Characterizing material 3D deformation and damage is a key challenge in mechanical research. Digital volume correlation (DVC), as a tool for quantifying the internal mechanical response, can comprehensively study th...Characterizing material 3D deformation and damage is a key challenge in mechanical research. Digital volume correlation (DVC), as a tool for quantifying the internal mechanical response, can comprehensively study the extraction of key failure parameters. This review summarizes the recent progresses in the study of the internal movement of granular materials, inhomogeneous deformation of composite materials, and stress intensity factor around a crack front in static and fatigue states using DVC. To elaborate on the technique's potential, we discussed the accuracy and efficiency of the algorithm and the acquisition of real microstructure data within the material under a complex environment.展开更多
Objective To explore the correlation between quantitative value of joint bone scan by single photon emission computed tomography(SPECT)and serum bone metabolic markers in patients with active rheumatoid arthritis(RA)....Objective To explore the correlation between quantitative value of joint bone scan by single photon emission computed tomography(SPECT)and serum bone metabolic markers in patients with active rheumatoid arthritis(RA).Methods Clinical data of 60 newly diagnosed RA patients were retrospectively collected in Department展开更多
基金supported by the National Natural Science Foundation of China (11722221, 11272305, and 11472265)the National Key Research and Development Program of China (2017YFA0403800 and 2017YFB0702000)the Anhui Provincial Natural Science Foundation (1508085MA17)
文摘Characterizing material 3D deformation and damage is a key challenge in mechanical research. Digital volume correlation (DVC), as a tool for quantifying the internal mechanical response, can comprehensively study the extraction of key failure parameters. This review summarizes the recent progresses in the study of the internal movement of granular materials, inhomogeneous deformation of composite materials, and stress intensity factor around a crack front in static and fatigue states using DVC. To elaborate on the technique's potential, we discussed the accuracy and efficiency of the algorithm and the acquisition of real microstructure data within the material under a complex environment.
文摘Objective To explore the correlation between quantitative value of joint bone scan by single photon emission computed tomography(SPECT)and serum bone metabolic markers in patients with active rheumatoid arthritis(RA).Methods Clinical data of 60 newly diagnosed RA patients were retrospectively collected in Department