Using the normally ordered Gaussian form of the Wigner operator we recapitulate the quantum phase space representation, we derive a new formula for searching for the classical correspondence of quantum mechanical oper...Using the normally ordered Gaussian form of the Wigner operator we recapitulate the quantum phase space representation, we derive a new formula for searching for the classical correspondence of quantum mechanical operators; we also show that if there exists the eigenvector |q〉λ,v of linear combination of the coordinate and momentum operator, (λQ + vP), where λ,v are real numbers, and |q〉λv is complete, then the projector |q〉λ,vλ,v〈q| must be the Radon transform of Wigner operator. This approach seems concise and physical appealing.展开更多
基金Supported by National Natural Science Foundation of China under Grant Nos. 10874174 and 10775097
文摘Using the normally ordered Gaussian form of the Wigner operator we recapitulate the quantum phase space representation, we derive a new formula for searching for the classical correspondence of quantum mechanical operators; we also show that if there exists the eigenvector |q〉λ,v of linear combination of the coordinate and momentum operator, (λQ + vP), where λ,v are real numbers, and |q〉λv is complete, then the projector |q〉λ,vλ,v〈q| must be the Radon transform of Wigner operator. This approach seems concise and physical appealing.