We calculate the thermodynamic quantities in the quantum corrected Reissner-Nordstr?m-AdS(RN-AdS)black hole,and examine their quantum corrections.By analyzing the mass and heat capacity,we give the critical state and ...We calculate the thermodynamic quantities in the quantum corrected Reissner-Nordstr?m-AdS(RN-AdS)black hole,and examine their quantum corrections.By analyzing the mass and heat capacity,we give the critical state and the remnant state,respectively,and discuss their consistency.Then,we investigate the quantum tunneling from the event horizon of massless scalar particle by using the null geodesic method,and charged massive boson W^(±)and fermions by using the Hamilton-Jacob method.It is shown that the same Hawking temperature can be obtained from these tunneling processes of different particles and methods.Next,by using the generalized uncertainty principle(GUP),we study the quantum corrections to the tunneling and the temperature.Then the logarithmic correction to the black hole entropy is obtained.展开更多
Black holes contradict the Nernst-Planck (N/P) version of the 3rd law of thermodynamics, but agree with its unattainability (U) version. This happens without contradiction, because the N/P and U versions are not equiv...Black holes contradict the Nernst-Planck (N/P) version of the 3rd law of thermodynamics, but agree with its unattainability (U) version. This happens without contradiction, because the N/P and U versions are not equivalent, namely, N/P implies U but U does not imply N/P. So, black holes obey the weaker version of the 3rd law, but not the stronger one.展开更多
We investigate the dynamic and thermodynamic laws governing rotating regular black holes.By analyzing dynamic properties,i.e.,the interaction between scalar particles and rotating regular black holes,we establish the ...We investigate the dynamic and thermodynamic laws governing rotating regular black holes.By analyzing dynamic properties,i.e.,the interaction between scalar particles and rotating regular black holes,we establish the criteria that determine whether such black holes satisfy the laws of thermodynamics.In addition,we provide the general form of conserved quantities related to rotating regular black holes,including the relevant flows associated with neutral scalar particles.Meanwhile,we reexamine the relationship between the third law of thermodynamics and weak cosmic censorship conjecture for rotating regular black holes.Based on the abovementioned criteria,we discuss the laws of thermodynamics for three models of rotating regular black holes:Rotating Hayward black holes,Kerr black-bounce solutions,and loop quantum gravity black holes.Our findings indicate that none of the three models satisfies the first law of thermodynamics.In particular,the first and third models fail to comply with the three laws of thermodynamics,whereas the second model satisfies only the second and third laws of thermodynamics.Finally,we attempt to rescue the laws of thermodynamics by modifying entropy or extending the phase space.However,the two scenarios cannot ensure the three laws of thermodynamics in the three models,which reveals an unusual property of rotating regular black holes.展开更多
We propose a regular spherically symmetric spacetime solution with three parameters in Einstein gravity coupled to nonlinear electrodynamics(NED), which describes the NED black hole with electric charge. It is found t...We propose a regular spherically symmetric spacetime solution with three parameters in Einstein gravity coupled to nonlinear electrodynamics(NED), which describes the NED black hole with electric charge. It is found that the system enclosed by the horizon of NED spacetime satisfies the first law of thermodynamics. In order to obtain the NED spacetime with only electric charge, the case of two parameters taking the same value is considered. In this case, we express the mass of the NED spacetime as a function of the entropy and electric charge of the NED black hole, give the Smarr-like formula and the approximate Smarr formula for the mass of NED spacetime.展开更多
This paper extends Parikh-Wilzcek's recent work, which treats the Hawking radiation as a semi-classical tunnelling process from the event horizon of four dimensional Schwarzshild and Reissner-Nordstrom black holes, t...This paper extends Parikh-Wilzcek's recent work, which treats the Hawking radiation as a semi-classical tunnelling process from the event horizon of four dimensional Schwarzshild and Reissner-Nordstrom black holes, to that of arbitrarily dimensional Reissner-Nordstrom de Sitter black hole. The result shows that the tunnelling rate is related to the change of Bekenstein-Hawking entropy and the factually radiant spectrum is no longer precisely thermal after taking the dynamical black hole background and energy conservation into account, but is consistent with the underlying unitary theory and then satisfies the first law of the black hole thermodynamics. Meanwhile, in Parikh-Wilzcek's framework, this paper points out that the information conservation is only suitable for the reversible process but in highly unstable evaporating black hole (irreversible process) the information loss is possible.展开更多
In this paper, we correct the Stefan–Boltzmann law by considering the generalized uncertainty principle, and with this corrected Stefan–Boltzmann law, the lifespan of the Schwarzschild-de-sitter black holes is calcu...In this paper, we correct the Stefan–Boltzmann law by considering the generalized uncertainty principle, and with this corrected Stefan–Boltzmann law, the lifespan of the Schwarzschild-de-sitter black holes is calculated. We find that the corrected Stefan–Boltzmann law contains two terms, the 46 Tterm and the Tterm. Due to the modifications, at the end of the black hole radiation, it will arise a limited highest temperature and leave a residue. It is interesting to note that the mass of the residue and the Planck mass is in the same order of magnitude. The modified Stefan–Boltzmann law also gives a correction to the lifespan of the black hole, although it is very small.展开更多
For asymptotically flat black holes,Reall-Santos method is a convenient tool to compute leading higher derivative corrections to the thermodynamic quantities without actually solving the modified field equations.Howev...For asymptotically flat black holes,Reall-Santos method is a convenient tool to compute leading higher derivative corrections to the thermodynamic quantities without actually solving the modified field equations.However,there are subtleties in its generalization to asymptotically AdS black holes with general higher derivative corrections.First of all,it is necessary to know all the higher derivative holographic counterterms and the surface terms implementing the variational principle and subtracting the divergence.One then needs to solve for the modified AdS radius and rescale the time coordinate in an appropriate way such that the induced metric on the conformal boundary of AdS black hole is not modified.We observe that Reall-Santos method can be directly applied to a particular 4-derivative gravity model,known as the Einstein-Weyl gravity,which does not modify the AdS radius and requires only the Gibbons-Hawking-York term and holographic counterterms for the 2-derivative theory.We thus suggest that to compute the thermodynamic quantities of AdS black holes in general 4-derivative theories of gravity,one simply needs to transform it to a Einstein-Weyl gravity with identical thermodynamic variables by appropriate field redefinitions.We explicitly verify this proposal with spherically-symmetric and static charged black holes in Einstein-Maxwell theory extended with generic 4-derivative interactions.展开更多
The tunneling radiation of particles from black holes in Lovelock-Born-Infeld(LBI) gravity is studied by using the Parikh-Wilczek(PW) method,and the emission rate of a particle is calculated.It is shown that the e...The tunneling radiation of particles from black holes in Lovelock-Born-Infeld(LBI) gravity is studied by using the Parikh-Wilczek(PW) method,and the emission rate of a particle is calculated.It is shown that the emission spectrum deviates from the purely thermal spectrum but is consistent with an underlying unitary theory.Compared to the conventional tunneling rate related to the increment of black hole entropy,the entropy of the black hole in LBI gravity is obtained.The entropy does not obey the area law unless all the Lovelock coefficients equal zero,but it satisfies the first law of thermodynamics and is in accordance with earlier results.It is distinctly shown that the PW tunneling framework is related to the thermodynamic laws of the black hole.展开更多
The upper bounds on the entropy of a radiation system confined to a spherical box are calculated in six cases by using the equation of state of radiation in flat spacetime and the equation of state of radiation near b...The upper bounds on the entropy of a radiation system confined to a spherical box are calculated in six cases by using the equation of state of radiation in flat spacetime and the equation of state of radiation near black-hole horizon,which was derived by Li and Liu (hereafter the Li-Liu equation).It turns out that the Li-Liu equation does have unique advantage in dealing with the entropy bound of critical self-gravitating radiation systems,while the usual equation of state will result in entropy divergence.In the case of non-self-gravitating radiation systems and non-critical self-gravitating radiation systems,there is no difference in the entropy bounds derived by these two equations of state.展开更多
基金Project supported by the Natural Science Foundation of Zhejiang Province,China (Grant No.LY14A030001)。
文摘We calculate the thermodynamic quantities in the quantum corrected Reissner-Nordstr?m-AdS(RN-AdS)black hole,and examine their quantum corrections.By analyzing the mass and heat capacity,we give the critical state and the remnant state,respectively,and discuss their consistency.Then,we investigate the quantum tunneling from the event horizon of massless scalar particle by using the null geodesic method,and charged massive boson W^(±)and fermions by using the Hamilton-Jacob method.It is shown that the same Hawking temperature can be obtained from these tunneling processes of different particles and methods.Next,by using the generalized uncertainty principle(GUP),we study the quantum corrections to the tunneling and the temperature.Then the logarithmic correction to the black hole entropy is obtained.
文摘Black holes contradict the Nernst-Planck (N/P) version of the 3rd law of thermodynamics, but agree with its unattainability (U) version. This happens without contradiction, because the N/P and U versions are not equivalent, namely, N/P implies U but U does not imply N/P. So, black holes obey the weaker version of the 3rd law, but not the stronger one.
基金Supported in part by the National Natural Science Foundation of China(12175108)。
文摘We investigate the dynamic and thermodynamic laws governing rotating regular black holes.By analyzing dynamic properties,i.e.,the interaction between scalar particles and rotating regular black holes,we establish the criteria that determine whether such black holes satisfy the laws of thermodynamics.In addition,we provide the general form of conserved quantities related to rotating regular black holes,including the relevant flows associated with neutral scalar particles.Meanwhile,we reexamine the relationship between the third law of thermodynamics and weak cosmic censorship conjecture for rotating regular black holes.Based on the abovementioned criteria,we discuss the laws of thermodynamics for three models of rotating regular black holes:Rotating Hayward black holes,Kerr black-bounce solutions,and loop quantum gravity black holes.Our findings indicate that none of the three models satisfies the first law of thermodynamics.In particular,the first and third models fail to comply with the three laws of thermodynamics,whereas the second model satisfies only the second and third laws of thermodynamics.Finally,we attempt to rescue the laws of thermodynamics by modifying entropy or extending the phase space.However,the two scenarios cannot ensure the three laws of thermodynamics in the three models,which reveals an unusual property of rotating regular black holes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11504027 and 11847011)
文摘We propose a regular spherically symmetric spacetime solution with three parameters in Einstein gravity coupled to nonlinear electrodynamics(NED), which describes the NED black hole with electric charge. It is found that the system enclosed by the horizon of NED spacetime satisfies the first law of thermodynamics. In order to obtain the NED spacetime with only electric charge, the case of two parameters taking the same value is considered. In this case, we express the mass of the NED spacetime as a function of the entropy and electric charge of the NED black hole, give the Smarr-like formula and the approximate Smarr formula for the mass of NED spacetime.
文摘This paper extends Parikh-Wilzcek's recent work, which treats the Hawking radiation as a semi-classical tunnelling process from the event horizon of four dimensional Schwarzshild and Reissner-Nordstrom black holes, to that of arbitrarily dimensional Reissner-Nordstrom de Sitter black hole. The result shows that the tunnelling rate is related to the change of Bekenstein-Hawking entropy and the factually radiant spectrum is no longer precisely thermal after taking the dynamical black hole background and energy conservation into account, but is consistent with the underlying unitary theory and then satisfies the first law of the black hole thermodynamics. Meanwhile, in Parikh-Wilzcek's framework, this paper points out that the information conservation is only suitable for the reversible process but in highly unstable evaporating black hole (irreversible process) the information loss is possible.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11273009 and 11303006
文摘In this paper, we correct the Stefan–Boltzmann law by considering the generalized uncertainty principle, and with this corrected Stefan–Boltzmann law, the lifespan of the Schwarzschild-de-sitter black holes is calculated. We find that the corrected Stefan–Boltzmann law contains two terms, the 46 Tterm and the Tterm. Due to the modifications, at the end of the black hole radiation, it will arise a limited highest temperature and leave a residue. It is interesting to note that the mass of the residue and the Planck mass is in the same order of magnitude. The modified Stefan–Boltzmann law also gives a correction to the lifespan of the black hole, although it is very small.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.11935009,and 12375052)the National Natural Science Foundation of China(Grant No.12175164)+1 种基金supported by the National Key Research and Development Program(Grant No.2022YFE0134300)partially supported by Peng Huanwu Center for Fundamental Theory(Grant No.12247103)。
文摘For asymptotically flat black holes,Reall-Santos method is a convenient tool to compute leading higher derivative corrections to the thermodynamic quantities without actually solving the modified field equations.However,there are subtleties in its generalization to asymptotically AdS black holes with general higher derivative corrections.First of all,it is necessary to know all the higher derivative holographic counterterms and the surface terms implementing the variational principle and subtracting the divergence.One then needs to solve for the modified AdS radius and rescale the time coordinate in an appropriate way such that the induced metric on the conformal boundary of AdS black hole is not modified.We observe that Reall-Santos method can be directly applied to a particular 4-derivative gravity model,known as the Einstein-Weyl gravity,which does not modify the AdS radius and requires only the Gibbons-Hawking-York term and holographic counterterms for the 2-derivative theory.We thus suggest that to compute the thermodynamic quantities of AdS black holes in general 4-derivative theories of gravity,one simply needs to transform it to a Einstein-Weyl gravity with identical thermodynamic variables by appropriate field redefinitions.We explicitly verify this proposal with spherically-symmetric and static charged black holes in Einstein-Maxwell theory extended with generic 4-derivative interactions.
基金Supported by Guangdong Natural Science Foundation(2016A030307051,2015A030313789)
文摘The tunneling radiation of particles from black holes in Lovelock-Born-Infeld(LBI) gravity is studied by using the Parikh-Wilczek(PW) method,and the emission rate of a particle is calculated.It is shown that the emission spectrum deviates from the purely thermal spectrum but is consistent with an underlying unitary theory.Compared to the conventional tunneling rate related to the increment of black hole entropy,the entropy of the black hole in LBI gravity is obtained.The entropy does not obey the area law unless all the Lovelock coefficients equal zero,but it satisfies the first law of thermodynamics and is in accordance with earlier results.It is distinctly shown that the PW tunneling framework is related to the thermodynamic laws of the black hole.
文摘The upper bounds on the entropy of a radiation system confined to a spherical box are calculated in six cases by using the equation of state of radiation in flat spacetime and the equation of state of radiation near black-hole horizon,which was derived by Li and Liu (hereafter the Li-Liu equation).It turns out that the Li-Liu equation does have unique advantage in dealing with the entropy bound of critical self-gravitating radiation systems,while the usual equation of state will result in entropy divergence.In the case of non-self-gravitating radiation systems and non-critical self-gravitating radiation systems,there is no difference in the entropy bounds derived by these two equations of state.