The climatology of significant wave height(SWH) and sea surface wind speed are matters of concern in the fields of both meteorology and oceanography because they are very important parameters for planning offshore s...The climatology of significant wave height(SWH) and sea surface wind speed are matters of concern in the fields of both meteorology and oceanography because they are very important parameters for planning offshore structures and ship routings. The TOPEX/Poseidon altimeter, which collected data for about 13 years from September 1992 to October 2005, has measured SWHs and surface wind speeds over most of the world's oceans. In this paper, a study of the global spatiotemporal distributions and variations of SWH and sea surface wind speed was conducted using the TOPEX/Poseidon altimeter data set. The range and characteristics of the variations were analyzed quantitatively for the Pacific, Atlantic, and Indian oceans. Areas of rough waves and strong sea surface winds were localized precisely, and the correlation between SWH and sea surface wind speed analyzed.展开更多
Using European Centre for Medium-Range Weather Forecasts Reanalysis V5(ERA5)reanalysis data,this study investigated the reconstruction effects of various climate variabilities on surface wind speed in China from 1979 ...Using European Centre for Medium-Range Weather Forecasts Reanalysis V5(ERA5)reanalysis data,this study investigated the reconstruction effects of various climate variabilities on surface wind speed in China from 1979 to 2022.The results indicated that the reconstructed annual mean wind speed and the standard deviation of the annual mean wind speed,utilizing various climate variability indices,exhibited similar spatial modes to the reanalysis data,with spatial correlation coefficients of 0.99 and 0.94,respectively.In the reconstruction of six major wind power installed capacity provinces/autonomous regions in China,the effects were notably good for Hebei and Shanxi provinces,with the correlation coefficients for the interannual regional average wind speed time series being 0.65 and 0.64,respectively.The reconstruction effects of surface wind speed differed across seasons,with spring and summer reconstructions showing the highest correlation with reanalysis data.The correlation coefficients for all seasons across most regions in China ranged between 0.4 and 0.8.Among the reconstructed seasonal wind speeds for the six provinces/autonomous regions,Shanxi Province in spring exhibited the highest correlation with the reanalysis,with a coefficient of 0.61.The large-scale climate variability indices showed good reconstruction effects on the annual mean wind speed in China,and could explain the interannual variability trends of surface wind speed in most regions of China,particularly in the main wind energy provinces/autonomous regions.展开更多
In this paper, we use fluctuation analysis to study statistical correlations in wind speed time series. Each time series used here was recorded hourly over 40 years. The fluctuation functions of wind speed time series...In this paper, we use fluctuation analysis to study statistical correlations in wind speed time series. Each time series used here was recorded hourly over 40 years. The fluctuation functions of wind speed time series were found to scale with a universal exponent approximating to 0.7, which means that the wind speed time series are long-term correlated. In the classical method of extreme estimations, data are commonly assumed to be independent (without correlations). This assumption will lead to an overestimation if data are long-term correlated. We thus propose a simple method to improve extreme wind speed estimations based on correlation analysis. In our method, extreme wind speeds are obtained by simply scaling the mean return period in the classical method. The scaling ratio is an analytic function of the scaling exponent in the fluctuation analysis.展开更多
The North Atlantic Oscillation (NAO) is one of the major causes of many recent changes in the Arctic Ocean. Generally, it is related to wind speed, sea surface temperature (SST), and sea ice cover. In this study, ...The North Atlantic Oscillation (NAO) is one of the major causes of many recent changes in the Arctic Ocean. Generally, it is related to wind speed, sea surface temperature (SST), and sea ice cover. In this study, we analyzed the distributions of and correlations between SST, wind speed, NAO, and sea ice cover from 2003 to 2009 in the Greenland Sea at 10°W to 10°E, 65°N to 80°N. SST reached its peak in July, while wind speed reached its minimum in July. Seasonal variability of SST and wind speed was different for different regions. SST and wind speed mainly had negative correlations. Detailed correlation research was focused on the 75~N to 80~N band. Regression analysis shows that in this band, the variation of SST lagged three months behind that of wind speed Ice cover and NAO had a positive correlation, and the correlation coefficient between ice cover and NAO in the year 2007 was 0.61 SST and NAO also had a positive correlation, and SST influenced NAO one month in advance. The correlation coefficients between SST and NAO reached 0.944 for the year 2005, 0.7 for the year 2008, and 0.74 for the year 2009 after shifting SST one month later. NAO also had a positive correlation with wind speed, and it also influenced wind speed one month in advance. The correlation coefficients between NAO and wind speed reached 0.783, 0.813, and 0.818 for the years 2004, 2005, and 2008, respectively, after shifting wind speed one month earlier.展开更多
The co-variation of surface wind speed and sea surface temperature (SST) over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data. Results show t...The co-variation of surface wind speed and sea surface temperature (SST) over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data. Results show that the pattern of positive SST-surface wind speed correlations is anchored by strong SST gradient and marine atmospheric boundary layer (MABL) height front, with active warm and cold-ocean eddies around. The MABL has an obvious transitional structure along the strong SST front, with greater (lesser) heights over the north (south) side. The significant positive SST-surface wind-speed perturbation correlations are mostly found over both strong warm and cold eddies. The surface wind speed increases (decreases) about 0.32 (0.41) m/s and the MABL elevates (drops) approximate 55 (54) m per 1℃ of SST perturbation induced by warm (cold) eddies. The response of the surface wind speed to SST perturbations over the mesoscale eddies is mainly attributed to the momentum vertical mixing in the MABL, which is confirmed by the linear relationships between the downwind (crosswind) SST gradient and wind divergence (curl).展开更多
The marine accidents are among the main components of the Zanzibar Disaster Management Policy (2011) and the Zanzibar Blue Economy Policy (2020). These policies aimed to institute legal frame works and procedures for ...The marine accidents are among the main components of the Zanzibar Disaster Management Policy (2011) and the Zanzibar Blue Economy Policy (2020). These policies aimed to institute legal frame works and procedures for reducing both the frequency of marine accidents and their associated fatalities. These fatalities include deaths, permanent disabilities and loss of properties which may result into increased poverty levels as per the sustainable development goal one (SDG1) which stipulates on ending the poverty in all its forms everywhere. Thus, in the way to support these Government efforts, the influence of climate and weather on marine accidents along Zanzibar and Pemba Channels was investigated. The study used the 10 years (2013-2022) records of daily rainfall and hourly wind speed acquired from Tanzania Meteorological Authority (TMA) (for the observation stations of Zanzibar, Pemba, Dares Salaam and Tanga), and the significant wave heights data, which was freely downloaded from Globally Forecasting System (GFS-World model of 13 km resolution). The marine accident records were collected from TASAC and Zanzibar Maritime Authority (ZMA), and the anecdotal information was collected from heads of quay and boat captains in different areas of Zanzibar. The Mann Kendal test, was used to determine the slopes and trends direction of used weather parameters, while the Pearson correlations analysis and t-tests were used to understand the significance of the underlying relationship between the weather and marine accidents. The paired t-test was used to evaluate the extent to which weather parameters affect the marine accidents. Results revealed that the variability of extreme weather events (rainfall, ocean waves and wind speed) was seen to be among the key factors for most of the recorded marine accidents. For instance, in Pemba high rainfall showed an increasing trend of extreme rainfall events, while Zanzibar has shown a decreasing trend of these events. As for extreme wind events, results show that Dar es Salaam and Tanga had an increasing trend, while Zanzibar and Pemba had shown a decreasing trend. As for the monthly variability of frequencies of extreme rainfall events, March to May (MAM) season was shown to have the highest frequencies over all stations with the peaks at Zanzibar and Pemba. On the other hand, high frequency of extreme wind speed was observed from May to September with peaks in June to July, and the highest strength was observed during 09:00 to 15:00 GMT. Moreover, results revealed an increasing trend of marine accidents caused by bad weather except during November. Also, results showed that bad weather conditions contributed to 48 (32%) of all 150 recorded accidents. Further results revealed significant correlation between the extreme wind and marine accidents, with the highest strong correlation of r = 0.71 (at p ≤ 0.007) and r = 0.75 (at p ≤ 0.009) at Tanga and Pemba, indicating the occurrence of more marine accidents at the Pemba channel. Indeed, strong correlation of r = 0.6 between extreme rainfall events and marine accidents was shown in Pemba, while the correlations between extremely significant wave heights and marine accidents were r = 0.41 (at p ≤ 0.006) and r = 0.34 (p ≤ 0.0006) for Pemba and Zanzibar Channel, respectively. In conclusion, the study has shown high influence between marine accidents and bad weather events with more impacts in Pemba and Zanzibar. Thus, the study calls for more work to be undertaken to raise the awareness on marine accidents as a way to alleviate the poverty and enhance the sustainable blue economy.展开更多
This paper investigates an analytical approach for the reliability modeling of doubly fed induction generator (DFIG) wind turbines. At present, to the best of the authors' knowledge, wind speed and wind turbine gen...This paper investigates an analytical approach for the reliability modeling of doubly fed induction generator (DFIG) wind turbines. At present, to the best of the authors' knowledge, wind speed and wind turbine generator outage have not been addressed simultaneously. In this paper, a novel methodology based on the Weibull- Markov method is proposed for evaluating the probabil- istic reliability of the bulk electric power systems, including DFIG wind turbines, considering wind speed and wind turbine generator outage. The proposed model is presented in terms of appropriate wind speed modeling as well as capacity outage probability table (COPT), considering component failures of the wind turbine generators. Based on the proposed method, the COPT of the wind farm has been developed and utilized on the IEEE RBTS to estimate the well-known reliability and sensitive indices. The simulation results reveal the importance of inclusion of wind turbine generator outage as well as wind speed in the reliability assessment of the wind farms. Moreover, the proposed method reduces the complexity of using analytical methods and provides an accurate reliability model for the wind turbines. Furthermore, several case studies are considered to demonstrate the effectiveness of the proposed method in practical applications.展开更多
Trends in pan evaporation are widely relevant to the hydrological community as indicators of hydrological and climate change. Pan evaporation has been decreasing in the past few decades over many large areas with diff...Trends in pan evaporation are widely relevant to the hydrological community as indicators of hydrological and climate change. Pan evaporation has been decreasing in the past few decades over many large areas with differing climates globally. This study analyzes pan evaporation data from 671 stations in China over the past 50 years in order to reveal the trends of it and the corresponding trend attribution. Mann-Kendall test shows a significant declining trend in pan evaporation for most stations, with an average decrease of 17.2 mm/10a in China as a whole, the rate of decline was the steepest in the humid region (29.7 mm/10a), and was 17.6 mm/10a and 5.5 mm/10a in the semi-humid/semi-arid region and arid region, respectively. Complete correlation coefficients of pan evaporation with 7 climate factors were computed, and decreases in diurnal temperature range (DTR), SD (sunshine duration) and wind speed were found to be the main attributing factors in the pan evaporation declines. Decrease in DTR and SD may relate to the increase of clouds and aerosol as well as the other pollutants, and decrease in wind speed to weakening of the Asian winter and summer monsoons under global climate warming.展开更多
Ambient noise is very important in the prediction system of a sonar performance, because it determines the detection ranges always in a passive sonar and usually in an active sonar. In the uncertainty issue for the so...Ambient noise is very important in the prediction system of a sonar performance, because it determines the detection ranges always in a passive sonar and usually in an active sonar. In the uncertainty issue for the so-nar performance, it is necessary to know this factor's statistical characteristics that are only obtained by data processing from the underwater ambient noise measurements. Broad-band ambient noise signals from 16 hydrophones were amplified and recorded for 2 min every 1 h. The results show that the ambient noise is essentially depth independent. The cross correlation of the ambient noise levels (1, 6 and 12 h average) with a wind speed is presented. It was found that the correlation is excellent on the upper frequency band and the noise levels correlate better with high wind speed than with low wind speed.展开更多
Multi-terminal voltage source converter-based highvoltage direct current(VSC-MTDC)transmission technology has become an important mode for connecting adjacent offshore wind farms(OWFs)to power systems.Optimal dispatch...Multi-terminal voltage source converter-based highvoltage direct current(VSC-MTDC)transmission technology has become an important mode for connecting adjacent offshore wind farms(OWFs)to power systems.Optimal dispatch of an OWF cluster connected by the VSC-MTDC can improve economic operation under the uncertainty of wind speeds.A two-stage distributionally robust optimal dispatch(DROD)model for the OWF cluster connected by VSC-MTDC is established.The first stage in this model optimizes the unit commitment of wind turbines to minimize mechanical loss cost of units under the worst joint probability distribution(JPD)of wind speeds,while the second stage searches for the worst JPD of wind speeds in the ambiguity set(AS)and optimizes active power output of wind turbines to minimize the penalty cost of the generation deviation and active power loss cost of the system.Based on the Kullback–Leibler(KL)divergence distance,a data-driven AS is constructed to describe the uncertainty of wind speed,considering the correlation between wind speeds of adjacent OWFs in the cluster by their joint PD.The original solution of the two-stage DROD model is transformed into the alternating iterative solution of the master problem and the sub-problem by the column-and-constraint generation(C&CG)algorithm,and the master problem is decomposed into a mixedinteger linear programming and a continuous second-order cone programming by the generalized Benders decomposition method to improve calculation efficiency.Finally,case studies on an actual OWF cluster with three OWFs demonstrate the correctness and efficiency of the proposed model and algorithm.展开更多
针对传统超声波测风装置测风精度不高、抗噪声能力弱,提出了一种改进多重信号分类(multiple signal classification,MUSIC)算法的超声波测风方法。采用一种弧形6阵元超声波传感器阵列的测风结构,推导其阵列流型;在此基础上,添加小波阈...针对传统超声波测风装置测风精度不高、抗噪声能力弱,提出了一种改进多重信号分类(multiple signal classification,MUSIC)算法的超声波测风方法。采用一种弧形6阵元超声波传感器阵列的测风结构,推导其阵列流型;在此基础上,添加小波阈值降噪算法提高信号信噪比,降低噪声信号协方差矩阵的秩;再使用PHAT加权广义互相关时延估计算法以提高时延估计的准确性,同时根据时延关系对传统MUSIC算法矢量矩阵进行改进;最后通过MUSIC算法实现对风速风向的测量。理论分析与仿真结果表明:改进后的MUSIC算法具有较好的抗噪性能和较高的风参数测量精度,测量风速绝对误差达到0.15 m/s,风向绝对误差达到2°,可以应用于对风参数要求较高的场景。展开更多
基金The National Natural Science Foundation of China under contract No.41076003
文摘The climatology of significant wave height(SWH) and sea surface wind speed are matters of concern in the fields of both meteorology and oceanography because they are very important parameters for planning offshore structures and ship routings. The TOPEX/Poseidon altimeter, which collected data for about 13 years from September 1992 to October 2005, has measured SWHs and surface wind speeds over most of the world's oceans. In this paper, a study of the global spatiotemporal distributions and variations of SWH and sea surface wind speed was conducted using the TOPEX/Poseidon altimeter data set. The range and characteristics of the variations were analyzed quantitatively for the Pacific, Atlantic, and Indian oceans. Areas of rough waves and strong sea surface winds were localized precisely, and the correlation between SWH and sea surface wind speed analyzed.
基金the National Natural Science Foundation of China(42176243)。
文摘Using European Centre for Medium-Range Weather Forecasts Reanalysis V5(ERA5)reanalysis data,this study investigated the reconstruction effects of various climate variabilities on surface wind speed in China from 1979 to 2022.The results indicated that the reconstructed annual mean wind speed and the standard deviation of the annual mean wind speed,utilizing various climate variability indices,exhibited similar spatial modes to the reanalysis data,with spatial correlation coefficients of 0.99 and 0.94,respectively.In the reconstruction of six major wind power installed capacity provinces/autonomous regions in China,the effects were notably good for Hebei and Shanxi provinces,with the correlation coefficients for the interannual regional average wind speed time series being 0.65 and 0.64,respectively.The reconstruction effects of surface wind speed differed across seasons,with spring and summer reconstructions showing the highest correlation with reanalysis data.The correlation coefficients for all seasons across most regions in China ranged between 0.4 and 0.8.Among the reconstructed seasonal wind speeds for the six provinces/autonomous regions,Shanxi Province in spring exhibited the highest correlation with the reanalysis,with a coefficient of 0.61.The large-scale climate variability indices showed good reconstruction effects on the annual mean wind speed in China,and could explain the interannual variability trends of surface wind speed in most regions of China,particularly in the main wind energy provinces/autonomous regions.
基金supported by the National Key R&D Program of China (Grant No. 2016YFC0208802)the National Natural Science Foundation of China (Grant Nos. 41675012 and 11472272)
文摘In this paper, we use fluctuation analysis to study statistical correlations in wind speed time series. Each time series used here was recorded hourly over 40 years. The fluctuation functions of wind speed time series were found to scale with a universal exponent approximating to 0.7, which means that the wind speed time series are long-term correlated. In the classical method of extreme estimations, data are commonly assumed to be independent (without correlations). This assumption will lead to an overestimation if data are long-term correlated. We thus propose a simple method to improve extreme wind speed estimations based on correlation analysis. In our method, extreme wind speeds are obtained by simply scaling the mean return period in the classical method. The scaling ratio is an analytic function of the scaling exponent in the fluctuation analysis.
基金supported by the National Natural Science Foundation of China (Grant No. 41276097)
文摘The North Atlantic Oscillation (NAO) is one of the major causes of many recent changes in the Arctic Ocean. Generally, it is related to wind speed, sea surface temperature (SST), and sea ice cover. In this study, we analyzed the distributions of and correlations between SST, wind speed, NAO, and sea ice cover from 2003 to 2009 in the Greenland Sea at 10°W to 10°E, 65°N to 80°N. SST reached its peak in July, while wind speed reached its minimum in July. Seasonal variability of SST and wind speed was different for different regions. SST and wind speed mainly had negative correlations. Detailed correlation research was focused on the 75~N to 80~N band. Regression analysis shows that in this band, the variation of SST lagged three months behind that of wind speed Ice cover and NAO had a positive correlation, and the correlation coefficient between ice cover and NAO in the year 2007 was 0.61 SST and NAO also had a positive correlation, and SST influenced NAO one month in advance. The correlation coefficients between SST and NAO reached 0.944 for the year 2005, 0.7 for the year 2008, and 0.74 for the year 2009 after shifting SST one month later. NAO also had a positive correlation with wind speed, and it also influenced wind speed one month in advance. The correlation coefficients between NAO and wind speed reached 0.783, 0.813, and 0.818 for the years 2004, 2005, and 2008, respectively, after shifting wind speed one month earlier.
基金Supported by the China’s National Key Research and Development Projects(No.2016YFA0601803)the National Natural Science Foundation of China(Nos.41490641,41521091,U1606402)the Qingdao National Laboratory for Marine Science and Technology(No.2017ASKJ01)
文摘The co-variation of surface wind speed and sea surface temperature (SST) over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data. Results show that the pattern of positive SST-surface wind speed correlations is anchored by strong SST gradient and marine atmospheric boundary layer (MABL) height front, with active warm and cold-ocean eddies around. The MABL has an obvious transitional structure along the strong SST front, with greater (lesser) heights over the north (south) side. The significant positive SST-surface wind-speed perturbation correlations are mostly found over both strong warm and cold eddies. The surface wind speed increases (decreases) about 0.32 (0.41) m/s and the MABL elevates (drops) approximate 55 (54) m per 1℃ of SST perturbation induced by warm (cold) eddies. The response of the surface wind speed to SST perturbations over the mesoscale eddies is mainly attributed to the momentum vertical mixing in the MABL, which is confirmed by the linear relationships between the downwind (crosswind) SST gradient and wind divergence (curl).
文摘The marine accidents are among the main components of the Zanzibar Disaster Management Policy (2011) and the Zanzibar Blue Economy Policy (2020). These policies aimed to institute legal frame works and procedures for reducing both the frequency of marine accidents and their associated fatalities. These fatalities include deaths, permanent disabilities and loss of properties which may result into increased poverty levels as per the sustainable development goal one (SDG1) which stipulates on ending the poverty in all its forms everywhere. Thus, in the way to support these Government efforts, the influence of climate and weather on marine accidents along Zanzibar and Pemba Channels was investigated. The study used the 10 years (2013-2022) records of daily rainfall and hourly wind speed acquired from Tanzania Meteorological Authority (TMA) (for the observation stations of Zanzibar, Pemba, Dares Salaam and Tanga), and the significant wave heights data, which was freely downloaded from Globally Forecasting System (GFS-World model of 13 km resolution). The marine accident records were collected from TASAC and Zanzibar Maritime Authority (ZMA), and the anecdotal information was collected from heads of quay and boat captains in different areas of Zanzibar. The Mann Kendal test, was used to determine the slopes and trends direction of used weather parameters, while the Pearson correlations analysis and t-tests were used to understand the significance of the underlying relationship between the weather and marine accidents. The paired t-test was used to evaluate the extent to which weather parameters affect the marine accidents. Results revealed that the variability of extreme weather events (rainfall, ocean waves and wind speed) was seen to be among the key factors for most of the recorded marine accidents. For instance, in Pemba high rainfall showed an increasing trend of extreme rainfall events, while Zanzibar has shown a decreasing trend of these events. As for extreme wind events, results show that Dar es Salaam and Tanga had an increasing trend, while Zanzibar and Pemba had shown a decreasing trend. As for the monthly variability of frequencies of extreme rainfall events, March to May (MAM) season was shown to have the highest frequencies over all stations with the peaks at Zanzibar and Pemba. On the other hand, high frequency of extreme wind speed was observed from May to September with peaks in June to July, and the highest strength was observed during 09:00 to 15:00 GMT. Moreover, results revealed an increasing trend of marine accidents caused by bad weather except during November. Also, results showed that bad weather conditions contributed to 48 (32%) of all 150 recorded accidents. Further results revealed significant correlation between the extreme wind and marine accidents, with the highest strong correlation of r = 0.71 (at p ≤ 0.007) and r = 0.75 (at p ≤ 0.009) at Tanga and Pemba, indicating the occurrence of more marine accidents at the Pemba channel. Indeed, strong correlation of r = 0.6 between extreme rainfall events and marine accidents was shown in Pemba, while the correlations between extremely significant wave heights and marine accidents were r = 0.41 (at p ≤ 0.006) and r = 0.34 (p ≤ 0.0006) for Pemba and Zanzibar Channel, respectively. In conclusion, the study has shown high influence between marine accidents and bad weather events with more impacts in Pemba and Zanzibar. Thus, the study calls for more work to be undertaken to raise the awareness on marine accidents as a way to alleviate the poverty and enhance the sustainable blue economy.
文摘This paper investigates an analytical approach for the reliability modeling of doubly fed induction generator (DFIG) wind turbines. At present, to the best of the authors' knowledge, wind speed and wind turbine generator outage have not been addressed simultaneously. In this paper, a novel methodology based on the Weibull- Markov method is proposed for evaluating the probabil- istic reliability of the bulk electric power systems, including DFIG wind turbines, considering wind speed and wind turbine generator outage. The proposed model is presented in terms of appropriate wind speed modeling as well as capacity outage probability table (COPT), considering component failures of the wind turbine generators. Based on the proposed method, the COPT of the wind farm has been developed and utilized on the IEEE RBTS to estimate the well-known reliability and sensitive indices. The simulation results reveal the importance of inclusion of wind turbine generator outage as well as wind speed in the reliability assessment of the wind farms. Moreover, the proposed method reduces the complexity of using analytical methods and provides an accurate reliability model for the wind turbines. Furthermore, several case studies are considered to demonstrate the effectiveness of the proposed method in practical applications.
基金Innovation Knowledge Project of the Chinese Academy of Sciences, No.KZCX2-YW-448National Key Technology R&D Program, No.2007BAC03A06-01
文摘Trends in pan evaporation are widely relevant to the hydrological community as indicators of hydrological and climate change. Pan evaporation has been decreasing in the past few decades over many large areas with differing climates globally. This study analyzes pan evaporation data from 671 stations in China over the past 50 years in order to reveal the trends of it and the corresponding trend attribution. Mann-Kendall test shows a significant declining trend in pan evaporation for most stations, with an average decrease of 17.2 mm/10a in China as a whole, the rate of decline was the steepest in the humid region (29.7 mm/10a), and was 17.6 mm/10a and 5.5 mm/10a in the semi-humid/semi-arid region and arid region, respectively. Complete correlation coefficients of pan evaporation with 7 climate factors were computed, and decreases in diurnal temperature range (DTR), SD (sunshine duration) and wind speed were found to be the main attributing factors in the pan evaporation declines. Decrease in DTR and SD may relate to the increase of clouds and aerosol as well as the other pollutants, and decrease in wind speed to weakening of the Asian winter and summer monsoons under global climate warming.
基金The New Century Excellent Talents in University(NCET Program)of China
文摘Ambient noise is very important in the prediction system of a sonar performance, because it determines the detection ranges always in a passive sonar and usually in an active sonar. In the uncertainty issue for the so-nar performance, it is necessary to know this factor's statistical characteristics that are only obtained by data processing from the underwater ambient noise measurements. Broad-band ambient noise signals from 16 hydrophones were amplified and recorded for 2 min every 1 h. The results show that the ambient noise is essentially depth independent. The cross correlation of the ambient noise levels (1, 6 and 12 h average) with a wind speed is presented. It was found that the correlation is excellent on the upper frequency band and the noise levels correlate better with high wind speed than with low wind speed.
基金supported by the Key Research and Development Project of Guangdong Province(Grant No.2021B0101230004)the National Natural Science Foundation of China(Grant No.51977080).
文摘Multi-terminal voltage source converter-based highvoltage direct current(VSC-MTDC)transmission technology has become an important mode for connecting adjacent offshore wind farms(OWFs)to power systems.Optimal dispatch of an OWF cluster connected by the VSC-MTDC can improve economic operation under the uncertainty of wind speeds.A two-stage distributionally robust optimal dispatch(DROD)model for the OWF cluster connected by VSC-MTDC is established.The first stage in this model optimizes the unit commitment of wind turbines to minimize mechanical loss cost of units under the worst joint probability distribution(JPD)of wind speeds,while the second stage searches for the worst JPD of wind speeds in the ambiguity set(AS)and optimizes active power output of wind turbines to minimize the penalty cost of the generation deviation and active power loss cost of the system.Based on the Kullback–Leibler(KL)divergence distance,a data-driven AS is constructed to describe the uncertainty of wind speed,considering the correlation between wind speeds of adjacent OWFs in the cluster by their joint PD.The original solution of the two-stage DROD model is transformed into the alternating iterative solution of the master problem and the sub-problem by the column-and-constraint generation(C&CG)algorithm,and the master problem is decomposed into a mixedinteger linear programming and a continuous second-order cone programming by the generalized Benders decomposition method to improve calculation efficiency.Finally,case studies on an actual OWF cluster with three OWFs demonstrate the correctness and efficiency of the proposed model and algorithm.
文摘针对传统超声波测风装置测风精度不高、抗噪声能力弱,提出了一种改进多重信号分类(multiple signal classification,MUSIC)算法的超声波测风方法。采用一种弧形6阵元超声波传感器阵列的测风结构,推导其阵列流型;在此基础上,添加小波阈值降噪算法提高信号信噪比,降低噪声信号协方差矩阵的秩;再使用PHAT加权广义互相关时延估计算法以提高时延估计的准确性,同时根据时延关系对传统MUSIC算法矢量矩阵进行改进;最后通过MUSIC算法实现对风速风向的测量。理论分析与仿真结果表明:改进后的MUSIC算法具有较好的抗噪性能和较高的风参数测量精度,测量风速绝对误差达到0.15 m/s,风向绝对误差达到2°,可以应用于对风参数要求较高的场景。