期刊文献+
共找到556篇文章
< 1 2 28 >
每页显示 20 50 100
Corneal stromal mesenchymal stem cells: reconstructing a bioactive cornea and repairing the corneal limbus and stromal microenvironment 被引量:2
1
作者 Xian-Ning Liu Sheng-Li Mi +1 位作者 Yun Chen Yao Wang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2021年第3期448-455,共8页
Corneal stroma-derived mesenchymal stem cells(CS-MSCs) are mainly distributed in the anterior part of the corneal stroma near the corneal limbal stem cells(LSCs). CS-MSCs are stem cells with self-renewal and multidire... Corneal stroma-derived mesenchymal stem cells(CS-MSCs) are mainly distributed in the anterior part of the corneal stroma near the corneal limbal stem cells(LSCs). CS-MSCs are stem cells with self-renewal and multidirectional differentiation potential. A large amount of data confirmed that CS-MSCs can be induced to differentiate into functional keratocytes in vitro, which is the motive force for maintaining corneal transparency and producing a normal corneal stroma. CS-MSCs are also an important component of the limbal microenvironment. Furthermore, they are of great significance in the reconstruction of ocular surface tissue and tissue engineering for active biocornea construction. In this paper, the localization and biological characteristics of CS-MSCs, the use of CS-MSCs to reconstruct a tissue-engineered active biocornea, and the repair of the limbal and matrix microenvironment by CS-MSCs are reviewed, and their application prospects are discussed. 展开更多
关键词 corneal stroma-derived mesenchymal stem cells bioactive cornea corneal limbus tissue-engineered active biocornea stromal microenvironment
下载PDF
Niche regulation of corneal epithelial stem cells at the limbus 被引量:22
2
作者 YasutakaHayashida SchefferCGTseng 《Cell Research》 SCIE CAS CSCD 2007年第1期26-36,共11页
Among all adult somatic stem cells, those of the corneal epithelium are unique in their exclusive location in a defined limbal structure termed Palisades of Vogt. As a result, surgical engraftment of limbal epithelial... Among all adult somatic stem cells, those of the corneal epithelium are unique in their exclusive location in a defined limbal structure termed Palisades of Vogt. As a result, surgical engraftment of limbal epithelial stem cells with or without ex vivo expansion has long been practiced to restore sights in patients inflicted with limbal stem cell deficiency. Neverthe- less, compared to other stem cell examples, relatively little is known about the limbal niche, which is believed to play a pivotal role in regulating self-renewal and fate decision oflimbal epithelial stem cells. This review summarizes relevant literature and formulates several key questions to guide future research into better understanding of the pathogenesis of limbal stem cell deficiency and further improvement of the tissue engineering of the corneal epithelium by focusing on the limbal niche. 展开更多
关键词 corneal epithelium stem cell NICHE
下载PDF
Quantification of corneal neovascularization after ex vivo limbal epithelial stem cell therapy 被引量:1
3
作者 Adriano Guarnieri Javier Moreno-Monta?és +4 位作者 Belén Alfonso-Bartolozzi Alfonso L.Sabater María García-Guzmán Enrique J.Andreu Felipe Prosper 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2014年第6期988-995,共8页
AIM: To assess cultured limbal epithelial stem cell transplantation in patients with limbal stem cell deficiency by analyzing and quantifying corneal neovascularization.METHODS: This retrospective, interventional case... AIM: To assess cultured limbal epithelial stem cell transplantation in patients with limbal stem cell deficiency by analyzing and quantifying corneal neovascularization.METHODS: This retrospective, interventional case series included eight eyes with total limbal stem cell deficiency. Ex vivo limbal epithelial stem cells were cultured on human amniotic membrane using an animalfree culture method. The clinical parameters of limbal stem cell deficiency, impression cytology, and quantification of corneal neovascularization were evaluated before and after cultured limbal stem cell transplantation. The area of corneal neovascularization,vessel caliber(VC), and invasive area(IA) were analyzed before and after stem cell transplantation by image analysis software. Best-corrected visual acuity(BCVA),epithelial transparency, and impression cytology were also measured.RESULTS: One year after surgery, successful cases showed a reduction(improvement) of all three parameters of corneal neovascularization [neovascular area(NA), VC, IA], while failed cases did not. NA decreased a mean of 32.31%(P =0.035), invasion area29.37%(P =0.018) and VC 14.29%(P =0.072). BCVA improved in all eyes(mean follow-up, 76 ±21mo).Epithelial transparency improved significantly from 2.00 ±0.93 to 0.88±1.25(P =0.014). Impression cytology showed that three cases failed after limbal epithelial stem cell therapy before 1y of follow-up.CONCLUSION: This method of analyzing andmonitoring surface vessels is useful for evaluating the epithelial status during follow-up, as successful cases showed a bigger reduction in corneal neovascularization parameters than failed cases. Using this method,successful cases could be differentiated from failed cases. 展开更多
关键词 limbal stem cell corneal neovascularization stem cell therapy impression cytology limbal stem cell deficiency
下载PDF
Induced pluripotent stem cells as a potential therapeutic source for corneal epithelial stem cells 被引量:1
4
作者 Jie Zhu Mark Slevin +1 位作者 Bao-Qiang Guo Shou-Rong Zhu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2018年第12期2004-2010,共7页
Corneal blindness caused by limbal stem cell deficiency(LSCD) is one of the most common debilitating eye disorders. Thus far, the most effective treatment for LSCD is corneal transplantation, which is often hindered b... Corneal blindness caused by limbal stem cell deficiency(LSCD) is one of the most common debilitating eye disorders. Thus far, the most effective treatment for LSCD is corneal transplantation, which is often hindered by the shortage of donors. Pluripotent stem cell technology including embryonic stem cells(ESCs) and induced pluripotent stem cells(iPSCs) have opened new avenues for treating this disease. iPSCs-derived corneal epithelial cells provide an autologous and unlimited source of cells for the treatment of LSCD. On the other hand, iPSCs of LSCD patients can be used for iPSCs-corneal disease model and new drug discovery. However, prior to clinical trial, the efficacy and safety of these cells in patients with LSCD should be proved. Here we focused on the current status of iPSCs-derived corneal epithelial cells used for cell therapy as well as for corneal disease modeling. The challenges and potential of iPSCs-derived corneal epithelial cells as a choice for clinical treatment in corneal disease were also discussed. 展开更多
关键词 induced pluripotent stem cells corneal epithelial cells limbal stem cell deficiency disease modeling
下载PDF
Transplantation of tissue-engineered human corneal epithelium in limbal stem cell deficiency rabbit models 被引量:4
5
作者 Bin Xu Ting-Jun Fan +6 位作者 Jun Zhao Ai Sun Rui-Xin Wang Xiu-Zhong Hu Hao-Ze Yu Xian-Yuan Fan and Xiao-Hui Xu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2012年第4期424-429,共6页
AIM: To evaluate the biological functions of tissue-engineered human corneal epithelium (TE-HCEP) by corneal transplantation in limbal stem cell deficiency (LSCD) rabbit models. METHODS: TE-HCEPs were reconstructed wi... AIM: To evaluate the biological functions of tissue-engineered human corneal epithelium (TE-HCEP) by corneal transplantation in limbal stem cell deficiency (LSCD) rabbit models. METHODS: TE-HCEPs were reconstructed with DiI-labeled untransfected HCEP cells and denuded amniotic membrane (dAM) in air-liquid interface culture, and their morphology and structure were characterized by hematoxylin-eosin (HE) staining of paraffin-sections, immunohistochemistry and electron microscopy. LSCD models were established by mechanical and alcohol treatment of the left eyes of New Zealand white rabbits, and their eyes were transplanted with TE-HCEPs with dAM surface outside by lamellar keratoplasty (LKP). Corneal transparency, neovascularization, thickness, and epithelial integrality of both traumatic and post transplantation eyes were checked once a week by slit-lamp corneal microscopy, a corneal pachymeter, and periodic acid-Schiff (PAS) staining. At day 120 post surgery, the rabbits in each group were sacrificed and their corneas were examined by DiI label observation, HE staining, immunohistochemistry and electron microscopy. RESULTS: After cultured for 5 days on dAM, HCEP cells, maintaining keratin 3 expression, reconstructed a 6-7 layer TE-HCEP with normal morphology and structure. The traumatic rabbit corneas, entirely opaque, conjunctivalized and with invaded blood vessels, were used as LSCD models for TE-HCEP transplantation. After transplantation, obvious edema was not found in TE-HCEP-transplanted corneas which became more and more transparent, the invaded blood vessels reduced gradually throughout the monitoring period. The corneas decreased to normal thickness on day 25, while those of dAM eyes were over 575 mu m in thickness during the monitoring period. A 45 layer of epithelium consisting of TE-HCEP originated cells attached tightly to the anterior surface of stroma was reconstructed 120 days after TE-HCEP transplantation, which was similar to the normal control eye in morphology and structure. In contrast, intense corneal edema, turbid, invaded blood vessels were found in dAM eyes, and no multilayer epithelium was found but only a few scattered conjunctiva-like cells appeared. CONCLUSION: The TE-HCEP, with similar morphology and structure to those of innate HCEP, could reconstruct a multilayer corneal epithelium with normal functions in restoring corneal transparency and thickness of LSCD rabbits after transplantation. It may be a promising HCEP equivalent for clinical therapy of corneal epithelial disorders. 展开更多
关键词 tissue-engineered human corneal epithelium limbal stem cell deficiency rabbit lamellar keratoplasty human corneal epithelial cells denuded amniotic membrane RECONSTRUCTION
下载PDF
Cell viability and extracellular matrix synthesis in a co-culture system of corneal stromal cells and adipose-derived mesenchymal stem cells 被引量:3
6
作者 Ting Shen Jiang Shen +4 位作者 Qing-Qing Zheng Qiu-Shi Li Hai-Lan Zhao Lei Cui Chao-Yang Hong 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2017年第5期670-678,共9页
AIM:To investigate the impact of adipose-derived mesenchymal stem cells(ADSCs) on cell viability and extracellular matrix(ECM) synthesis of corneal stromal cells(CSCs). METHODS:ADSCs and CSCs were obtained fro... AIM:To investigate the impact of adipose-derived mesenchymal stem cells(ADSCs) on cell viability and extracellular matrix(ECM) synthesis of corneal stromal cells(CSCs). METHODS:ADSCs and CSCs were obtained from the corneas of New Zealand white rabbits and indirectly cocultured in vitro. The proliferative capacity of CSCs in the different groups was assessed by CCK-8 assays. Annexin V-fluorescein isothiocyanate(FITC)/proliferation indices(PI) assays were used to detect the apoptosis of CSCs. The expression levels of matrix metalloproteinase(MMP), such as MMP1, MMP2, MMP9, and collagens were also evaluated by Western blot. RESULTS:ADSCs significantly promoted proliferation and invasion of CSCs in the indirect co-culture assays. The co-cultural group displayed much higher ability of proliferation, especially under the co-culture conditions of ADSCs for 3d, compared with that CSCs cultured alone. The PI of CSCs in the co-culture system were increased approximately 3-8-fold compared with the control group. A significant change was observed in the proportions of cells at apoptosis(early and late) between the negative control group(6.34% and 2.06%) and the ADCSs-treated group(4.69% and 1.59%). The expression levels of MMPs were down regulated in the co-culture models. Compared with the control group, the decrease intensities of MMP-1, MMP-2 and MMP-9 in CSCs/ADSCs group were observed, 3.90-fold, 1.09-fold and 3.03-fold, respectively. However, the increase intensities of collagen type(I, II, III, IV, and V) in CSCs were observed in CSCs/ADSCs group, 3.47-fold,4.30-fold, 2.35-fold, 2.55-fold and 2.43-fold, respectively, compared to that in the control group. The expressions of aldehyde dehydrogenase and fibronectin in CSCs were upregulated in the co-culture models.CONCLUSION:ADSCs play a promotive role in CSCs' growth and invasion, which may be partially associated with MMPs decrease and collagens increase, resulting in a positive participation in the plasticity and ECM synthesis of CSCs. This provided a new insight into the extensive role of ADSCs in CSCs and a potential molecular target for corneal therapy. 展开更多
关键词 adipose-derived mesenchymal stem cell corneal stromal cells extracellular matrix PLASTICITY
下载PDF
Anti-inflammatory potential of human corneal stroma-derived stem cells determined by a novel in vitro corneal epithelial injury model 被引量:1
7
作者 Mariana Lizeth Orozco Morales Nagi M Marsit +2 位作者 Owen D McIntosh Andrew Hopkinson Laura E Sidney 《World Journal of Stem Cells》 SCIE CAS 2019年第2期84-99,共16页
BACKGROUND An in vitro injury model mimicking a corneal surface injury was optimised using human corneal epithelial cells(hCEC).AIM To investigate whether corneal-stroma derived stem cells(CSSC) seeded on an amniotic ... BACKGROUND An in vitro injury model mimicking a corneal surface injury was optimised using human corneal epithelial cells(hCEC).AIM To investigate whether corneal-stroma derived stem cells(CSSC) seeded on an amniotic membrane(AM) construct manifests an anti-inflammatory, healing response.METHODS Treatment of hCEC with ethanol and pro-inflammatory cytokines were compared in terms of viability loss, cytotoxicity, and pro-inflammatory cytokine release, in order to generate the in vitro injury. This resulted in an optimal injury of 20%(v/v) ethanol for 30 s with 1 ng/mL interleukin-1(IL-1) beta. Co-culture experiments were performed with CSSC alone and with CSSC-AM constructs.The effect of injury and co-culture on viability, cytotoxicity, IL-6 and IL-8 production, and IL1 B, TNF, IL6, and CXCL8 mRNA expression were assessed.RESULTS Co-culture with CSSC inhibited loss of hCEC viability caused by injury. Enzyme linked immunosorbent assay and polymerase chain reaction showed a significant reduction in the production of IL-6 and IL-8 pro-inflammatory cytokines, and reduction in pro-inflammatory cytokine mRNA expression during co-culture with CSSC alone and with the AM construct. These results confirmed the therapeutic potential of the CSSC and the possible use of AM as a cell carrier for application to the ocular surface.CONCLUSION CSSC were shown to have a potentially therapeutic anti-inflammatory effectwhen treating injured hCEC, demonstrating an important role in corneal regeneration and wound healing, leading to an improved knowledge of their potential use for research and therapeutic purposes. 展开更多
关键词 Cornea corneal injuries Injury model corneal epithelium corneal stroma-derived stem cells AMNION ANTI-INFLAMMATORY cell therapy
下载PDF
Preliminary studies of constructing a tissue-engineered lamellar corneal graft by culturing mesenchymal stem cells onto decellularized corneal matrix
8
作者 Yu-Jie Cen De-Bo You +1 位作者 Wei Wang Yun Feng 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2021年第1期10-18,共9页
AIM:To construct a competent corneal lamellar substitute in order to alleviate the shortage of human corneal donor.METHODS:Rabbit mesenchymal stem cells(MSCs)were isolated from bone marrow and identified by flow cytom... AIM:To construct a competent corneal lamellar substitute in order to alleviate the shortage of human corneal donor.METHODS:Rabbit mesenchymal stem cells(MSCs)were isolated from bone marrow and identified by flow cytometric,osteogenic and adipogenic induction.Xenogenic decellularized corneal matrix(XDCM)was generated from dog corneas.MSCs were seeded and cultured on XDCM to construct the tissueengineered cornea.Post-transplantation biocompatibility of engineered corneal graft were tested by animal experiment.Rabbits were divided into two groups then underwent lamellar keratoplasty(LK)with different corneal grafts:1)XDCM group(n=5):XDCM;2)XDCM-MSCs groups(n=4):tissue-engineered cornea made up with XDCM and MSCs.The ocular surface recovery procedure was observed while corneal transparency,neovascularization and epithelium defection were measured and compared.In vivo on focal exam was performed 3 mo postoperatively.RESULTS:Rabbit MSCs were isolated and identified.Flow cytometry demonstrated isolated cells were CD90 positive and CD34,CD45 negative.Osteogenic and adipogenic induction verified their multipotent abilities.MSC-XDCM grafts were constructed and observed.In vivo transplantation showed the neovascularization in XDCMMSC group was much less than that in XDCM group postoperatively.Post-transplant 3-month confocal test showed less nerve regeneration and bigger cell-absent area in XDCM-MSC group.CONCLUSION:This study present a novel corneal tissue-engineered graft that could reduce post-operatively neovascularization and remain transparency,meanwhile shows that co-transplantation of MSCs may help increase corneal transplantation successful rate and enlarge the source range of corneal substitute to overcome cornea donor shortage. 展开更多
关键词 mesenchymal stem cells xenogenic decellularized corneal matrix acellular corneal matrix NEOVASCULARIZATION tissue-engineered cornea
下载PDF
Limbal stem cells: Central concepts of corneal epithelial homeostasis 被引量:12
9
作者 Jinny J Yoon Salim Ismail Trevor Sherwin 《World Journal of Stem Cells》 SCIE CAS 2014年第4期391-403,共13页
A strong cohort of evidence exists that supports the localisation of corneal stem cells at the limbus. The distinguishing characteristics of limbal cells as stem cells include slow cycling properties, high proliferati... A strong cohort of evidence exists that supports the localisation of corneal stem cells at the limbus. The distinguishing characteristics of limbal cells as stem cells include slow cycling properties, high proliferative potential when required, clonogenicity, absence of differentiation marker expression coupled with positive expression of progenitor markers, multipotency, centripetal migration, requirement for a distinct niche environment and the ability of transplanted limbal cells to regenerate the entire corneal epithelium. The existence of limbal stem cells supports the prevailing theory of corneal homeostasis, known as the XYZ hypothesis where X represents proliferation and stratification of limbal basal cells, Y centripetal migration of basal cells and Z desquamation of superficial cells. To maintain the mass of cornea, the sum of X and Y must equal Z and very elegant cell tracking experiments provide strong evidence in support of this theory. However, several recent stud-ies have suggested the existence of oligopotent stem cells capable of corneal maintenance outside of the limbus. This review presents a summary of data which led to the current concepts of corneal epithelial homeostasis and discusses areas of controversy surrounding the existence of a secondary stem cell reservoir on the corneal 展开更多
关键词 Limbal stem cell corneal EPITHELIUM XYZ HYPOTHESIS corneal HOMEOSTASIS corneal wound repair
下载PDF
Mesenchymal stem cells: Potential role in corneal wound repair and transplantation 被引量:8
10
作者 Fei Li Shao-Zhen Zhao 《World Journal of Stem Cells》 SCIE CAS 2014年第3期296-304,共9页
Corneal diseases are a major cause of blindness in the world. Although great progress has been achieved in the treatment of corneal diseases, wound healing after severe corneal damage and immunosuppressive therapy aft... Corneal diseases are a major cause of blindness in the world. Although great progress has been achieved in the treatment of corneal diseases, wound healing after severe corneal damage and immunosuppressive therapy after corneal transplantation remain prob-lematic. Mesenchymal stem cells(MSCs) derived from bone marrow or other adult tissues can differentiate into various types of mesenchymal lineages, such as osteocytes, adipocytes, and chondrocytes, both in vivo and in vitro. These cells can further differentiate into specific cell types under specific conditions. MSCs migrate to injury sites and promote wound healing by secreting anti-inflammatory and growth factors. In ad-dition, MSCs interact with innate and acquired immune cells and modulate the immune response through their powerful paracrine function. Over the last decade, MSCs have drawn considerable attention because of their beneficial properties and promising therapeutic prospective. Furthermore, MSCs have been applied to various studies related to wound healing, autoim-mune diseases, and organ transplantation. This review discusses the potential functions of MSCs in protecting corneal tissue and their possible mechanisms in corneal wound healing and corneal transplantation. 展开更多
关键词 MESENCHYMAL stem cells corneal injury WOUND repair IMMUNE modulation TRANSPLANTATION
下载PDF
Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance 被引量:6
11
作者 John D West Natalie J Dorà J Martin Collinson 《World Journal of Stem Cells》 SCIE CAS 2015年第2期281-299,共19页
In this review we evaluate evidence for three different hypotheses that explain how the corneal epithelium is maintained. The limbal epithelial stem cell(LESC)hypothesis is most widely accepted. This proposes that ste... In this review we evaluate evidence for three different hypotheses that explain how the corneal epithelium is maintained. The limbal epithelial stem cell(LESC)hypothesis is most widely accepted. This proposes that stem cells in the basal layer of the limbal epithelium, at the periphery of the cornea, maintain themselves and also produce transient(or transit) amplifying cells(TACs). TACs then move centripetally to the centre of the cornea in the basal layer of the corneal epithelium and also replenish cells in the overlying suprabasal layers. The LESCs maintain the corneal epithelium during normal homeostasis and become more active to repair significant wounds. Second, the corneal epithelial stem cell(CESC) hypothesis postulates that, during normal homeostasis, stem cells distributed throughout the basal corneal epithelium, maintain the tissue. According to this hypothesis, LESCs are present in the limbus but are only active during wound healing. We also consider a third possibility, that the corneal epithelium is maintained during normal homeostasis by proliferation of basal corneal epithelial cells without any input from stem cells. After reviewing the published evidence, we conclude that the LESC and CESC hypotheses are consistent with more of the evidence than the third hypothesis, so we do not consider this further. The LESC and CESC hypotheses each have difficulty accounting for one main type of evidence so we evaluate the two key lines of evidence that discriminate between them. Finally, we discuss how lineage-tracing experiments have begun to resolve the debate in favour of the LESC hypothesis. Nevertheless, it also seems likely that some basal corneal epithelial cells can act as long-term progenitors if limbal stem cell function is compromised. Thus, this aspect of the CESC hypothesis may have a lasting impact on our understanding of corneal epithelial maintenance, even if it is eventually shown that stem cells are restricted to the limbus as proposed by the LESC hypothesis. 展开更多
关键词 Eye CORNEA corneal EPITHELIUM Limbalepithelium stem cell LINEAGE tracing
下载PDF
Differentiation of human embryonic stem cells derived mesenchymal stem cells into corneal epithelial cells after being seeded on decellularized SMILE-derived lenticules 被引量:2
12
作者 Yao Chen Ye-Wei Yin +5 位作者 Yang Zhao Xiao-Ying Wu Kelly Young Wei-Tao Song Xiao-Bo Xia Dan Wen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2019年第5期717-724,共8页
AIM: To evaluate the feasibility of mesenchymal stem cells(MSCs) to differentiate into corneal epithelial cells after being seeded on the decellularized small incision lenticule extraction(SMILE)-derived lenticules. M... AIM: To evaluate the feasibility of mesenchymal stem cells(MSCs) to differentiate into corneal epithelial cells after being seeded on the decellularized small incision lenticule extraction(SMILE)-derived lenticules. METHODS: The fresh lenticules procured from patients undergoing SMILE for the correction of myopia were decellularized. The MSCs were subsequently cultivated on those denuded lenticules. The MSCs without lenticules were used as a control. The proliferation activity of the MSCs after seeding 24 h was quantitatively determined with the Cell Counting Kit-8(CCK-8) assay. Immunofluorescence staining and quantitative reverse transcription polymerase chain reaction(qRT-PCR) were used to assess the marker expression in differentiated MSCs. RESULTS: The data showed that both fresh and decellularized lenticules could significantly promote the proliferation of MSCs, compared to that in control(P=0.02 for fresh lenticules, P=0.001 for decellularize ones, respectively). The MSCs seeded on both lenticules were positive for cytokeratin 3(CK3) staining. The expression of CK3 increased 5-fold in MSCs seeded on fresh lenticules and 18-fold on decellularized ones, compared to that in control. There was a significant difference in the expression of CK3 in MSCs seeded on fresh and decellularized lenticules(P<0.001). The expression of CK8 and CK18 was similar in pure MSCs and MSCs seeded on fresh lenticules(P>0.05), while the expression of these markers was decreased in MSCs seeded on decellularized ones. CONCLUSION: These results suggest that the decellularized lenticules might be more suitable for MSCs to differentiate into corneal epithelial cells, which offersthe prospect of a novel therapeutic modality of SMILEderived lenticules in regenerative corneal engineering. 展开更多
关键词 MESENCHYMAL stem cellS small INCISION lenticule extraction lenticules DEcellULARIZATION corneal epithelial cellS
下载PDF
An updated narrative review of treatment for limbal epithelial stem cell deficiency
13
作者 Choul Yong Park 《Annals of Eye Science》 2023年第3期1-10,共10页
Background and Objective:Nearly 30 years have passed since limbal stem cell deficiency(LSCD)was first identified by pioneers and given clinical attention.LSCD remains a difficult disease to treat.It can potentially le... Background and Objective:Nearly 30 years have passed since limbal stem cell deficiency(LSCD)was first identified by pioneers and given clinical attention.LSCD remains a difficult disease to treat.It can potentially lead to blinding.At present,understanding of limbal stem cells(LSCs)has deepened and various treatment options for LSCD have been devised.The objective of this review is to summarize basic knowledge of LSCD and current treatment strategies.Methods:PubMed search was performed to find studies published in English on LSCs and LSCD including original reports and reviews.Literatures published from 1989 to 2022 were reviewed.Key Content and Findings:LSCs are enigmatic stem cells for which no specific marker has been discovered yet.Although LSCD is not difficult to diagnose,it is still challenging to treat.An important advancement in the treatment of LSCD is the provision of guidelines for selecting systematic surgical treatment according to the patient’s condition.It is also encouraging that stem cell technologies are being actively investigated for their potential usefulness in the treatment of LSCD.Conclusions:Although various treatment options for LSCD have been developed,it should be kept in mind that the best chance of treatment for LSCD is in the early stage of the disease.Every effort should be made to preserve as many LSCs as possible in the early treatment of LSCD. 展开更多
关键词 limbus stem cell CORNEA DEFICIENCY transplantation
下载PDF
The Preliminary Experimental Study of Induced Differentiation of Embryonic Stem Cells into Corneal Epithelial Cells 被引量:18
14
作者 LingYu Huan.B 《眼科学报》 2001年第3期138-143,共6页
Purpose:To study preliminarily induced differentiation of embryonic stem cells intocorneal epithelial cells in vitro.Methods: Murine embryonic stem cells were co-cultured with Rabbit limbal cornealepithelial cells in ... Purpose:To study preliminarily induced differentiation of embryonic stem cells intocorneal epithelial cells in vitro.Methods: Murine embryonic stem cells were co-cultured with Rabbit limbal cornealepithelial cells in Transwell system to induce differentiation. Mophological andimmunohistochemical examination were implemented.Results: The induced cells from embryonic stem cells have an epithelial appearance.The cells formed a network and were confluent into film gradually after beingco-cultured with rabbit limbal corneal epithelial cells for 24 ~ 96 hours. The cells rangedmosaic structure and localized together with clear rim. Most of the cells showedpolygonal appearance. Transmission electron microscope showed lots of microvilli on thesurface of induced cells and tight junctions between them. These epithelial-like cellsexpressed the corneal epithelial cell specific marker cytokeratin3/cytokeratinl2.Conclusion: The potential mechanism of the differentiation of murine embryonic stemcells into corneal epithelial cells induced by limbal corneal epithelial cell-derivedinducing activity is to be further verified. 展开更多
关键词 胚胎干细胞 角膜上皮细胞 差异性 眼表面疾病
下载PDF
Corneal stem cells and tissue engineering: Current advances and future perspectives 被引量:4
15
作者 Aline Lütz de Araujo JoséAlvaro Pereira Gomes 《World Journal of Stem Cells》 SCIE CAS 2015年第5期806-814,共9页
Major advances are currently being made in regenerative medicine for cornea. Stem cell-based therapies represent a novel strategy that may substitute conventional corneal transplantation, albeit there aremany challeng... Major advances are currently being made in regenerative medicine for cornea. Stem cell-based therapies represent a novel strategy that may substitute conventional corneal transplantation, albeit there aremany challenges ahead given the singularities of each cellular layer of the cornea. This review recapitulates the current data on corneal epithelial stem cells, corneal stromal stem cells and corneal endothelial cell progenitors. Corneal limbal autografts containing epithelial stem cells have been transplanted in humans for more than 20 years with great successful rates, and researchers now focus on ex vivo cultures and other cell lineages to transplant to the ocular surface. A small population of cells in the corneal endothelium was recently reported to have self-renewal capacity, although they do not proliferate in vivo. Two main obstacles have hindered endothelial cell transplantation to date: culture protocols and cell delivery methods to the posterior cornea in vivo. Human corneal stromal stem cells have been identified shortly after the recognition of precursors of endothelial cells. Stromal stem cells may have the potential to provide a direct cell-based therapeutic approach when injected to corneal scars. Furthermore, they exhibit the ability to deposit organized connective tissue in vitro and may be useful in corneal stroma engineering in the future. Recent advances and future perspectives in the field are discussed. 展开更多
关键词 CORNEA stem cells cell-based therapy Limbal TRANSPLANTATION TISSUE engineering cornealendothelium
下载PDF
Keratinocyte Growth Factor-2 on the Proliferation of Corneal Epithelial Stem Cells in Rabbit Alkali Burned Cornea 被引量:2
16
作者 Lin Liu Yongping Li +2 位作者 Shuqi Huang Jianxian Lin Wenxin Zhang 《眼科学报》 2007年第2期107-116,共10页
Purpose: To determine whether the topical application of keratinocyte growth factor-2 (KGF-2) can enhance corneal epithelial healing in rabbit alkali burned cornea. In addition, the distribution and proliferation of c... Purpose: To determine whether the topical application of keratinocyte growth factor-2 (KGF-2) can enhance corneal epithelial healing in rabbit alkali burned cornea. In addition, the distribution and proliferation of corneal epithelial stem cells in KGF-2-treated and control corneas were investigated to explain their mechanisms of effects on the epithelium. Methods: Twenty-four New Zealand eyes were divided into four groups, treated with KGF-2 solution (1, 50, 100 μg/ml) and PBS solution. Eighth millimeter filter paper discs, produced by standard paper punch, were soaked for 15 sec in 0.5N NaOH solution. The alkali-soaked discs were applied to the central cornea, centered on the pupil and held gently in position with forceps for 1 min. The cornea was finally irrigated over 1 min with 100 ml balanced salt solution (BSS). Keratinocyte growth factor-2 was then applied topically three times a day. The phosphate-buffered saline (PBS) group was served as a control. Each corneal epithelial defect was subsequently photographed every 24 hours with a slit lamp and was measured by computer-assisted digitizer. In each group, two rabbits were sacrificed for light microscopic examination after the interval of 7, 14 and 21 days. Meanwhile, the cornea epithelium was examined by immunohistochemistry for P63, AE5, EGFR. Results: Topical application of 10 μg/ml to 100 μg/ml KGF-2 significantly accelerated corneal epithelial wound healing when compared with controls. After 24 hours, epithelial healing rate of the 100 μg/ml KGF-2 group and the PBS treated group was (74±6)% and (40±8)% (P < 0.05). After 48 hours, the rate of the C group was (94±6)%, whereas in the control group it was (73±12)% (P < 0.05). Epithelial defects were often recurrent, which happened only two times in the 100 μg/ml KGF-2-treated group, but many times in the control group. In the corneal epithelial stem cell analysis, the number of the P63 positive cells was higher in the KGF-2-treated corneal epithelium than in the controls. The P63 positive cells in the alkali burned epithelium were found not only in the limbal area but also in the central cornea. In addition, the number of stem cells in each group came to the maximum on the 14th day. For example, on the 7th day after alkali injury, it was 40.3±2.1 NPC in the non-limbal area of 50 μg/ml KGF-2-treated group; whereas, it was 84.8±2.7 NPC on the 14th day(P = 0.000). Conclusions: From the daily evaluation of the corneal surface as well as the microscopic examinations at the end of the three periods of observation, we concluded that KGF-2 provided a beneficial effect in the treatment of alkali burns of the cornea. Furthermore, the results of epithelial stem cell analysis demonstrated that KGF-2 accelerated the corneal epithelial healing by markedly stimulating epithelial stem cells proliferation and making them migrate to the central cornea. 展开更多
关键词 角化细胞生长因子-2 角膜上皮干细胞 角膜碱烧伤 治疗 细胞培养
下载PDF
Keratinocyte growth factor-2 and autologous serum potentiate the regenerative effect of mesenchymal stem cells in cornea damage in rats 被引量:5
17
作者 Ferda Alpaslan Pinarli Gülsen Okten +5 位作者 Umit Beden Tunc Fisgin Mehmet Kefeli Nurten Kara Feride Duru Leman Tomak 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2014年第2期211-219,共9页
AIM:To investigate the healing process after severe corneal epithelial damage in rats treated with mesenchymal stem cells(MSCs)cultured with or without keratinocyte growth factor(KGF-2)and autologous serum(AS)on amnio... AIM:To investigate the healing process after severe corneal epithelial damage in rats treated with mesenchymal stem cells(MSCs)cultured with or without keratinocyte growth factor(KGF-2)and autologous serum(AS)on amniotic membrane(AM).Many patients are blind and devastated by severe ocular surface diseases due to limbal stem cell deficiency.Bone marrow-derived MSCs are potential sources for cellbased tissue engineering to repair or replace the corneal tissue,having the potential to differentiate to epithelial cells.METHODS:The study included 5 groups each including 10 female'Sprague Dawley'rats in addition to20 male rats used as bone marrow donors.Group I rats received AM+MSCs,Group II rats AM+MSCs cultured with KGF-2,Group III rats AM+MSCs cultured with KGF-2+AS,Group IV rats only AM and Group V rats,none.AS was derived from blood drawn from male rats and bone marrow was obtained from the femur and tibia bones of the same animals.Therapeutic effect was evaluated with clinical,histopathological and immunohistochemical assessment.MSC engraftment was demonstrated via detection of donor genotype(Y+)in the recipient tissue(X)with polymerase chain reaction.RESULTS:Corneal healing was significantly better in Groups I-III rats treated with MSC transplantation compared to Group IV and Group V rats with supportive treatment only.The best results were obtained in Group III rats with 90%transparency,70%lack of neovascularization,and 100%epithelium damage limited to less than 1/4 of cornea.CONCLUSION:We suggest that culture of MSCs with KGF-2 and AS on AM is effective in corneal repair in case of irreversible damage to limbal stem cells. 展开更多
关键词 corneal wound healing mesenchymal stem cells keratinocyte growth factor-2 autologous serum amniotic membrane
下载PDF
Profile of biological characterizations and clinical application of corneal stem/progenitor cells 被引量:2
18
作者 Pei-Xi Ying Min Fu +11 位作者 Chang Huang Zhi-Hong Li Qing-Yi Mao Sheng Fu Xu-Hui Jia Yu-Chen Cao Li-Bing Hong Li-Yang Cai Xi Guo Ru-Bing Liu Fan-ke Meng Guo-Guo Yi 《World Journal of Stem Cells》 SCIE 2022年第11期777-797,共21页
Corneal stem/progenitor cells are typical adult stem/progenitor cells.The human cornea covers the front of the eyeball,which protects the eye from the outside environment while allowing vision.The location and functio... Corneal stem/progenitor cells are typical adult stem/progenitor cells.The human cornea covers the front of the eyeball,which protects the eye from the outside environment while allowing vision.The location and function demand the cornea to maintain its transparency and to continuously renew its epithelial surface by replacing injured or aged cells through a rapid turnover process in which corneal stem/progenitor cells play an important role.Corneal stem/progenitor cells include mainly corneal epithelial stem cells,corneal endothelial cell progenitors and corneal stromal stem cells.Since the discovery of corneal epithelial stem cells(also known as limbal stem cells)in 1971,an increasing number of markers for corneal stem/progenitor cells have been proposed,but there is no consensus regarding the definitive markers for them.Therefore,the identification,isolation and cultivation of these cells remain challenging without a unified approach.In this review,we systematically introduce the profile of biological characterizations,such as anatomy,characteristics,isolation,cultivation and molecular markers,and clinical applications of the three categories of corneal stem/progenitor cells. 展开更多
关键词 corneal epithelial stem cells corneal endothelium stem cells corneal stromal stem cells BIOENGINEERING Gene markers
下载PDF
Effects of Adipose-derived Mesenchymal Stem Cell Exosomes on Corneal Stromal Fibroblast Viability and Extracellular Matrix Synthesis 被引量:23
19
作者 Ting Shen Qing-Qing Zheng +5 位作者 Jiang Shen Qiu-Shi Li Xing-Hui Song Hong-Bo Luo Chao-Yang Hong Ke Yao 《Chinese Medical Journal》 SCIE CAS CSCD 2018年第6期704-712,共9页
Background: Corneal stromal cells (CSCs) are components of the corneal endothelial microenvironment that can be induced to form a functional tissue-engineered corneal endothelium. Adipose-derived mesenchymal stem c... Background: Corneal stromal cells (CSCs) are components of the corneal endothelial microenvironment that can be induced to form a functional tissue-engineered corneal endothelium. Adipose-derived mesenchymal stem cells (ADSCs) have been reported as an important component of regenerative medicine and cell therapy for corneal stromal damage. We have demonstrated that the treatment with ADSCs leads to phenotypic changes in CSCs in vitro. However, the underlying mechanisms of such ADSC-induced changes in CSCs remain unclear. Methods: ADSCs and CSCs were isolated from New Zealand white rabbits and cultured in vitro. An Exosome Isolation Kit, Western blotting, and nanoparticle tracking analysis (NTA) were used to isolate and confirm the exosomes from ADSC culture medium. Meanwhile, the optimal exosome concentration and treatment time were selected. Cell Counting Kit-8 and annexin V-fluorescein isothiocyanate/ propidium iodide assays were used to assess the effect of ADSC-derived exosomes on the proliferation and apoptosis of CSCs. To evaluate the effects ofADSC-derived exosomes on CSC invasion activity, Western blotting was used to detect the expression of matrix metalloproteinases (MMPs) and collagens. Results: ADSCs and CSCs were successfully isolated from New Zealand rabbits. The optimal concentration and treatment time of exosomes for the following study were 100 μg/ml and 96 h, respectively. NTA revealed that the ADSC-derived exosomes appeared as nanoparticles (40-200 nm), and Western blotting confirmed positive expression of CD9, CDSI, flotillin-1, and HSP70 versus ADSC cytoplasmic proteins (all P〈 0.01 ). ADSC-derived exosomes (50μg/ml and 100μg/ml) significantly promoted proliferation and inhibited apoptosis (mainly early apoptosis) of CSCs versus non-exosome-treated CSCs (all P 〈 0.05). Interestingly, MMPs were downregulated and extracellular matrix (ECM)-related proteins including collagens and fibronectin were upregulated in the exosome-treated CSCs versus non-exosome-treated CSCs (MMPI: t = 80.103, P 〈 0.01; MMP2: t = 114.778, P 〈 0.01; MMP3: t = 56.208, P 〈 0.01; and MMP9: t = 60.617, P〈 0.01; collagen I: t = -82.742, P〈 0.01; collagen II: t = -72.818, P〈 0.01; collagen III: t = -104.452, P〈 0.01; collagen IV: t = - 133.426, P 〈 0.01, and collagen V: t - -294.019, P 〈 0.01 ; and fibronectin: t = -92.491, P 〈 0.01, respectively). Conclusion: The findings indicate that ADSCs might play an important role in CSC viability regulation and ECM remodeling, partially through the secretion of exosomes. 展开更多
关键词 Adipose-derived Mesenchymal stem cell corneal Stromal cells EXOSOMES Extracellular Matrix Synthesis
原文传递
Transplantation of corneal stem cells cultured on amniotic membrane for corneal burn: experimental and clinical study
20
作者 潘志强 张文华 +1 位作者 武宇影 孙葆忱 《Chinese Medical Journal》 SCIE CAS CSCD 2002年第5期767-769,158,共3页
OBJECTIVE: To investigate the proliferation and differentiation of cultured corneal stem cells and determine the effect of corneal stem cells cultured on amniotic membranes on the limbal area for treating corneal burn... OBJECTIVE: To investigate the proliferation and differentiation of cultured corneal stem cells and determine the effect of corneal stem cells cultured on amniotic membranes on the limbal area for treating corneal burns. METHODS: The proliferation and differentiation of corneal stem cells in vitro had been examined using colony-forming efficiency and immunohistochemistry. The stem cells had been cultured on amniotic membranes and transplanted to the limbal area for treating corneal burns. RESULTS: Corneal stem cells had a high proliferation capacity in primary and first passage, cytokeratin 3 was not expressed in primary culture but partly in first passage. The stem cells could proliferate to form cell layer on an amniotic membrane. When transplanted, stem cells could survive on limbus. After transplantation, ocular inflammation resolved, the cornea re-epithelialized, the stromal opacity reduced, the superficial neovascularity was lessened and the conjunctival fornix re-established. CONCLUSIONS: Ocular surface conditions could be improved by allograft of corneal stem cells cultured on amniotic membranes. 展开更多
关键词 ALKALIES AMNION Animals Burns Chemical cell Culture Techniques cell Differentiation cell Division cell Transplantation cells Cultured Epithelium corneal Eye Burns Graft Survival Humans KERATIN limbus Corneae Rabbits stem cells Treatment Outcome
原文传递
上一页 1 2 28 下一页 到第
使用帮助 返回顶部