The lattice-reduction (LR) has been developed to im- prove the performance of the zero-forcing (ZF) precoder in multiple input multiple output (MIMO) systems. Under the assumptions of uncorrelated flat fading ch...The lattice-reduction (LR) has been developed to im- prove the performance of the zero-forcing (ZF) precoder in multiple input multiple output (MIMO) systems. Under the assumptions of uncorrelated flat fading channel model and perfect channel state information at the transmitter (CSIT), an LR-aided ZF precoder is able to collect the full transmit diversity. With the complex Lenstra- Lenstra-Lov^sz (LLL) algorithm and limited feedforward structure, an LR-aided linear minimum-mean-square-error (LMMSE) pre- coder for spatial correlated MIMO channels and imperfect CSIT is proposed to achieve lower bit error rate (BER). Assuming a time division duplexing (TDD) MIMO system, correlated block flat fad- ing channel and LMMSE uplink channel estimator, it is proved that the proposed LR-aided LMMSE precoder can also obtain the full transmit diversity through an analytical approach. Furthermore, the simulation results show that with the quadrature phase shift keying (QPSK) modulation at the transmitter, the uncoded and coded BERs of the LR-aided LMMSE precoder are lower than that of the traditional LMMSE precoder respectively when Eb-No is greater than 10 dB and 12 dB at all correlation coefficients.展开更多
Capacity of dense coding via correlated noisy channel is greater than that via uncorrelated noisy channel.It is shown that the weak measurement and reversal measurement need to further improve their quantum dense codi...Capacity of dense coding via correlated noisy channel is greater than that via uncorrelated noisy channel.It is shown that the weak measurement and reversal measurement need to further improve their quantum dense coding capacity in correlated amplitude damping channel,but this improvement is very small in correlated phase damping channel and correlated depolarizing channel.展开更多
We investigate how the correlated actions of quantum channels affect the robustness of entangled states.We consider the Bell-like state and random two-qubit pure states in the correlated depolarizing,bit flip,bit-phas...We investigate how the correlated actions of quantum channels affect the robustness of entangled states.We consider the Bell-like state and random two-qubit pure states in the correlated depolarizing,bit flip,bit-phase flip,and phase flip channels.It is found that the robustness of two-qubit pure states can be noticeably enhanced due to the correlations between consecutive actions of these noisy channels,and the Bell-like state is always the most robust one.We also consider the robustness of three-qubit pure states in correlated noisy channels.For the correlated bit flip and phase flip channels,the result shows that although the most robust and most fragile states are locally unitary equivalent,they exhibit different robustness in different correlated channels,and the effect of channel correlations on them is also significantly different.However,for the correlated depolarizing and bit-phase flip channels,the robustness of two special three-qubit pure states is exactly the same.Moreover,compared with the random three-qubit pure states,they are neither the most robust states nor the most fragile states.展开更多
Channel training in reconfigurable intelligent surface(RIS)-assisted communications is usually conducted in an on-off manner,resulting in unaffordable training time overhead when the number of RIS elements is large.In...Channel training in reconfigurable intelligent surface(RIS)-assisted communications is usually conducted in an on-off manner,resulting in unaffordable training time overhead when the number of RIS elements is large.In this paper,for correlated Rayleigh channels,we compare three typical training overhead reduction schemes,namely RIS element selection(Scheme 1),element grouping(Scheme 2),and statistical CSI-based phase shifts design(Scheme3).For Scheme 1 and Scheme 2,we propose two algorithms to select RIS elements(or form element groups) and determine the optimal number of activated elements(or formed groups),based on the channel correlation information only;for Scheme 3,we consider a semi-definite programming-based approach in the literature,and propose an alternative dominant eigenvector-based method for determining the RIS phase shifts vector.Via extensive simulations,we compare the achievable ergodic rates of these schemes versus the signal-to-noise ratio,the channel correlation level,and the element number-to-coherent time ratio,respectively,and discuss possible switching of the three schemes over these system parameters.At last,operation regions of the considered training overhead reduction schemes are shown in the plane characterized by the system parameters,which provides useful guidelines for practical scheme determination.展开更多
A novel Automatic repeat ReQuest (ARQ) protocol called cooperative ARQ is presented in this let-ter, where a relay terminal is requested to retransmit an erroneously received packet, instead of the source ter-minal. T...A novel Automatic repeat ReQuest (ARQ) protocol called cooperative ARQ is presented in this let-ter, where a relay terminal is requested to retransmit an erroneously received packet, instead of the source ter-minal. The data link layer Packet Error Rate (PER) performance of cooperative ARQ is derived in correlated wireless channel. The results show that even though the relay-destination channel is worse than the source-destination channel, the new protocol outperforms the traditional one as long as the average SNR of the relay-destination channel is better than a certain threshold. It is also demonstrated that a second order diversity gain can be achieved with the cooperative ARQ protocol.展开更多
An explicit formula for the ergodic capacity of Orthogonal Frequency Division Multiplexing (OFDM)-based Multiple-Input Multiple-Output (MIMO) systems under correlated frequency selective Rayleigh channels is derived,b...An explicit formula for the ergodic capacity of Orthogonal Frequency Division Multiplexing (OFDM)-based Multiple-Input Multiple-Output (MIMO) systems under correlated frequency selective Rayleigh channels is derived,by simplifying the channel response matrix in frequency domain into the so-called Kronecker model composed of three kinds of correlations,i.e.multipath tap gain correlation and spatial fading correlations at both transmitter and receiver.The derived formula is very simple and convenient for one to estimate the effects of all three kinds of correlations on MIMO-OFDM capacity.If taps are independent,there is a very simple expression for the ergodic capacity.In case of tap correlation,the capacity formula could be further given in an integral expression.The validity of the new formula is verified and the effects of correlations,delay spread as well as the number of subcarriers on the ergodic capacity are evaluated via Monte Carlo simulations.展开更多
To investigate the impact of antenna correlation on secrecy performance in MIMO wiretap channels with Nakagami-m fading, the expressions of secrecy outage probability and positive secrecy probability were derived. Div...To investigate the impact of antenna correlation on secrecy performance in MIMO wiretap channels with Nakagami-m fading, the expressions of secrecy outage probability and positive secrecy probability were derived. Diversity order and array gain were also achieved for further insight. The study was based on the information theory that physical layer security can be guaranteed when the quality of the main channel is higher than that of the eavesdropper's channel. Monte Carlo simulations well validated the numerical results of analytic expressions. It was shown that antenna correlation is detrimental to secrecy performance when average SNR of the main channel is at medium and high level. Interestingly, when average SNR of the main channel reduces to low level, the effect of antenna correlation becomes benefi cial to secrecy performance.展开更多
This paper studies the multiuser diversity with constellation selection based on a virtual representation of realistic Multiple Input Multiple Output (MIMO) correlated channels. To realize multiuser diversity in slo...This paper studies the multiuser diversity with constellation selection based on a virtual representation of realistic Multiple Input Multiple Output (MIMO) correlated channels. To realize multiuser diversity in slow fading channels, random beamforming is adopted. Random beamforming matrix exploiting virtual channel representation is constructed, which can match the channel matrix of the desired user better. Sirnultaneously, adaptive coded modulation is applied to each sub-channel of the selected user to improve the system performance further.展开更多
Spatial multiplexing systems can provide significant capacity improvement but are sensitive to channel correlation. Antenna selection is a low-cost low-complexity ahemative to resolve these problems. This paper propos...Spatial multiplexing systems can provide significant capacity improvement but are sensitive to channel correlation. Antenna selection is a low-cost low-complexity ahemative to resolve these problems. This paper proposes a new transmit antenna selection algorithm for the spatial multiplexing systems with the Vertical-Bell Labs Layered Space-Time (V-BLAST) nonlinear receiver in correlated channel. The proposed scheme separates the optimization into two parts: it first chooses the optimal number of substreams in terms of the singular values of the channel matrix, then adapts the mapping of substreams to antennas according to the post-detection signal-to-noise ratio (SNR). Simulation results illustrate that the proposed two-step selection criterion can provide greater selection gain than the existing singnlar value based selection criterion as SNR and scattering angle increases. The proposed criterion outperforms the existing one by 0.3 dB at a vector symbol error rate of 10^- 3 and scattering angle of 20 degree.展开更多
Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear ...Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works.展开更多
Taking the time varying nature of wireless channels into account, two user selection schemes with lower complexity are developed for multiple-input multiple-output broadcast (MIMO BC)systems. According to the relati...Taking the time varying nature of wireless channels into account, two user selection schemes with lower complexity are developed for multiple-input multiple-output broadcast (MIMO BC)systems. According to the relationship between coherence time and Doppler frequency, an information frame is divided into several segments. At the beginning of each segment, the user selection is carded out with the greedy selection algorithm. In the simplified user selection algorithms employing the temporal correlation (SUSTC), the selection results are applied for all the remaining slots in each segment. But in the improved simplified user selection algorithms employing the temporal correlation(ISUSTC), at the remaining slots, users are kept with favorable channel conditions selected at the previous slot, and other users are updated from the candidate pool to communicate simultaneously. Simulations show that compared with the greedy user selection method, the proposed algorithms can reduce the selection complexity with a little sum capacity loss.展开更多
We investigate nonlocal advantage of quantum coherence(NAQC)in a correlated dephasing channel modeled by themultimode bosonic reservoir.We obtain analytically the dephasing and memory factors of this channel for the r...We investigate nonlocal advantage of quantum coherence(NAQC)in a correlated dephasing channel modeled by themultimode bosonic reservoir.We obtain analytically the dephasing and memory factors of this channel for the reservoirhaving a Lorentzian spectral density,and analyze how they affect the NAQC defined by the l1 norm and relative entropy.It is shown that the memory effects of this channel on NAQC are state-dependent,and they suppress noticeably the rapiddecay of NAQC for the family of input Bell-like states with one excitation.For the given transmission time of each qubit,we also obtain the regions of the dephasing and memory factors during which there is NAQC in the output states.展开更多
Focusing on the degradation of foggy images, a restora- tion approach from a single image based on spatial correlation of dark channel prior is proposed. Firstly, the transmission of each pixel is estimated by the spa...Focusing on the degradation of foggy images, a restora- tion approach from a single image based on spatial correlation of dark channel prior is proposed. Firstly, the transmission of each pixel is estimated by the spatial correlation of dark channel prior. Secondly, a degradation model is utilized to restore the foggy image. Thirdly, the final recovered image, with enhanced contrast, is obtained by performing a post-processing technique based on just-noticeable difference. Experimental results demonstrate that the information of a foggy image can be recovered perfectly by the proposed method, even in the case of the abrupt depth changing scene.展开更多
This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The spec...This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The special training sequences with the property of orthogonality and phase shift orthogonality are used in pilot tones to obtain the estimated channel correlation matrix. Partitioning the observation space into a delay subspace and a noise subspace, we achieve the measurement of noise variance and SNR. Simulation results show that the proposed estimator can obtain accurate and real-time measurements of the noise variance and SNR for various multipath fading channels, demonstrating its strong robustness against different channels.展开更多
In this paper we have investigated the performance of downlink generalized distributed antenna system (GDAS). Under the assumption of spatial correlated fading conditions, we have derived the numeric expression of c...In this paper we have investigated the performance of downlink generalized distributed antenna system (GDAS). Under the assumption of spatial correlated fading conditions, we have derived the numeric expression of correlated coefficients according to series of Bessel function, and have lifted the range restriction of the mean angle of incident. Moreover, the architecture of distributed generalized layered space time codes (GLST) has been considered in order to achieve both multiplexing gain and diversity gain while we have used basis vector from null space instead of orthogonal set to obtain the same system performance but with lower complexity. Furthermore, in order to maximize the capacity, Gerschgorin circles based fast antenna selection algorithms have been evaluated including a discussion of those simulation results.展开更多
Vertically-layered Bell Laboratories Layered Space-Time (VBLAST) is one of the most promising techniques for realizing high spectral efficiencies over wireless link. In previously published work, the performance of VB...Vertically-layered Bell Laboratories Layered Space-Time (VBLAST) is one of the most promising techniques for realizing high spectral efficiencies over wireless link. In previously published work, the performance of VBLAST has been primarily investigated in uncorrelated Rayleigh fading channels. However in real environments some correlation between antenna elements can be presented. In this paper, we study the impact of transmit correlation on the performance of VBLAST systems. Finally we provide simulation results demonstrating the impact of spatial fading correlation on the symbol error rate of VBLAST.展开更多
We study the optimal precoding for a full-duplex (FD) system, where one FD multi-antenna base station (BS) respectively transmits to and receives from two half-duplex single-antenna mobile users (MUs) on the same time...We study the optimal precoding for a full-duplex (FD) system, where one FD multi-antenna base station (BS) respectively transmits to and receives from two half-duplex single-antenna mobile users (MUs) on the same time slot and frequency band. At the FD BS, the received signal from the desired MU is severely affected by the extremely strong self-interference (SI) from its transmit antennas to the receive antennas. In the presence of residual SI after imperfect SI cancellation, the downlink transmission rate maximization problem subject to a targeted uplink rate is formulated as a non-convex optimization problem to characterize the achievable rate region for the considered system. Considering the case in which the SI channel is strongly correlated, the above problem is transformed into a convex problem by exploiting the rank-one property of the SI channel, which can be solved efficiently. Finally, numerical results validate the effectiveness of the proposed scheme.展开更多
Conventional adaptive transmission schemes perform poorly in wireless correlated slow-fading channels.A cross-layer adaptive transmission scheme combined with selective repeat automatic repeat request(SR-ARQ)is propos...Conventional adaptive transmission schemes perform poorly in wireless correlated slow-fading channels.A cross-layer adaptive transmission scheme combined with selective repeat automatic repeat request(SR-ARQ)is proposed.We apply a multi-state Markov system model for analyzing the performance of systems and optimizing the selection of modulation levels and packet sizes in correlated fading channels,which is also described by a finite-state Markov chain.A general closed-form expression of the average throughput for our suggested scheme is presented.Numerical results show that our adaptive scheme combined with SR-ARQ can obtain good performance in correlated fading channels.展开更多
This article is focused on secure relay beamformer design with a correlated channel model in the relay-eavesdropper network. In this network, a single-antenna source-destination pair transmits secure information with ...This article is focused on secure relay beamformer design with a correlated channel model in the relay-eavesdropper network. In this network, a single-antenna source-destination pair transmits secure information with the help of an amplify-and-forward (AF) relay equipped with multiple antennas, and the legitimate and eavesdropping channels are correlated. The relay cannot obtain the instantaneous channel state information (CSI) of the eavesdropper, and has only the knowledge of correlation information between the legitimate and eavesdropping channels. Depending on this information, we derive the conditional distribution of the eavesdropping channel. Two beamformers at the relay are studied for the approximate ergodic secrecy rate:(1) the generalized match-andforward (GMF) beamformer to maximize the legitimate channel rate, and (2) the general-rank beamformer (GRBF).In addition, one lower-bound-maximizing (LBM) beamformer at the relay is discussed for maximizing the lower bound of the ergodic secrecy rate. We find that the GMF beamformer is the optimal rank-one beamformer, that the GRBF is the iteratively optimal beamformer, and that the performance of the LBM beamformer for the ergodic secrecy rate gets close to that of the GRBF for the approximate secrecy rate. It can also be observed that when the relay has lower power or the channel gain of the second hop is low, the performance of the GMF beamformer surpasses that of the GRBF. Numerical results are presented to illustrate the beamformers' performance.展开更多
MIMO technology proposed in recent years can effectively combat the multipath fading of wireless channel and can considerably enlarge the channel capacity, which has been investigated widely by researchers. However, i...MIMO technology proposed in recent years can effectively combat the multipath fading of wireless channel and can considerably enlarge the channel capacity, which has been investigated widely by researchers. However, its performance analysis over correlated block-fading Rayleigh channel is still an open and challenging objective. In this article, an analytic expression of bit error rate (BER) is presented for multiple phase shift keying (MPSK) space-time code, with differential detection over correlated block-fading Rayleigh channel. Through theoretical analysis of BER, it can be found that the differential space-time scheme without the need for channel state information (CSI) at receiver achieves distinct performance gain compared with the traditional nonspace-time system. And then, the system simulation is complimented to verify the above result, showing that the diversity system based on the differential space-time block coding (DSTBC) outperforms the traditional nonspacetime system with diversity gain in terms of BER. Furthermore, the numerical results also demonstrate that the error floor of the differential space-time system is much lower than that of the differential nonspace-time system.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars (60725105)the National Basic Research Program of China (2009CB320404)+4 种基金the Program for Changjiang Scholars and Innovative Research Team in University (IRT0852)the 111 Project(B08038)the National Natural Science Foundation of China (60702057)the Special Research Fund of State Key Laboratory (ISN1102003)the National Science and Technology Major Project (2011ZX03001-007-01)
文摘The lattice-reduction (LR) has been developed to im- prove the performance of the zero-forcing (ZF) precoder in multiple input multiple output (MIMO) systems. Under the assumptions of uncorrelated flat fading channel model and perfect channel state information at the transmitter (CSIT), an LR-aided ZF precoder is able to collect the full transmit diversity. With the complex Lenstra- Lenstra-Lov^sz (LLL) algorithm and limited feedforward structure, an LR-aided linear minimum-mean-square-error (LMMSE) pre- coder for spatial correlated MIMO channels and imperfect CSIT is proposed to achieve lower bit error rate (BER). Assuming a time division duplexing (TDD) MIMO system, correlated block flat fad- ing channel and LMMSE uplink channel estimator, it is proved that the proposed LR-aided LMMSE precoder can also obtain the full transmit diversity through an analytical approach. Furthermore, the simulation results show that with the quadrature phase shift keying (QPSK) modulation at the transmitter, the uncoded and coded BERs of the LR-aided LMMSE precoder are lower than that of the traditional LMMSE precoder respectively when Eb-No is greater than 10 dB and 12 dB at all correlation coefficients.
基金Project supported by the National Natural Science Foundation of China(Grant No.12074027).
文摘Capacity of dense coding via correlated noisy channel is greater than that via uncorrelated noisy channel.It is shown that the weak measurement and reversal measurement need to further improve their quantum dense coding capacity in correlated amplitude damping channel,but this improvement is very small in correlated phase damping channel and correlated depolarizing channel.
基金the National Natural Science Foundation of China(Grant Nos.11705146 and 12175179)the Natural Science Basic Research Program of Shaanxi Province,China(Grant No.2019JQ-863)the Open Project of Shaanxi Key Laboratory for Theoretical Physics Frontiers(Grant No.SXKLTPF-K20190606)。
文摘We investigate how the correlated actions of quantum channels affect the robustness of entangled states.We consider the Bell-like state and random two-qubit pure states in the correlated depolarizing,bit flip,bit-phase flip,and phase flip channels.It is found that the robustness of two-qubit pure states can be noticeably enhanced due to the correlations between consecutive actions of these noisy channels,and the Bell-like state is always the most robust one.We also consider the robustness of three-qubit pure states in correlated noisy channels.For the correlated bit flip and phase flip channels,the result shows that although the most robust and most fragile states are locally unitary equivalent,they exhibit different robustness in different correlated channels,and the effect of channel correlations on them is also significantly different.However,for the correlated depolarizing and bit-phase flip channels,the robustness of two special three-qubit pure states is exactly the same.Moreover,compared with the random three-qubit pure states,they are neither the most robust states nor the most fragile states.
基金the National Natural Science Foundation of China under Grants 62171240,61771264,62001254,61971467,the Key Research and Development Program of Jiangsu Province of China under Grant BE2021013-1the Science and Technology Program of Nantong under Grants JC2021121,JC2021017.
文摘Channel training in reconfigurable intelligent surface(RIS)-assisted communications is usually conducted in an on-off manner,resulting in unaffordable training time overhead when the number of RIS elements is large.In this paper,for correlated Rayleigh channels,we compare three typical training overhead reduction schemes,namely RIS element selection(Scheme 1),element grouping(Scheme 2),and statistical CSI-based phase shifts design(Scheme3).For Scheme 1 and Scheme 2,we propose two algorithms to select RIS elements(or form element groups) and determine the optimal number of activated elements(or formed groups),based on the channel correlation information only;for Scheme 3,we consider a semi-definite programming-based approach in the literature,and propose an alternative dominant eigenvector-based method for determining the RIS phase shifts vector.Via extensive simulations,we compare the achievable ergodic rates of these schemes versus the signal-to-noise ratio,the channel correlation level,and the element number-to-coherent time ratio,respectively,and discuss possible switching of the three schemes over these system parameters.At last,operation regions of the considered training overhead reduction schemes are shown in the plane characterized by the system parameters,which provides useful guidelines for practical scheme determination.
基金Supported by the National Natural Science Foundation of China (No.60472079), and Natural Science Founda-tion of Zhejiang Province (No.Z104252).
文摘A novel Automatic repeat ReQuest (ARQ) protocol called cooperative ARQ is presented in this let-ter, where a relay terminal is requested to retransmit an erroneously received packet, instead of the source ter-minal. The data link layer Packet Error Rate (PER) performance of cooperative ARQ is derived in correlated wireless channel. The results show that even though the relay-destination channel is worse than the source-destination channel, the new protocol outperforms the traditional one as long as the average SNR of the relay-destination channel is better than a certain threshold. It is also demonstrated that a second order diversity gain can be achieved with the cooperative ARQ protocol.
基金Supported by the National Natural Science Foundation of China (No.60372048)Microsoft Research Asia,the sixth project of the Key Project of National Natural Science Foundation of China (No.60496316)+2 种基金National"863"Program of China (No.2005AA123910)Research Fund for the Doctoral Program of Higher Education (No.20050701007)Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE,P.R.China,and the Key Project of Chinese Ministry of Education (No.104171).
文摘An explicit formula for the ergodic capacity of Orthogonal Frequency Division Multiplexing (OFDM)-based Multiple-Input Multiple-Output (MIMO) systems under correlated frequency selective Rayleigh channels is derived,by simplifying the channel response matrix in frequency domain into the so-called Kronecker model composed of three kinds of correlations,i.e.multipath tap gain correlation and spatial fading correlations at both transmitter and receiver.The derived formula is very simple and convenient for one to estimate the effects of all three kinds of correlations on MIMO-OFDM capacity.If taps are independent,there is a very simple expression for the ergodic capacity.In case of tap correlation,the capacity formula could be further given in an integral expression.The validity of the new formula is verified and the effects of correlations,delay spread as well as the number of subcarriers on the ergodic capacity are evaluated via Monte Carlo simulations.
文摘To investigate the impact of antenna correlation on secrecy performance in MIMO wiretap channels with Nakagami-m fading, the expressions of secrecy outage probability and positive secrecy probability were derived. Diversity order and array gain were also achieved for further insight. The study was based on the information theory that physical layer security can be guaranteed when the quality of the main channel is higher than that of the eavesdropper's channel. Monte Carlo simulations well validated the numerical results of analytic expressions. It was shown that antenna correlation is detrimental to secrecy performance when average SNR of the main channel is at medium and high level. Interestingly, when average SNR of the main channel reduces to low level, the effect of antenna correlation becomes benefi cial to secrecy performance.
基金Supported by the National Natural Science Foundation of China(No.60496311).
文摘This paper studies the multiuser diversity with constellation selection based on a virtual representation of realistic Multiple Input Multiple Output (MIMO) correlated channels. To realize multiuser diversity in slow fading channels, random beamforming is adopted. Random beamforming matrix exploiting virtual channel representation is constructed, which can match the channel matrix of the desired user better. Sirnultaneously, adaptive coded modulation is applied to each sub-channel of the selected user to improve the system performance further.
基金Supported by the National Natural Science Foundation of China ( No. 60372055 ) and the High Technology Resarch and Development Programnse of China (No. 2003AA123320).
文摘Spatial multiplexing systems can provide significant capacity improvement but are sensitive to channel correlation. Antenna selection is a low-cost low-complexity ahemative to resolve these problems. This paper proposes a new transmit antenna selection algorithm for the spatial multiplexing systems with the Vertical-Bell Labs Layered Space-Time (V-BLAST) nonlinear receiver in correlated channel. The proposed scheme separates the optimization into two parts: it first chooses the optimal number of substreams in terms of the singular values of the channel matrix, then adapts the mapping of substreams to antennas according to the post-detection signal-to-noise ratio (SNR). Simulation results illustrate that the proposed two-step selection criterion can provide greater selection gain than the existing singnlar value based selection criterion as SNR and scattering angle increases. The proposed criterion outperforms the existing one by 0.3 dB at a vector symbol error rate of 10^- 3 and scattering angle of 20 degree.
基金supported by the Key R&D Project of the Ministry of Science and Technology of China(2020YFB1808005)。
文摘Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works.
基金The National High Technology Research and Develop-ment Program of China(863 Program)(No.2006AA01Z268)the NationalNatural Science Foundation of China(No.60496311).
文摘Taking the time varying nature of wireless channels into account, two user selection schemes with lower complexity are developed for multiple-input multiple-output broadcast (MIMO BC)systems. According to the relationship between coherence time and Doppler frequency, an information frame is divided into several segments. At the beginning of each segment, the user selection is carded out with the greedy selection algorithm. In the simplified user selection algorithms employing the temporal correlation (SUSTC), the selection results are applied for all the remaining slots in each segment. But in the improved simplified user selection algorithms employing the temporal correlation(ISUSTC), at the remaining slots, users are kept with favorable channel conditions selected at the previous slot, and other users are updated from the candidate pool to communicate simultaneously. Simulations show that compared with the greedy user selection method, the proposed algorithms can reduce the selection complexity with a little sum capacity loss.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675129,11774406,and 11934018)the National Key R&D Program of China(Grant Nos.2016YFA0302104 and 2016YFA0300600)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)the Research Program of Beijing Academy of Quantum Information Sciences(Grant No.Y18G07).
文摘We investigate nonlocal advantage of quantum coherence(NAQC)in a correlated dephasing channel modeled by themultimode bosonic reservoir.We obtain analytically the dephasing and memory factors of this channel for the reservoirhaving a Lorentzian spectral density,and analyze how they affect the NAQC defined by the l1 norm and relative entropy.It is shown that the memory effects of this channel on NAQC are state-dependent,and they suppress noticeably the rapiddecay of NAQC for the family of input Bell-like states with one excitation.For the given transmission time of each qubit,we also obtain the regions of the dephasing and memory factors during which there is NAQC in the output states.
基金supported by "the Twelfth Five-year Civil Aerospace Technologies Pre-Research Program"(D040201)
文摘Focusing on the degradation of foggy images, a restora- tion approach from a single image based on spatial correlation of dark channel prior is proposed. Firstly, the transmission of each pixel is estimated by the spatial correlation of dark channel prior. Secondly, a degradation model is utilized to restore the foggy image. Thirdly, the final recovered image, with enhanced contrast, is obtained by performing a post-processing technique based on just-noticeable difference. Experimental results demonstrate that the information of a foggy image can be recovered perfectly by the proposed method, even in the case of the abrupt depth changing scene.
基金Supported by the National Natural Science Foundation of China(No.60496311)
文摘This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The special training sequences with the property of orthogonality and phase shift orthogonality are used in pilot tones to obtain the estimated channel correlation matrix. Partitioning the observation space into a delay subspace and a noise subspace, we achieve the measurement of noise variance and SNR. Simulation results show that the proposed estimator can obtain accurate and real-time measurements of the noise variance and SNR for various multipath fading channels, demonstrating its strong robustness against different channels.
基金Supported by the Hi-Tech Research and Development Program of China (2009AA011502)China Important National Science &Technology Specific Projects (2009ZX03007-003-01)the National Natural Science Foundation of China (60772113)
文摘In this paper we have investigated the performance of downlink generalized distributed antenna system (GDAS). Under the assumption of spatial correlated fading conditions, we have derived the numeric expression of correlated coefficients according to series of Bessel function, and have lifted the range restriction of the mean angle of incident. Moreover, the architecture of distributed generalized layered space time codes (GLST) has been considered in order to achieve both multiplexing gain and diversity gain while we have used basis vector from null space instead of orthogonal set to obtain the same system performance but with lower complexity. Furthermore, in order to maximize the capacity, Gerschgorin circles based fast antenna selection algorithms have been evaluated including a discussion of those simulation results.
文摘Vertically-layered Bell Laboratories Layered Space-Time (VBLAST) is one of the most promising techniques for realizing high spectral efficiencies over wireless link. In previously published work, the performance of VBLAST has been primarily investigated in uncorrelated Rayleigh fading channels. However in real environments some correlation between antenna elements can be presented. In this paper, we study the impact of transmit correlation on the performance of VBLAST systems. Finally we provide simulation results demonstrating the impact of spatial fading correlation on the symbol error rate of VBLAST.
基金supported by the National Natural Science Foundation of China(Nos.61401030 and 61501093)
文摘We study the optimal precoding for a full-duplex (FD) system, where one FD multi-antenna base station (BS) respectively transmits to and receives from two half-duplex single-antenna mobile users (MUs) on the same time slot and frequency band. At the FD BS, the received signal from the desired MU is severely affected by the extremely strong self-interference (SI) from its transmit antennas to the receive antennas. In the presence of residual SI after imperfect SI cancellation, the downlink transmission rate maximization problem subject to a targeted uplink rate is formulated as a non-convex optimization problem to characterize the achievable rate region for the considered system. Considering the case in which the SI channel is strongly correlated, the above problem is transformed into a convex problem by exploiting the rank-one property of the SI channel, which can be solved efficiently. Finally, numerical results validate the effectiveness of the proposed scheme.
基金supported by the National Natural Science Foundation of China(Grant Nos.90204004,60402012)the National Basic Research Program of China(No.2003CB314806)the China Postdoctoral Science Foundation(No.2003034111).
文摘Conventional adaptive transmission schemes perform poorly in wireless correlated slow-fading channels.A cross-layer adaptive transmission scheme combined with selective repeat automatic repeat request(SR-ARQ)is proposed.We apply a multi-state Markov system model for analyzing the performance of systems and optimizing the selection of modulation levels and packet sizes in correlated fading channels,which is also described by a finite-state Markov chain.A general closed-form expression of the average throughput for our suggested scheme is presented.Numerical results show that our adaptive scheme combined with SR-ARQ can obtain good performance in correlated fading channels.
基金supported by the National Natural Science Foundation of China(Nos.61471008,61571020,and 61622101)the National Key Research and Development Project of China(No.2016YFE0123100)
文摘This article is focused on secure relay beamformer design with a correlated channel model in the relay-eavesdropper network. In this network, a single-antenna source-destination pair transmits secure information with the help of an amplify-and-forward (AF) relay equipped with multiple antennas, and the legitimate and eavesdropping channels are correlated. The relay cannot obtain the instantaneous channel state information (CSI) of the eavesdropper, and has only the knowledge of correlation information between the legitimate and eavesdropping channels. Depending on this information, we derive the conditional distribution of the eavesdropping channel. Two beamformers at the relay are studied for the approximate ergodic secrecy rate:(1) the generalized match-andforward (GMF) beamformer to maximize the legitimate channel rate, and (2) the general-rank beamformer (GRBF).In addition, one lower-bound-maximizing (LBM) beamformer at the relay is discussed for maximizing the lower bound of the ergodic secrecy rate. We find that the GMF beamformer is the optimal rank-one beamformer, that the GRBF is the iteratively optimal beamformer, and that the performance of the LBM beamformer for the ergodic secrecy rate gets close to that of the GRBF for the approximate secrecy rate. It can also be observed that when the relay has lower power or the channel gain of the second hop is low, the performance of the GMF beamformer surpasses that of the GRBF. Numerical results are presented to illustrate the beamformers' performance.
文摘MIMO technology proposed in recent years can effectively combat the multipath fading of wireless channel and can considerably enlarge the channel capacity, which has been investigated widely by researchers. However, its performance analysis over correlated block-fading Rayleigh channel is still an open and challenging objective. In this article, an analytic expression of bit error rate (BER) is presented for multiple phase shift keying (MPSK) space-time code, with differential detection over correlated block-fading Rayleigh channel. Through theoretical analysis of BER, it can be found that the differential space-time scheme without the need for channel state information (CSI) at receiver achieves distinct performance gain compared with the traditional nonspace-time system. And then, the system simulation is complimented to verify the above result, showing that the diversity system based on the differential space-time block coding (DSTBC) outperforms the traditional nonspacetime system with diversity gain in terms of BER. Furthermore, the numerical results also demonstrate that the error floor of the differential space-time system is much lower than that of the differential nonspace-time system.