The classical minimization of power losses in transmission lines is dominated by artificial intelligence techniques, which do not guarantee global optimum amidst local minima. Revolutionary and evolutionary techniques...The classical minimization of power losses in transmission lines is dominated by artificial intelligence techniques, which do not guarantee global optimum amidst local minima. Revolutionary and evolutionary techniques are encumbered with sophisticated transformations, which weaken the techniques. Power loss minimization is crucial to the efficient design and operation of power transmission lines. Minimization of losses is one way to meet steady grid supply, especially at peak demand. Thus, this paper has presented a gradient technique to obtain optimal variables and values from the power loss model, which efficiently minimizes power losses by modifying the traditional power loss model that combines Ohm and Corona losses. Optimality tests showed that the unmodified model does not support the minimization of power losses on transmission lines as the Hessian matrix portrayed the maximization of power losses. However, the modified model is consistent with the gradient method of optimization, which yielded optimum variables and values from the power loss model developed in this study. The unmodified (modified) models for Bujagali-Kawanda 220 kV and Masaka West-Mbarara North 132 kV transmission lines in Uganda showed maximum power losses of 0.406 (0.391) and 0.452 (0.446) kW/km/phase respectively. These results indicate that the modified model is superior to the unmodified model in minimizing power losses in the transmission lines and should be implemented for the efficient design and operation of power transmission lines within and outside Uganda for the same transmission voltages.展开更多
Corona discharge is a common phenomenon in power transmission lines external insulation, and it may cause serious defect if without effective detection. The ultraviolet (UV) imagery technology has been widely used to ...Corona discharge is a common phenomenon in power transmission lines external insulation, and it may cause serious defect if without effective detection. The ultraviolet (UV) imagery technology has been widely used to detect the corona discharge in industry in recent years, but some influence factors’ functions are not definite. In this paper, the fracture aluminum strands which is common in power transmission lines were used as the electrode model while a SuperB ultraviolet imager were utilized to detect, the photon count rate was detected with different detect distance, electric field, aluminum strands length and UV gain were applied. Then the multivariate regression analysis (MRA) was taken to calculate the function between the photon count and the factors.展开更多
Corona discharge suppression for high-voltage direct-current(HVDC)transmission lines at line terminals such as converter stations is a subject that requires attention.In this paper,a method based on a conductor covere...Corona discharge suppression for high-voltage direct-current(HVDC)transmission lines at line terminals such as converter stations is a subject that requires attention.In this paper,a method based on a conductor covered with dielectric film is proposed and implemented through a bench-scale setup.Compared with the bare conductor,the corona discharge suppression effect of the dielectric-film-covered conductor under positive polarity is studied from the composite field strength and ion current density using a line-plate experimental device.The influences of film thickness and film material on the corona discharge suppression effect are investigated.The charge accumulation and dissipation characteristics of different film materials are also studied.The results show that the conductor covered with dielectric film has excellent ability to inhibit corona discharge.The ground-level composite field strength of the conductor covered with dielectric film is lower than its nominal field strength,and its ion current density is at the nA m^(−2) level.The corona threshold voltage can be promoted by increasing the film thickness,but the ability to inhibit corona discharge becomes weak.The larger the surface electric field strength,the more charge accumulated,but the faster the charge dissipation rate.Compared with polyvinyl chloride film,cross-linked polyethylene film has stronger charge accumulation ability and slower charge dissipation rate,which can better restrain the corona discharge of HVDC transmission lines.展开更多
An improved method for calculating the corona power loss and the ground-level electric field on HVAC transmission lines induced by corona is proposed.Based on a charge simulation method combined with a method of succe...An improved method for calculating the corona power loss and the ground-level electric field on HVAC transmission lines induced by corona is proposed.Based on a charge simulation method combined with a method of successive images,the proposed method has the number and location of the simulated charges not arbitrary.When the surface electric field of a conductor exceeds the onset value,charges are emitted from corona into the space around,and the space ions and the surface charges on each sub-conductor are simulated by using the images of the other sub-conductors.The displacements of the space ions are calculated at every time step during corona periods in both the positive and the negative half cycles.Several examples are calculated by using the proposed method,and the calculated electric field at the ground level and the corona power loss agree well with previous measurements.The results show that simulating 12 charges in each conductor during 600 time steps in one cycle takes less time while guarantees the accuracy.The corona discharge from a 220 kV transmission line enhances slightly(less than 2%) the electric field at the ground level,but this effect is little from a 500 kV line.The improved method is a good compromise between the time cost and the accuracy of calculation.展开更多
For developing ultra-high voltage(UHV) AC power transmission systems,it is important to precisely estimate and to limit the radio interference(RI) level of power lines.Based on the stochastic characteristics in amplit...For developing ultra-high voltage(UHV) AC power transmission systems,it is important to precisely estimate and to limit the radio interference(RI) level of power lines.Based on the stochastic characteristics in amplitude and repetition rate of induced corona current,by using the probability theory and mathematical statistics,we establish a stochastic model for the wide-sense stationary random process of corona discharges.Then combining the stochastic model with model-propagation-analysis method,the RI levels under three-phase UHV AC transmission lines are calculated.The results of the calculation based on stochastic model method and International Council on Large Electric Systems(CIGRE) excitation function are compared with that based on semi-empirical method and some other excitation functions.The stochastic model based on different excitation functions is also adopted to simulate the RI levels under finite test lines with two opened terminations.The results indicate that with the same average maximum gradient on conductor surface and the same conductor type,the number of corona discharge per unit length is one of the main reasons that causes the difference between different excitation functions.It is also concluded that for a long test line,the effect of standing wave on RI field strength is negligible in the middle of the line,but obvious near both terminations: for a 10-km line,the maximum difference in RI field strength is 2.78 dB,between the peak value of the standing wave near the ends and the steady value near the middle of the line.展开更多
文摘The classical minimization of power losses in transmission lines is dominated by artificial intelligence techniques, which do not guarantee global optimum amidst local minima. Revolutionary and evolutionary techniques are encumbered with sophisticated transformations, which weaken the techniques. Power loss minimization is crucial to the efficient design and operation of power transmission lines. Minimization of losses is one way to meet steady grid supply, especially at peak demand. Thus, this paper has presented a gradient technique to obtain optimal variables and values from the power loss model, which efficiently minimizes power losses by modifying the traditional power loss model that combines Ohm and Corona losses. Optimality tests showed that the unmodified model does not support the minimization of power losses on transmission lines as the Hessian matrix portrayed the maximization of power losses. However, the modified model is consistent with the gradient method of optimization, which yielded optimum variables and values from the power loss model developed in this study. The unmodified (modified) models for Bujagali-Kawanda 220 kV and Masaka West-Mbarara North 132 kV transmission lines in Uganda showed maximum power losses of 0.406 (0.391) and 0.452 (0.446) kW/km/phase respectively. These results indicate that the modified model is superior to the unmodified model in minimizing power losses in the transmission lines and should be implemented for the efficient design and operation of power transmission lines within and outside Uganda for the same transmission voltages.
文摘Corona discharge is a common phenomenon in power transmission lines external insulation, and it may cause serious defect if without effective detection. The ultraviolet (UV) imagery technology has been widely used to detect the corona discharge in industry in recent years, but some influence factors’ functions are not definite. In this paper, the fracture aluminum strands which is common in power transmission lines were used as the electrode model while a SuperB ultraviolet imager were utilized to detect, the photon count rate was detected with different detect distance, electric field, aluminum strands length and UV gain were applied. Then the multivariate regression analysis (MRA) was taken to calculate the function between the photon count and the factors.
基金by State Grid Shandong Electric Power Company(52062618001M)。
文摘Corona discharge suppression for high-voltage direct-current(HVDC)transmission lines at line terminals such as converter stations is a subject that requires attention.In this paper,a method based on a conductor covered with dielectric film is proposed and implemented through a bench-scale setup.Compared with the bare conductor,the corona discharge suppression effect of the dielectric-film-covered conductor under positive polarity is studied from the composite field strength and ion current density using a line-plate experimental device.The influences of film thickness and film material on the corona discharge suppression effect are investigated.The charge accumulation and dissipation characteristics of different film materials are also studied.The results show that the conductor covered with dielectric film has excellent ability to inhibit corona discharge.The ground-level composite field strength of the conductor covered with dielectric film is lower than its nominal field strength,and its ion current density is at the nA m^(−2) level.The corona threshold voltage can be promoted by increasing the film thickness,but the ability to inhibit corona discharge becomes weak.The larger the surface electric field strength,the more charge accumulated,but the faster the charge dissipation rate.Compared with polyvinyl chloride film,cross-linked polyethylene film has stronger charge accumulation ability and slower charge dissipation rate,which can better restrain the corona discharge of HVDC transmission lines.
基金supported by National Basic Research Program of China(973 Program)(2011CB209404)
文摘An improved method for calculating the corona power loss and the ground-level electric field on HVAC transmission lines induced by corona is proposed.Based on a charge simulation method combined with a method of successive images,the proposed method has the number and location of the simulated charges not arbitrary.When the surface electric field of a conductor exceeds the onset value,charges are emitted from corona into the space around,and the space ions and the surface charges on each sub-conductor are simulated by using the images of the other sub-conductors.The displacements of the space ions are calculated at every time step during corona periods in both the positive and the negative half cycles.Several examples are calculated by using the proposed method,and the calculated electric field at the ground level and the corona power loss agree well with previous measurements.The results show that simulating 12 charges in each conductor during 600 time steps in one cycle takes less time while guarantees the accuracy.The corona discharge from a 220 kV transmission line enhances slightly(less than 2%) the electric field at the ground level,but this effect is little from a 500 kV line.The improved method is a good compromise between the time cost and the accuracy of calculation.
基金supported by Science and Technology Project of SGCC(SG1021)
文摘For developing ultra-high voltage(UHV) AC power transmission systems,it is important to precisely estimate and to limit the radio interference(RI) level of power lines.Based on the stochastic characteristics in amplitude and repetition rate of induced corona current,by using the probability theory and mathematical statistics,we establish a stochastic model for the wide-sense stationary random process of corona discharges.Then combining the stochastic model with model-propagation-analysis method,the RI levels under three-phase UHV AC transmission lines are calculated.The results of the calculation based on stochastic model method and International Council on Large Electric Systems(CIGRE) excitation function are compared with that based on semi-empirical method and some other excitation functions.The stochastic model based on different excitation functions is also adopted to simulate the RI levels under finite test lines with two opened terminations.The results indicate that with the same average maximum gradient on conductor surface and the same conductor type,the number of corona discharge per unit length is one of the main reasons that causes the difference between different excitation functions.It is also concluded that for a long test line,the effect of standing wave on RI field strength is negligible in the middle of the line,but obvious near both terminations: for a 10-km line,the maximum difference in RI field strength is 2.78 dB,between the peak value of the standing wave near the ends and the steady value near the middle of the line.