This paper investigates the static behavior of a functionally graded circular plate made of magneto-electro-elastic(MEE) materials under tension and bending.The analysis is directly based on the three-dimensional go...This paper investigates the static behavior of a functionally graded circular plate made of magneto-electro-elastic(MEE) materials under tension and bending.The analysis is directly based on the three-dimensional governing equations for magnetoelectro-elasticity, with the boundary conditions on the upper and lower surfaces satisfied exactly and those on the cylindrical surface satisfied approximately(in the Saint Venant sense). The analytical solutions, derived with a direct displacement method, are valid for any functionally graded material(FGM) with its properties varying independently in a continuous manner along the thickness direction. For homogeneous materials, these solutions are degenerated to the ones available in the literature. Interesting relations are also found between the solutions for a functionally graded magneto-electro-elastic(FGMEE) circular plate and those for an FGMEE rectangular beam, and even those for a functionally graded elastic beam when only the elastic displacements are considered. The beam solutions are also derived using a direct displacement method. Numerical examples are presented to verify the present analytical solutions, show the effects of material heterogeneity and multi-field coupling, and indicate the correspondence between the plate solutions and beam solutions.展开更多
In cryptology, it is an important topic to study the best affine approach of functions. The best affine approach of Boolean functions has been discussed in ref. [1] by using the Walsh spectrum, of which the key proble...In cryptology, it is an important topic to study the best affine approach of functions. The best affine approach of Boolean functions has been discussed in ref. [1] by using the Walsh spectrum, of which the key problem is how to represent the correspondence of Boolean functions by using Walsh spectrum. For the multi-valued logical functions so far, the spectral representation of their correspondence has not been presented yet. This let-展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11321202 and11272281)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20130101110120)+2 种基金the Program for New Century Excellent Talents in University of Ministry of Education of China(No.NCET-13-0973)the Program for Sichuan Provincial Youth Science and Technology Innovation Team(No.2013-TD-0004)the Scientific Research Foundation for Returned Scholars(Ministry of Education of China)
文摘This paper investigates the static behavior of a functionally graded circular plate made of magneto-electro-elastic(MEE) materials under tension and bending.The analysis is directly based on the three-dimensional governing equations for magnetoelectro-elasticity, with the boundary conditions on the upper and lower surfaces satisfied exactly and those on the cylindrical surface satisfied approximately(in the Saint Venant sense). The analytical solutions, derived with a direct displacement method, are valid for any functionally graded material(FGM) with its properties varying independently in a continuous manner along the thickness direction. For homogeneous materials, these solutions are degenerated to the ones available in the literature. Interesting relations are also found between the solutions for a functionally graded magneto-electro-elastic(FGMEE) circular plate and those for an FGMEE rectangular beam, and even those for a functionally graded elastic beam when only the elastic displacements are considered. The beam solutions are also derived using a direct displacement method. Numerical examples are presented to verify the present analytical solutions, show the effects of material heterogeneity and multi-field coupling, and indicate the correspondence between the plate solutions and beam solutions.
文摘In cryptology, it is an important topic to study the best affine approach of functions. The best affine approach of Boolean functions has been discussed in ref. [1] by using the Walsh spectrum, of which the key problem is how to represent the correspondence of Boolean functions by using Walsh spectrum. For the multi-valued logical functions so far, the spectral representation of their correspondence has not been presented yet. This let-