The high-precision GPS data observed from the northeast margin of the Qinghai-Xizang (Tibet) block and the Sichuan-Yunnan GPS monitoring areas in 1991 (1993), 1999 and 2001 revealed that: before the Kunlun earthq...The high-precision GPS data observed from the northeast margin of the Qinghai-Xizang (Tibet) block and the Sichuan-Yunnan GPS monitoring areas in 1991 (1993), 1999 and 2001 revealed that: before the Kunlun earthquake with Ms =8.1 on November 14, 2001, the dynamic variation features of horizontal movement-deformation field in the north and east marginal tectonic areas of the Qinghai-Xizang (Tibet) block had some correlated features. That is to say, under the general background of inherited movement, the movement intensifies in the two areas weakened synchronously and the state of deformation changed when the great earthquake was impending. Analysis and study in connection with geological structures showed that before the Kunlun Ms8.1 earthquake, the correlated variations of movement-deformation on the boundaries of Qinghai-Xizang (Tibet) block were related to the disturbing stress field caused by the extensive and rapid stress-strain accumulation in the late stage of large earthquake preparation. Owing to the occurrence of large earthquake inside the block, the release of large amount of strain energy, and the adjustment of tectonic stress field, in relevant structural positions (especially zones not penetrated by historical strong earthquake ruptures) in boundary zones where larger amount of strain energy was accumulated, stress-strain may be further accumulated or else released through rupture.展开更多
With the popularization of the Internet and the development of technology,cyber threats are increasing day by day.Threats such as malware,hacking,and data breaches have had a serious impact on cybersecurity.The networ...With the popularization of the Internet and the development of technology,cyber threats are increasing day by day.Threats such as malware,hacking,and data breaches have had a serious impact on cybersecurity.The network security environment in the era of big data presents the characteristics of large amounts of data,high diversity,and high real-time requirements.Traditional security defense methods and tools have been unable to cope with the complex and changing network security threats.This paper proposes a machine-learning security defense algorithm based on metadata association features.Emphasize control over unauthorized users through privacy,integrity,and availability.The user model is established and the mapping between the user model and the metadata of the data source is generated.By analyzing the user model and its corresponding mapping relationship,the query of the user model can be decomposed into the query of various heterogeneous data sources,and the integration of heterogeneous data sources based on the metadata association characteristics can be realized.Define and classify customer information,automatically identify and perceive sensitive data,build a behavior audit and analysis platform,analyze user behavior trajectories,and complete the construction of a machine learning customer information security defense system.The experimental results show that when the data volume is 5×103 bit,the data storage integrity of the proposed method is 92%.The data accuracy is 98%,and the success rate of data intrusion is only 2.6%.It can be concluded that the data storage method in this paper is safe,the data accuracy is always at a high level,and the data disaster recovery performance is good.This method can effectively resist data intrusion and has high air traffic control security.It can not only detect all viruses in user data storage,but also realize integrated virus processing,and further optimize the security defense effect of user big data.展开更多
In the global information era,people acquire more and more information from the Internet,but the quality of the search results is degraded strongly because of the presence of web spam.Web spam is one of the serious pr...In the global information era,people acquire more and more information from the Internet,but the quality of the search results is degraded strongly because of the presence of web spam.Web spam is one of the serious problems for search engines,and many methods have been proposed for spam detection.We exploit the content features of non-spam in contrast to those of spam.The content features for non-spam pages always possess lots of statistical regularities; but those for spam pages possess very few statistical regularities,because spam pages are made randomly in order to increase the page rank.In this paper,we summarize the regularities distributions of content features for non-spam pages,and propose the calculating probability formulae of the entropy and independent n-grams respectively.Furthermore,we put forward the calculation formulae of multi features correlation.Among them,the notable content features may be used as auxiliary information for spam detection.展开更多
In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to t...In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi-crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible.展开更多
With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the...With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the peak in intelligent imaging techniques.However,the presence of noise images degrades both the diagnosis and clinical treatment processes.The existing intelligent meth-ods suffer from the deficiency in handling the diverse range of noise in the ver-satile medical images.This paper proposes a novel deep learning network which learns from the substantial extent of noise in medical data samples to alle-viate this challenge.The proposed deep learning architecture exploits the advan-tages of the capsule network,which is used to extract correlation features and combine them with redefined residual features.Additionally,thefinal stage of dense learning is replaced with powerful extreme learning machines to achieve a better diagnosis rate,even for noisy and complex images.Extensive experimen-tation has been conducted using different medical images.Various performances such as Peak-Signal-To-Noise Ratio(PSNR)and Structural-Similarity-Index-Metrics(SSIM)are compared with the existing deep learning architectures.Addi-tionally,a comprehensive analysis of individual algorithms is analyzed.The experimental results prove that the proposed model has outperformed the other existing algorithms by a substantial margin and proved its supremacy over the other learning models.展开更多
With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the...With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the peak in intelligent imaging techniques.However,the presence of noise images degrades both the diagnosis and clinical treatment processes.The existing intelligent meth-ods suffer from the deficiency in handling the diverse range of noise in the ver-satile medical images.This paper proposes a novel deep learning network which learns from the substantial extent of noise in medical data samples to alle-viate this challenge.The proposed deep learning architecture exploits the advan-tages of the capsule network,which is used to extract correlation features and combine them with redefined residual features.Additionally,the final stage of dense learning is replaced with powerful extreme learning machines to achieve a better diagnosis rate,even for noisy and complex images.Extensive experimen-tation has been conducted using different medical images.Various performances such as Peak-Signal-To-Noise Ratio(PSNR)and Structural-Similarity-Index-Metrics(SSIM)are compared with the existing deep learning architectures.Addi-tionally,a comprehensive analysis of individual algorithms is analyzed.The experimental results prove that the proposed model has outperformed the other existing algorithms by a substantial margin and proved its supremacy over the other learning models.展开更多
Software Defined Networking(SDN)has emerged as a promising and exciting option for the future growth of the internet.SDN has increased the flexibility and transparency of the managed,centralized,and controlled network...Software Defined Networking(SDN)has emerged as a promising and exciting option for the future growth of the internet.SDN has increased the flexibility and transparency of the managed,centralized,and controlled network.On the other hand,these advantages create a more vulnerable environment with substantial risks,culminating in network difficulties,system paralysis,online banking frauds,and robberies.These issues have a significant detrimental impact on organizations,enterprises,and even economies.Accuracy,high performance,and real-time systems are necessary to achieve this goal.Using a SDN to extend intelligent machine learning methodologies in an Intrusion Detection System(IDS)has stimulated the interest of numerous research investigators over the last decade.In this paper,a novel HFS-LGBM IDS is proposed for SDN.First,the Hybrid Feature Selection algorithm consisting of two phases is applied to reduce the data dimension and to obtain an optimal feature subset.In thefirst phase,the Correlation based Feature Selection(CFS)algorithm is used to obtain the feature subset.The optimal feature set is obtained by applying the Random Forest Recursive Feature Elimination(RF-RFE)in the second phase.A LightGBM algorithm is then used to detect and classify different types of attacks.The experimental results based on NSL-KDD dataset show that the proposed system produces outstanding results compared to the existing methods in terms of accuracy,precision,recall and f-measure.展开更多
Electronic Health Records(EHRs)are the digital form of patients’medical reports or records.EHRs facilitate advanced analytics and aid in better decision-making for clinical data.Medical data are very complicated and ...Electronic Health Records(EHRs)are the digital form of patients’medical reports or records.EHRs facilitate advanced analytics and aid in better decision-making for clinical data.Medical data are very complicated and using one classification algorithm to reach good results is difficult.For this reason,we use a combination of classification techniques to reach an efficient and accurate classification model.This model combination is called the Ensemble model.We need to predict new medical data with a high accuracy value in a small processing time.We propose a new ensemble model MDRL which is efficient with different datasets.The MDRL gives the highest accuracy value.It saves the processing time instead of processing four different algorithms sequentially;it executes the four algorithms in parallel.We implement five different algorithms on five variant datasets which are Heart Disease,Health General,Diabetes,Heart Attack,and Covid-19 Datasets.The four algorithms are Random Forest(RF),Decision Tree(DT),Logistic Regression(LR),and Multi-layer Perceptron(MLP).In addition to MDRL(our proposed ensemble model)which includes MLP,DT,RF,and LR together.From our experiments,we conclude that our ensemble model has the best accuracy value for most datasets.We reach that the combination of the Correlation Feature Selection(CFS)algorithm and our ensemble model is the best for giving the highest accuracy value.The accuracy values for our ensemble model based on CFS are 98.86,97.96,100,99.33,and 99.37 for heart disease,health general,Covid-19,heart attack,and diabetes datasets respectively.展开更多
Apple leaf disease is one of the main factors to constrain the apple production and quality.It takes a long time to detect the diseases by using the traditional diagnostic approach,thus farmers often miss the best tim...Apple leaf disease is one of the main factors to constrain the apple production and quality.It takes a long time to detect the diseases by using the traditional diagnostic approach,thus farmers often miss the best time to prevent and treat the diseases.Apple leaf disease recognition based on leaf image is an essential research topic in the field of computer vision,where the key task is to find an effective way to represent the diseased leaf images.In this research,based on image processing techniques and pattern recognition methods,an apple leaf disease recognition method was proposed.A color transformation structure for the input RGB(Red,Green and Blue)image was designed firstly and then RGB model was converted to HSI(Hue,Saturation and Intensity),YUV and gray models.The background was removed based on a specific threshold value,and then the disease spot image was segmented with region growing algorithm(RGA).Thirty-eight classifying features of color,texture and shape were extracted from each spot image.To reduce the dimensionality of the feature space and improve the accuracy of the apple leaf disease identification,the most valuable features were selected by combining genetic algorithm(GA)and correlation based feature selection(CFS).Finally,the diseases were recognized by SVM classifier.In the proposed method,the selected feature subset was globally optimum.The experimental results of more than 90%correct identification rate on the apple diseased leaf image database which contains 90 disease images for there kinds of apple leaf diseases,powdery mildew,mosaic and rust,demonstrate that the proposed method is feasible and effective.展开更多
Air traffic complexity is an objective metric for evaluating the operational condition of the airspace. It has several applications, such as airspace design and traffic flow management.Therefore, identifying a reliabl...Air traffic complexity is an objective metric for evaluating the operational condition of the airspace. It has several applications, such as airspace design and traffic flow management.Therefore, identifying a reliable method to accurately measure traffic complexity is important. Considering that many factors correlate with traffic complexity in complicated nonlinear ways,researchers have proposed several complexity evaluation methods based on machine learning models which were trained with large samples. However, the high cost of sample collection usually results in limited training set. In this paper, an ensemble learning model is proposed for measuring air traffic complexity within a sector based on small samples. To exploit the classification information within each factor, multiple diverse factor subsets(FSSs) are generated under guidance from factor noise and independence analysis. Then, a base complexity evaluator is built corresponding to each FSS. The final complexity evaluation result is obtained by integrating all results from the base evaluators. Experimental studies using real-world air traffic operation data demonstrate the advantages of our model for small-sample-based traffic complexity evaluation over other stateof-the-art methods.展开更多
文摘The high-precision GPS data observed from the northeast margin of the Qinghai-Xizang (Tibet) block and the Sichuan-Yunnan GPS monitoring areas in 1991 (1993), 1999 and 2001 revealed that: before the Kunlun earthquake with Ms =8.1 on November 14, 2001, the dynamic variation features of horizontal movement-deformation field in the north and east marginal tectonic areas of the Qinghai-Xizang (Tibet) block had some correlated features. That is to say, under the general background of inherited movement, the movement intensifies in the two areas weakened synchronously and the state of deformation changed when the great earthquake was impending. Analysis and study in connection with geological structures showed that before the Kunlun Ms8.1 earthquake, the correlated variations of movement-deformation on the boundaries of Qinghai-Xizang (Tibet) block were related to the disturbing stress field caused by the extensive and rapid stress-strain accumulation in the late stage of large earthquake preparation. Owing to the occurrence of large earthquake inside the block, the release of large amount of strain energy, and the adjustment of tectonic stress field, in relevant structural positions (especially zones not penetrated by historical strong earthquake ruptures) in boundary zones where larger amount of strain energy was accumulated, stress-strain may be further accumulated or else released through rupture.
基金This work was supported by the National Natural Science Foundation of China(U2133208,U20A20161).
文摘With the popularization of the Internet and the development of technology,cyber threats are increasing day by day.Threats such as malware,hacking,and data breaches have had a serious impact on cybersecurity.The network security environment in the era of big data presents the characteristics of large amounts of data,high diversity,and high real-time requirements.Traditional security defense methods and tools have been unable to cope with the complex and changing network security threats.This paper proposes a machine-learning security defense algorithm based on metadata association features.Emphasize control over unauthorized users through privacy,integrity,and availability.The user model is established and the mapping between the user model and the metadata of the data source is generated.By analyzing the user model and its corresponding mapping relationship,the query of the user model can be decomposed into the query of various heterogeneous data sources,and the integration of heterogeneous data sources based on the metadata association characteristics can be realized.Define and classify customer information,automatically identify and perceive sensitive data,build a behavior audit and analysis platform,analyze user behavior trajectories,and complete the construction of a machine learning customer information security defense system.The experimental results show that when the data volume is 5×103 bit,the data storage integrity of the proposed method is 92%.The data accuracy is 98%,and the success rate of data intrusion is only 2.6%.It can be concluded that the data storage method in this paper is safe,the data accuracy is always at a high level,and the data disaster recovery performance is good.This method can effectively resist data intrusion and has high air traffic control security.It can not only detect all viruses in user data storage,but also realize integrated virus processing,and further optimize the security defense effect of user big data.
基金supported by the National Science Foundation of China(No.61170145,61373081)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20113704110001)+1 种基金the Technology and Development Project of Shandong(No.2013GGX10125)the Taishan Scholar Project of Shandong,China
文摘In the global information era,people acquire more and more information from the Internet,but the quality of the search results is degraded strongly because of the presence of web spam.Web spam is one of the serious problems for search engines,and many methods have been proposed for spam detection.We exploit the content features of non-spam in contrast to those of spam.The content features for non-spam pages always possess lots of statistical regularities; but those for spam pages possess very few statistical regularities,because spam pages are made randomly in order to increase the page rank.In this paper,we summarize the regularities distributions of content features for non-spam pages,and propose the calculating probability formulae of the entropy and independent n-grams respectively.Furthermore,we put forward the calculation formulae of multi features correlation.Among them,the notable content features may be used as auxiliary information for spam detection.
基金Supported by the Major Program of National Natural Science Foundation of China (No. 70890080 and No. 70890083)
文摘In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi-crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible.
文摘With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the peak in intelligent imaging techniques.However,the presence of noise images degrades both the diagnosis and clinical treatment processes.The existing intelligent meth-ods suffer from the deficiency in handling the diverse range of noise in the ver-satile medical images.This paper proposes a novel deep learning network which learns from the substantial extent of noise in medical data samples to alle-viate this challenge.The proposed deep learning architecture exploits the advan-tages of the capsule network,which is used to extract correlation features and combine them with redefined residual features.Additionally,thefinal stage of dense learning is replaced with powerful extreme learning machines to achieve a better diagnosis rate,even for noisy and complex images.Extensive experimen-tation has been conducted using different medical images.Various performances such as Peak-Signal-To-Noise Ratio(PSNR)and Structural-Similarity-Index-Metrics(SSIM)are compared with the existing deep learning architectures.Addi-tionally,a comprehensive analysis of individual algorithms is analyzed.The experimental results prove that the proposed model has outperformed the other existing algorithms by a substantial margin and proved its supremacy over the other learning models.
文摘With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the peak in intelligent imaging techniques.However,the presence of noise images degrades both the diagnosis and clinical treatment processes.The existing intelligent meth-ods suffer from the deficiency in handling the diverse range of noise in the ver-satile medical images.This paper proposes a novel deep learning network which learns from the substantial extent of noise in medical data samples to alle-viate this challenge.The proposed deep learning architecture exploits the advan-tages of the capsule network,which is used to extract correlation features and combine them with redefined residual features.Additionally,the final stage of dense learning is replaced with powerful extreme learning machines to achieve a better diagnosis rate,even for noisy and complex images.Extensive experimen-tation has been conducted using different medical images.Various performances such as Peak-Signal-To-Noise Ratio(PSNR)and Structural-Similarity-Index-Metrics(SSIM)are compared with the existing deep learning architectures.Addi-tionally,a comprehensive analysis of individual algorithms is analyzed.The experimental results prove that the proposed model has outperformed the other existing algorithms by a substantial margin and proved its supremacy over the other learning models.
文摘Software Defined Networking(SDN)has emerged as a promising and exciting option for the future growth of the internet.SDN has increased the flexibility and transparency of the managed,centralized,and controlled network.On the other hand,these advantages create a more vulnerable environment with substantial risks,culminating in network difficulties,system paralysis,online banking frauds,and robberies.These issues have a significant detrimental impact on organizations,enterprises,and even economies.Accuracy,high performance,and real-time systems are necessary to achieve this goal.Using a SDN to extend intelligent machine learning methodologies in an Intrusion Detection System(IDS)has stimulated the interest of numerous research investigators over the last decade.In this paper,a novel HFS-LGBM IDS is proposed for SDN.First,the Hybrid Feature Selection algorithm consisting of two phases is applied to reduce the data dimension and to obtain an optimal feature subset.In thefirst phase,the Correlation based Feature Selection(CFS)algorithm is used to obtain the feature subset.The optimal feature set is obtained by applying the Random Forest Recursive Feature Elimination(RF-RFE)in the second phase.A LightGBM algorithm is then used to detect and classify different types of attacks.The experimental results based on NSL-KDD dataset show that the proposed system produces outstanding results compared to the existing methods in terms of accuracy,precision,recall and f-measure.
文摘Electronic Health Records(EHRs)are the digital form of patients’medical reports or records.EHRs facilitate advanced analytics and aid in better decision-making for clinical data.Medical data are very complicated and using one classification algorithm to reach good results is difficult.For this reason,we use a combination of classification techniques to reach an efficient and accurate classification model.This model combination is called the Ensemble model.We need to predict new medical data with a high accuracy value in a small processing time.We propose a new ensemble model MDRL which is efficient with different datasets.The MDRL gives the highest accuracy value.It saves the processing time instead of processing four different algorithms sequentially;it executes the four algorithms in parallel.We implement five different algorithms on five variant datasets which are Heart Disease,Health General,Diabetes,Heart Attack,and Covid-19 Datasets.The four algorithms are Random Forest(RF),Decision Tree(DT),Logistic Regression(LR),and Multi-layer Perceptron(MLP).In addition to MDRL(our proposed ensemble model)which includes MLP,DT,RF,and LR together.From our experiments,we conclude that our ensemble model has the best accuracy value for most datasets.We reach that the combination of the Correlation Feature Selection(CFS)algorithm and our ensemble model is the best for giving the highest accuracy value.The accuracy values for our ensemble model based on CFS are 98.86,97.96,100,99.33,and 99.37 for heart disease,health general,Covid-19,heart attack,and diabetes datasets respectively.
基金Natural Science Foundation of China(grant Nos.61473237,61202170,and 61402331)It is also supported by the Shaanxi Provincial Natural Science Foundation Research Project(2014JM2-6096)+3 种基金Tianjin Research Program of Application Foundation and Advanced Technology(14JCYBJC42500)Tianjin science and technology correspondent project(16JCTPJC47300)the 2015 key projects of Tianjin science and technology support program(No.15ZCZDGX00200)the Fund of Tianjin Food Safety&Low Carbon Manufacturing Collaborative Innovation Center.
文摘Apple leaf disease is one of the main factors to constrain the apple production and quality.It takes a long time to detect the diseases by using the traditional diagnostic approach,thus farmers often miss the best time to prevent and treat the diseases.Apple leaf disease recognition based on leaf image is an essential research topic in the field of computer vision,where the key task is to find an effective way to represent the diseased leaf images.In this research,based on image processing techniques and pattern recognition methods,an apple leaf disease recognition method was proposed.A color transformation structure for the input RGB(Red,Green and Blue)image was designed firstly and then RGB model was converted to HSI(Hue,Saturation and Intensity),YUV and gray models.The background was removed based on a specific threshold value,and then the disease spot image was segmented with region growing algorithm(RGA).Thirty-eight classifying features of color,texture and shape were extracted from each spot image.To reduce the dimensionality of the feature space and improve the accuracy of the apple leaf disease identification,the most valuable features were selected by combining genetic algorithm(GA)and correlation based feature selection(CFS).Finally,the diseases were recognized by SVM classifier.In the proposed method,the selected feature subset was globally optimum.The experimental results of more than 90%correct identification rate on the apple diseased leaf image database which contains 90 disease images for there kinds of apple leaf diseases,powdery mildew,mosaic and rust,demonstrate that the proposed method is feasible and effective.
基金co-supported by the State Key Program of National Natural Science Foundation of China (No. 91538204)the National Science Fund for Distinguished Young Scholars (No. 61425014)the National Key Technologies R&D Program of China (No. 2015BAG15B01)
文摘Air traffic complexity is an objective metric for evaluating the operational condition of the airspace. It has several applications, such as airspace design and traffic flow management.Therefore, identifying a reliable method to accurately measure traffic complexity is important. Considering that many factors correlate with traffic complexity in complicated nonlinear ways,researchers have proposed several complexity evaluation methods based on machine learning models which were trained with large samples. However, the high cost of sample collection usually results in limited training set. In this paper, an ensemble learning model is proposed for measuring air traffic complexity within a sector based on small samples. To exploit the classification information within each factor, multiple diverse factor subsets(FSSs) are generated under guidance from factor noise and independence analysis. Then, a base complexity evaluator is built corresponding to each FSS. The final complexity evaluation result is obtained by integrating all results from the base evaluators. Experimental studies using real-world air traffic operation data demonstrate the advantages of our model for small-sample-based traffic complexity evaluation over other stateof-the-art methods.