Understanding the coking behaviors has been considered to be really essential for developing better vacuum residue processing technologies.A battery of thermal cracking tests of typical vacuum residue at 410℃ with various reaction time were performed to evaluate the coke formation process.The total yields of ideal components including naphtha,atmospheric gas oil(AGO)and vacuum gas oil(VGO)of thermal cracking reactions increased from 10.89%to 40.81%,and the conversion ratios increased from8.05%to 43.33%with increasing the reaction time from 10 to 70 min.The asphaltene content increased from 12.14%to a maximum of 22.39%and then decreased,and this maximum of asphaltene content occurred at the end of the coking induction period.The asphaltenes during the coking induction period,at the end and after coking induction period of those tested thermal cracking reactions were characterized to disclose the structure changing rules for coke formation process,and the coke formation pathways were discussed to reveal the coke formation process at molecular level. 展开更多
关键词 Vacuum residue Thermal cracking ASPHALTENE Coking induction period SULFUR NITROGEN
下载PDF
Supplementation of Lycium barbarum residue increases the growth rate of Tan sheep by enhancing their feed intake and regulating their rumen microbiome and metabolome
7
作者 Yajun Zhang Xiao Chang +5 位作者 Bing Wang Dawei Wei Rongzhen Zhong Yansheng Guo Min Du Guijie Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期3129-3144,共16页
Lycium barbarum residue(LBR),a by-product of L.barbarum processing,is packed with bioactive components and can be potentially utilized as a feed additive in animal husbandry.However,the fundamental understanding of it... Lycium barbarum residue(LBR),a by-product of L.barbarum processing,is packed with bioactive components and can be potentially utilized as a feed additive in animal husbandry.However,the fundamental understanding of its effectiveness on livestock animals is still lacking,particularly in ruminants.To explore the effects of LBR on the growth performance,rumen fermentation parameters,ruminal microbes and metabolites of Tan sheep,sixteen fattening rams(aged 4 mon)were fed a basal diet(CON,n=8)or a basal diet supplemented with 5%LBR(LBR,n=8).The experiment lasted for 70 d,with 10 d adaptation period and 60 d treatment period.The results showed that the LBR enhanced the average daily feed intake,average daily gain(P<0.05),and ruminal total volatile fatty acids(P<0.01)while decreasing ammonia-nitrogen concentration and rumen pH value(P<0.05).Additionally,the LBR improved the relative abundances of Prevotella,Succiniclasticum,Ruminococcus,Coprococcus,Selenomonas,and Butyrivibrio(P<0.05)and reduced the relative abundances of Oscillospira and Succinivibrio(P<0.05).The LBR altered the ruminal metabolome(P<0.01)by increasing the abundances of ruminal metabolites involved in amino acids(e.g.,L-proline,L-phenylalanine,L-lysine,and L-tyrosine),pyrimidine metabolism(e.g.,uridine,uracil,and thymidine),and microbial protein synthesis(e.g.,xanthine and hypoxanthine).In conclusion,LBR had positive effects on the growth rate of Tan sheep as well as on rumen fermentation parameters,rumen microbiome and rumen metabolome. 展开更多
关键词 Lycium barbarum residue rumen microbiome metabolomics growth performance Tan sheep
下载PDF
Recycling arsenic-containing bio-leaching residue after thermal treatment in cemented paste backfill:Structure modification,binder properties and environmental assessment
8
作者 Dengfeng Zhao Shiyu Zhang Yingliang Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2136-2147,共12页
The substantial arsenic(As)content present in arsenic-containing bio-leaching residue(ABR)presents noteworthy environ-mental challenges attributable to its inherent instability and susceptibility to leaching.Given its... The substantial arsenic(As)content present in arsenic-containing bio-leaching residue(ABR)presents noteworthy environ-mental challenges attributable to its inherent instability and susceptibility to leaching.Given its elevated calcium sulfate content,ABR exhibits considerable promise for industrial applications.This study delved into the feasibility of utilizing ABR as a source of sulfates for producing super sulfated cement(SSC),offering an innovative binder for cemented paste backfill(CPB).Thermal treatment at varying temperatures of 150,350,600,and 800℃ was employed to modify ABR’s performance.The investigation encompassed the examination of phase transformations and alterations in the chemical composition of As within ABR.Subsequently,the hydration characteristics of SSC utilizing ABR,with or without thermal treatment,were studied,encompassing reaction kinetics,setting time,strength development,and microstructure.The findings revealed that thermal treatment changed the calcium sulfate structure in ABR,consequently impacting the resultant sample performance.Notably,calcination at 600℃ demonstrated optimal modification effects on both early and long-term strength attributes.This enhanced performance can be attributed to the augmented formation of reaction products and a densified micro-structure.Furthermore,the thermal treatment elicited modifications in the chemical As fractions within ABR,with limited impact on the As immobilization capacity of the prepared binders. 展开更多
关键词 cemented paste backfill bio-leaching residue arsenic immobilization binder hydration CALCINATION
下载PDF
Afforestation with an age-sequence of Mongolian pine plantation promotes soil microbial residue accumulation in the Horqin Sandy Land, China
9
作者 GUO Jingwen SONG Xueshu +2 位作者 WANG Xiao DU Zhangliu LU Sen 《Journal of Arid Land》 SCIE CSCD 2024年第4期567-579,共13页
Land use change affects the balance of organic carbon(C)reserves and the global C cycle.Microbial residues are essential constituents of stable soil organic C(SOC).However,it remains unclear how microbial residue chan... Land use change affects the balance of organic carbon(C)reserves and the global C cycle.Microbial residues are essential constituents of stable soil organic C(SOC).However,it remains unclear how microbial residue changes over time following afforestation.In this study,16-,23-,52-,and 62-year-old Mongolian pine stands and 16-year-old cropland were studied in the Horqin Sandy Land,China.We analyzed changes in SOC,amino sugar content,and microbial parameters to assess how microbial communities influence soil C transformation and preservation.The results showed that SOC storage increased with stand age in the early stage of afforestation but remained unchanged at about 1.27-1.29 kg/m2 after 52 a.Moreover,there were consistent increases in amino sugars and microbial residues with increasing stand age.As stand age increased from 16 to 62 a,soil pH decreased from 6.84 to 5.71,and the concentration of total amino sugars increased from 178.53 to 509.99 mg/kg.A significant negative correlation between soil pH and the concentration of specific and total amino sugars was observed,indicating that the effects of soil acidification promote amino sugar stabilization during afforestation.In contrast to the Mongolian pine plantation of the same age,the cropland accumulated more SOC and microbial residues because of fertilizer application.Across Mongolian pine plantation with different ages,there was no significant change in calculated contribution of bacterial or fungal residues to SOC,suggesting that fungi were consistently the dominant contributors to SOC with increasing time.Our results indicate that afforestation in the Horqin Sandy Land promotes efficient microbial growth and residue accumulation in SOC stocks and has a consistent positive impact on SOC persistence. 展开更多
关键词 soil organic matter stand age biomarker amino sugars microbial residues
下载PDF
Interaction mechanism of cyanide with pyrite during the cyanidation of pyrite and the decyanation of pyrite cyanide residues by chemical oxidation
10
作者 Wenwen Han Hongying Yang Linlin Tong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期1996-2005,共10页
The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment.Pyrite is one of the main minerals existing in cyanide residues.In this work,the interaction ... The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment.Pyrite is one of the main minerals existing in cyanide residues.In this work,the interaction of cyanide with pyrite and the decyanation of pyrite cyanide residue were analyzed.Results revealed that high pH value,high cyanide concentration,and high pyrite dosage promoted the interaction of cyanide with pyrite.The cyanidation of pyrite was pseudo-second-order with respect to cyanide.The decyanation of pyrite cyanide residue by Na_(2)SO_(3)/air oxidation was performed.The cyanide removal efficiency was 83.9% after 1 h of reaction time under the optimal conditions of pH value of 11.2,SO_(3)^(2-) dosage of 22 mg·g^(-1),and air flow rate of 1.46 L·min^(-1).X-ray photoelectron spectroscopy analysis of the pyrite samples showed the formation of Fe(Ⅲ)and FeSO_(4) during the cyanidation process.The cyanide that adsorbed on the pyrite surface after cyanidation mainly existed in the forms of free cyanide(CN^(-))and ferrocyanide(Fe(CN)_(6)^(4-)),which were effectively removed by Na_(2)SO_(3)/air oxidation.During the decyanation process,air intake promoted pyrite oxidation and weakened cyanide adsorption on the pyrite surface.This study has practical significance for gold enterprises aiming to mitigate the environmental impact related to cyanide residues. 展开更多
关键词 PYRITE CYANIDE DECYANATION sodium sulfite/air oxidation cyanide residue
下载PDF
Characteristics and mechanism of Ni^(2+)and Cd^(2+)adsorption by recovered perlite from agar extraction residue
11
作者 Juan Wang Yanbing Zhu +7 位作者 Zedong Jiang Xiping Du Mingjing Zheng Lijun Li Hui Ni Yuanpeng Wang Zhipeng Li Qingbiao Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期141-152,共12页
Ni^(2+)and Cd^(2+)in wastewater accumulated through the ecological chain and could jeopardize human health.Adsorption of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite was an important way to solve the prob... Ni^(2+)and Cd^(2+)in wastewater accumulated through the ecological chain and could jeopardize human health.Adsorption of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite was an important way to solve the problem of resource utilization of solid waste from agar production.Our previous study confirmed that recovered perlite from agar extraction residue had better pore size and specific surface area than commercial perlite.However,the adsorption efficiency and adsorption mechanism of recovered perlite were the main factors limiting its adsorption application.The adsorption process of Ni^(2+)and Cd^(2+)by recovered perlite in aqueous solution was described by the pseudo-second-order kinetic equation,and the relevant adsorption mechanism was mainly chemisorption.Compared with commercial perlite,the adsorption removal rate of Ni^(2+)and Cd^(2+)by enzymatic recovered perlite could reach 92.9%and 89.2%,respectively,and were improved by 12.63%and 13.03%.Langmuir isothermal adsorption model could better describe the isothermal adsorption process of recovered perlite on heavy metal Ni^(2+)and Cd^(2+),and the relevant adsorption mechanism was mainly monolayer adsorption.The X-ray photoelectron spectroscopy(XPS)results indicated that the decrease of Si—O Si^(2+)hydroxyl coordination bond and the increase of C—Si bond might make the binding effect of recovered perlite with heavy metals stronger.The competitive adsorption of Ni^(2+)and Cd^(2+)by recovered perlite was still dominated by chemisorption and monolayer adsorption.This study was expected to provide a theoretical basis and technical support for the removal of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite from seaweed residue. 展开更多
关键词 Agar extraction residue Recovered perlite Heavy metal ion Adsorption property
下载PDF
Soybean Response to Weed Residues in the Soil
12
作者 Dwayne D. Joseph Michael W. Marshall Matthew Cutulle 《Agricultural Sciences》 2024年第8期801-811,共11页
Soybean production systems that return plant residues to the soil surface are gaining in popularity. As these practices become more widespread, more crop and weed residues are being introduced into the upper soil prof... Soybean production systems that return plant residues to the soil surface are gaining in popularity. As these practices become more widespread, more crop and weed residues are being introduced into the upper soil profile. Greenhouse studies were conducted to determine the effects of varying concentrations of Palmer amaranth and pitted morningglory plant residues (aboveground portion of the plant) on soybean production. The study was arranged in a completely randomized experimental design with five treatments and five replications. Palmer amaranth and pitted morningglory residues were incorporated into soil at 20,000, 40,000, 80,000 and 160,000 ppm. Inert plastic residue at the same residue levels was included as a check. Soybean dry weight, leaf area and leaf tissue nutrient content were recorded during the study. A decrease in soybean dry weight and leaf area was observed as Palmer amaranth residue in the soil increased. Palmer amaranth residues of 160,000 ppm and 80,000 ppm in the soil significantly reduced soybean dry weight by 69% and 59%, respectively, and soybean leaf area by 60% and 57%, respectively. In contrast, pitted morningglory and inert plastic residues had no observable effect on soybean growth and development. This study demonstrated Palmer amaranth residues in the soil impacted early season soybean growth and development. 展开更多
关键词 Reduced Tillage Plant residues ALLELOPATHY Glycine max L.
下载PDF
Influence of Polyaluminum Chloride Residue on the Strength andMicrostructure of Cement-Based Materials
13
作者 Ping Xu Zhiwei Zhang +2 位作者 Zhenguo Hou Mankui Zheng Jin Tong 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1299-1312,共14页
In this paper,cement and dechlorinated Polyaluminum Chloride Residue(PACR)have been used to prepare a net slurry and mortar specimens.Two hydration activity indicators have been used to quantitatively analyze the dech... In this paper,cement and dechlorinated Polyaluminum Chloride Residue(PACR)have been used to prepare a net slurry and mortar specimens.Two hydration activity indicators have been used to quantitatively analyze the dechlorinated PACR hydration activity.In particular,the effect of dechlorinated PACR content on the compressive strength of mortar has been assessed by means of compressive strength tests.Moreover,X-ray diffraction(XRD)and scanning electron microscopy(SEM)have been employed to observe the microstructure of the considered hydration products.The following results have been obtained.The 28th day activity index of the dechlorinated PACR is 75%,and therefore it meets the criterion for the use of active admixture.The increase in the content of the dechlorinated PACR tends to reduce the compressive strength of mortar specimens,however,it is beneficial to its later strength growth.When the content is not greater than 10%,the strength remains unchanged,otherwise,it decreases.The PACR does not form a new crystalline phase in the cement slurry,and the dechlorinated PACR remains active until the age of the 28th day.The inclusion of the PACR mainly deteriorates the early strength of the cement slurry,but it promotes the production of hydration products in the cement slurry after the 7th day. 展开更多
关键词 Dechlorinated polyaluminum chloride residue activity index STRENGTH MICROSTRUCTURE hydration product
下载PDF
Enhanced dealkalization of bauxite residue through calcium-activated desulfurization gypsum
14
作者 Yu-jun WU Sheng-guo XUE +4 位作者 Li-ping LIU Feng LI Graeme J.MILLAR Fei GE Jiang TIAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3412-3424,共13页
A novel integrated approach to remove the free alkalis and stabilize solid-phase alkalinity by controlling the release of Ca from desulfurization gypsum was developed.The combination of recycled FeCl_(3)solution and E... A novel integrated approach to remove the free alkalis and stabilize solid-phase alkalinity by controlling the release of Ca from desulfurization gypsum was developed.The combination of recycled FeCl_(3)solution and EDTA activated desulfurization gypsum lowered the bauxite residue pH to 7.20.Moreover,it also improved the residual Ca state,with its contribution to the total exchangeable cations increased(68%-92%).Notably,the slow release of exchangeable Ca introduced through modified desulfurization gypsum induced a phase transition of the alkaline minerals.This treatment stabilized the dealkalization effect of bauxite residue via reducing its overall acid neutralization capacity in abating pH rebound.Hence,this approach can provide guidance for effectively utilizing desulfurization gypsum to achieve stable regulation of alkalinity in bauxite residue. 展开更多
关键词 bauxite residue desulfurization gypsum EDTA activation alkalinity regulation recycled FeCl3
下载PDF
Comprehensive reutilization of herbal waste:Coproduction of magnolol,honokiol,and β-amyrin from Magnolia officinalis residue
15
作者 Lukun Xiao Anyi Zhao +12 位作者 Jie Qiu An Liu Sha Chen Jinzhu Jiang Jun Zhang Cong Guo Jipeng Di Jintang Cheng Chang Chen Kangxin Hou Aiping Zhang Yan Liu Caixia Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期403-412,共10页
Herbal extraction residues(HERs)cause serious environmental pollution and resource waste.In this study,a novel green route was designed for the comprehensive reutilization of all components in HERs,taking Magnolia off... Herbal extraction residues(HERs)cause serious environmental pollution and resource waste.In this study,a novel green route was designed for the comprehensive reutilization of all components in HERs,taking Magnolia officinalis residues(MOR)as an example.The reluctant structure of MOR was first destroyed by alkali pretreatment to release the functional ingredients(magnolol and honokiol)originally remaining in MOR and to make MOR more accessible for hydrolysis.A metal–organic frame material MIL-101(Cr)with a maximum absorption capacity of 255.64 mg g^(-1)was synthesized to absorb the released honokiol and magnolol from the pretreated MOR solutions,and 40 g L^(-1)reducing sugars were obtained with 81.8%enzymatic hydrolysis rate at 10%MOR solid loading.Finally,382 mg L-1β-amyrin was produced from MOR hydrolysates by an engineered yeast strain.In total,1 kg honokiol,8 kg magnolol,and 7.64 kg β-amyrin could produce from 1 ton MOR by this cleaner process with a total economic output of 170,700 RMB. 展开更多
关键词 Magnolia officinalis residues(MOR) Comprehensive utilization Metal-organic frame material BIOSYNTHESIS
下载PDF
Advanced Thermochemical Conversion Approaches for Green Hydrogen Production from Crop Residues
16
作者 Omojola Awogbemi Ayotunde Adigun Ojo Samson Adedayo Adeleye 《Journal of Renewable Materials》 EI CAS 2024年第1期1-28,共28页
The huge volumes of crop residues generated during the production,processing,and consumption of farm products constitute an ecological nuisance when ineffectively managed.The conversion of crop residues to green hydro... The huge volumes of crop residues generated during the production,processing,and consumption of farm products constitute an ecological nuisance when ineffectively managed.The conversion of crop residues to green hydrogen is one of the sustainable management strategies for ubiquitous crop residues.Production of green hydrogen from crop residue sources will contribute to deepening access to clean and affordable energy,mitigating climate change,and ensuring environmental sustainability.However,the deployment of conventional thermochemical technologies for the conversion of crop residues to green hydrogen is costly,requires long residence time,produces low-quality products,and therefore needs to be upgraded.The current review examines the conventional,advanced,and integrated thermochemical conversion technologies for crop residues for green hydrogen production.After a brief overview of the conventional thermochemical techniques,the review delves into the broad narration of advanced thermochemical technologies including catalytic pyrolysis,microwave pyrolysis,co-pyrolysis,hyropyrolysis,and autothermal pyrolysis.The study advocates the deployment of integrated pyrolysis,anaerobic digestion,pyrolysis,and gasification technologies will ensure scalability,decomposition of recalcitrant feedstocks,and generation of high grade green hydrogen.The outlook provides suggestions for future research into cost-saving and sustainable integrated technologies for green hydrogen production towards achieving carbon neutrality and a circular bio-economy. 展开更多
关键词 Crop residues carbon neutrality PYROLYSIS GASIFICATION green hydrogen thermochemical conversion
下载PDF
Determination of Coumoxystrobin Residue in Vegetables by QeEChERS-UPLC-MS/MS
17
作者 Zheng LIU Shengjiang LIU +3 位作者 Yaling LIU Qing LI Jun LIANG Xuexue ZHENG 《Agricultural Biotechnology》 2024年第4期38-39,45,共3页
[Objectives]This study was conducted to establish a method for determining residual coumoxystrobin in vegetables using QeEChERS-liquid chromatography-tandem mass spectrometry(QeEChERS-LC-MS/MS).[Methods]The sample was... [Objectives]This study was conducted to establish a method for determining residual coumoxystrobin in vegetables using QeEChERS-liquid chromatography-tandem mass spectrometry(QeEChERS-LC-MS/MS).[Methods]The sample was extracted by acetonitrile,and the extract was purified by QeEChERS,concentrated by nitrogen blowing,and then detected.[Results]Coumoxystrobin had a good linear relation in the range of 0.01-10.0 mg/kg,and the linear equation was y=4686.92×x+5683.28,R^(2)=0.999.The limit of detection was 0.001 mg/kg,and the limit of quantitation was 0.003 mg/kg.[Conclusions]The method has the advantages of convenient and fast operation and stable detection process,and can provide technical support for the supervision and monitoring of coumoxystrobin. 展开更多
关键词 VEGETABLE UPLC-MS/MS Coumoxystrobin residual amount
下载PDF
Enhanced recovery of high-purity Fe powder from iron-rich electrolytic manganese residue by slurry electrolysis
18
作者 Wenxing Cao Jiancheng Shu +5 位作者 Jiaming Chen Zihan Li Songshan Zhou Shushu Liao Mengjun Chen Yong Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期531-538,共8页
Iron-rich electrolytic manganese residue(IREMR)is an industrial waste produced during the processing of electrolytic metal manganese,and it contains certain amounts of Fe and Mn resources and other heavy metals.In thi... Iron-rich electrolytic manganese residue(IREMR)is an industrial waste produced during the processing of electrolytic metal manganese,and it contains certain amounts of Fe and Mn resources and other heavy metals.In this study,the slurry electrolysis technique was used to recover high-purity Fe powder from IREMR.The effects of IREMR and H2SO4 mass ratio,current density,reaction temper-ature,and electrolytic time on the leaching and current efficiencies of Fe were studied.According to the results,high-purity Fe powder can be recovered from the cathode plate,and the slurry electrolyte can be recycled.The leaching efficiency,current efficiency,and purity of Fe reached 92.58%,80.65%,and 98.72wt%,respectively,at a 1:2.5 mass ratio of H2SO4 and IREMR,reaction temperature of 60℃,electric current density of 30 mA/cm^(2),and reaction time of 8 h.In addition,vibrating sample magnetometer(VSM)analysis showed that the coercivity of electrolytic iron powder was 54.5 A/m,which reached the advanced magnetic grade of electrical pure-iron powder(DT4A coercivity standard).The slurry electrolytic method provides fundamental support for the industrial application of Fe resource recovery in IRMER. 展开更多
关键词 iron-rich electrolytic manganese residue slurry electrolysis high-purity iron powder leaching efficiency current efficiency
下载PDF
Research Progress of QuEChERS Pretreatment Technique in the Detection of Multiple Pesticide Residues
19
作者 Bo LIU Dawei WANG +3 位作者 Yuhang GUO Xuehua WANG Lei WANG Yajuan SONG 《Agricultural Biotechnology》 2024年第2期10-11,37,共3页
The QuEChERS extraction technique is a pretreatment technique that has been rapidly applied in recent years and is widely used in the field of pesticide residues with many advantages. This technique is based on solid ... The QuEChERS extraction technique is a pretreatment technique that has been rapidly applied in recent years and is widely used in the field of pesticide residues with many advantages. This technique is based on solid phase extraction (SPE), which uses the interaction between adsorbent and impurities in the matrix to achieve the purpose of purification. The method has easier operation and better purification effect than SPE. In this paper, the research progress of the QuEChERS technique in pesticide residue detection in different fields in recent years and its future development were reviewed, hoping to provide reference for further development and utilization of the QuEChERS technique in pesticide residue detection in the future. 展开更多
关键词 QUECHERS PRETREATMENT Pesticide residues Research progress
下载PDF
Research Progress on Detection Techniques of Fungicide Residues in Chinese Chives
20
作者 Xiuying CHEN Zhe MENG +5 位作者 Chen DING Huihui LIU Yancheng ZHOU Jinlu LI Yanhua YAN Lei WANG 《Agricultural Biotechnology》 2024年第1期43-48,共6页
Chinese chive is a kind of medicinal and edible plant,with many diseases,and chemical fungicides are usually used for control.In order to find out the risk of pesticide residues in Chinese chives,this paper summarized... Chinese chive is a kind of medicinal and edible plant,with many diseases,and chemical fungicides are usually used for control.In order to find out the risk of pesticide residues in Chinese chives,this paper summarized relevant literatures published in recent years,and sorted out and analyzed the types of pesticides used and detection techniques of common diseases in Chinese chives. 展开更多
关键词 Chinese chive Pesticide residues FUNGICIDE Detection technique
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部