期刊文献+
共找到10,334篇文章
< 1 2 250 >
每页显示 20 50 100
Low-energy-consumption temperature swing system for CO_(2) capture by combining passive radiative cooling and solar heating 被引量:2
1
作者 Ying-Xi Dang Peng Tan +3 位作者 Bin Hu Chen Gu Xiao-Qin Liu Lin-Bing Sun 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期507-515,共9页
Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo... Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption. 展开更多
关键词 CO_(2)capture Solar heating Passive radiative cooling Temperature swing adsorption
下载PDF
Surface engineering of ZnO electrocatalyst by N doping towards electrochemical CO_(2) reduction 被引量:1
2
作者 Rohini Subhash Kanase Getasew Mulualem Zewdie +7 位作者 Maheswari Arunachalam Jyoti Badiger Suzan Abdelfattah Sayed Kwang-Soon Ahn Jun-Seok Ha Uk Sim Hyeyoung Shin Soon Hyung Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期71-81,I0002,共12页
The discovery of efficient,selective,and stable electrocatalysts can be a key point to produce the largescale chemical fuels via electrochemical CO_(2) reduction(ECR).In this study,an earth-abundant and nontoxic ZnO-b... The discovery of efficient,selective,and stable electrocatalysts can be a key point to produce the largescale chemical fuels via electrochemical CO_(2) reduction(ECR).In this study,an earth-abundant and nontoxic ZnO-based electrocatalyst was developed for use in gas-diffusion electrodes(GDE),and the effect of nitrogen(N)doping on the ECR activity of ZnO electrocatalysts was investigated.Initially,a ZnO nanosheet was prepared via the hydrothermal method,and nitridation was performed at different times to control the N-doping content.With an increase in the N-doping content,the morphological properties of the nanosheet changed significantly,namely,the 2D nanosheets transformed into irregularly shaped nanoparticles.Furthermore,the ECR performance of Zn O electrocatalysts with different N-doping content was assessed in 1.0 M KHCO_(3) electrolyte using a gas-diffusion electrode-based ECR cell.While the ECR activity increased after a small amount of N doping,it decreased for higher N doping content.Among them,the N:ZnO-1 h electrocatalysts showed the best CO selectivity,with a faradaic efficiency(FE_(CO))of 92.7%at-0.73 V vs.reversible hydrogen electrode(RHE),which was greater than that of an undoped Zn O electrocatalyst(FE_(CO)of 63.4%at-0.78 V_(RHE)).Also,the N:ZnO-1 h electrocatalyst exhibited outstanding durability for 16 h,with a partial current density of-92.1 mA cm^(-2).This improvement of N:ZnO-1 h electrocatalyst can be explained by density functional theory calculations,demonstrating that this improvement of N:ZnO-1 h electrocatalyst comes from(ⅰ)the optimized active sites lowering the free energy barrier for the rate-determining step(RDS),and(ⅱ)the modification of electronic structure enhancing the electron transfer rate by N doping. 展开更多
关键词 ZNO N-doped ZnO Gas-diffusion electrode CO Selectivity Electrochemical CO_(2)reduction
下载PDF
Mechanistic investigation on Ag-Cu_(2)O in electrocatalytic CO_(2) to CH_(4) by in situ/operando spectroscopic and theoretical analysis 被引量:1
3
作者 Min Sun Luxiao Zhang +10 位作者 Fuli Tian Jiaxin Li Yanqiu Lei Heng Zhang Lifeng Han Zhihua Guo Yonghui Gao Fenrong Liu Yan Wang Luhui Wang Shanghong Zeng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期521-531,I0012,共12页
Silver-copper electrocatalysts have demonstrated effectively catalytic performance in electroreduction CO_(2) toward CH_(4),yet a revealing insight into the reaction pathway and mechanism has remained elusive.Herein,w... Silver-copper electrocatalysts have demonstrated effectively catalytic performance in electroreduction CO_(2) toward CH_(4),yet a revealing insight into the reaction pathway and mechanism has remained elusive.Herein,we construct chemically bonded Ag-Cu_(2)O boundaries,in which the complete reduction of Cu_(2)O to Cu has been strongly impeded owing to the presence of surface Ag shell.The interfacial confinement effect helps to maintain Cu^(+)sites at the Ag-Cu_(2)O boundaries.Using in situ/operando spectroscopy and theoretical simulations,it is revealed that CO_(2) is enriched at the Ag-Cu_(2)O boundaries due to the enhanced physisorption and chemisorption to CO_(2),activating CO_(2) to form the stable intermediate^(*)CO.The boundaries between Ag shell and the Cu_(2)O mediate local^(*)CO coverage and promote^(*)CHO intermediate formation,consequently facilitating CO_(2)-to-CH_(4) conversion.This work not only reveals the structure-activity relationships but also offers insights into the reaction mechanism on Ag-Cu catalysts for efficient electrocatalytic CO_(2) reduction. 展开更多
关键词 Ag shell Interfacial confinement effect Cu~+ Local*CO coverage CO_(2)reduction
下载PDF
Continuous-flow electrosynthesis of urea and oxalic acid by CO_(2)-nitrate reduction and glycerol oxidation
4
作者 Shuanglong Zhou Yue Shi +3 位作者 Yu Dai Tianrong Zhan Jianping Lai Lei Wang 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期270-281,共12页
Urea and oxalic acid are critical component in various chemical manufacturing industries.However,achieving simultaneous generation of urea and oxalic acid in a continuous-flow electrolyzer is a challenge.Herein,we rep... Urea and oxalic acid are critical component in various chemical manufacturing industries.However,achieving simultaneous generation of urea and oxalic acid in a continuous-flow electrolyzer is a challenge.Herein,we report a continuous-flow electrolyzer equipped with 9-square centime-ter-effective area gas diffusion electrodes(GDE)which can simultaneously catalyze the glycerol oxidation reaction in the anode region and the reduction reaction of CO_(2) and nitrate in the cathode region,producing oxalic acid and urea at both the anode and cathode,respectively.The current density at low cell voltage(0.9 V)remained above 18.7 mA cm^(-2) for 10 consecutive electrolysis cycles(120 h in total),and the Faraday efficiency of oxalic acid(67.1%) and urea(70.9%)did not decay.Experimental and theoretical studies show that in terms of the formation of C-N bond at the cathode,Pd-sites can provide protons for the hydrogenation process of CO_(2) and NO_(3)^(-),Cu-sites can promote the generation of *COOH and Bi-sites can stabilize *COOH.In addition,in terms of glycerol oxidation,the introduction of Cu and Bi into Pd metallene promotes the oxidation of hydroxyl groups and the cleavage of C-C bond in glycerol molecules,respectively. 展开更多
关键词 UREA Oxalic acid CO_(2) C-N bond Metallene
下载PDF
Hollow tubes constructed by carbon nanotubes self-assembly for CO_(2) capture
5
作者 CHEN Xu-rui WU Jun +1 位作者 GU Li CAO Xue-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2256-2267,共12页
Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their mac... Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture. 展开更多
关键词 carbon nanotubes SELF-ASSEMBLY hollow tubes CO_(2) capture
下载PDF
Global CO_(2) concentration change induced by“trigger-connectors”model,especially since about 24 Ma?A preliminary hypothesis
6
作者 LI Leyi CHANG Hong 《地球环境学报》 CSCD 2024年第4期545-565,共21页
Background,aim,and scope The tectonic uplift of the Cenozoic Tibetan Plateau has produced a chain effect,which is an excellent location for Earth system science research,and its uplift process,mechanism and environmen... Background,aim,and scope The tectonic uplift of the Cenozoic Tibetan Plateau has produced a chain effect,which is an excellent location for Earth system science research,and its uplift process,mechanism and environmental effects are the hot spot and frontier of the current research.The“Tibetan Plateau uplift-weathering-CO_(2) concentration-global climate change”model was put forward by Raymo and Ruddiman to interpret the Late Cenozoic climate change.However,there are still some questions suspended,such as does the weathering of the Tibetan Plateau have the ability to control the global climate?How to explain the modern-like global CO_(2) concentration starting at about 24 Ma?Here,a short space was taken to present a brainstorm about the above questions on account of existing geological pieces of evidence.Materials and methods In this paper,we integrate the formation and evolution of the Yangtze River and Pearl River,the origin and development of the Asian inland aridification-monsoon system,the Cenozoic tectonic uplift process of the Tibetan Plateau,and the westerly winds to discuss and analyze the relationship between the Cenozoic CO_(2) concentration changes and the uplift of the Tibetan Plateau and why the CO_(2) concentration similar to the present was formed at about 24 Ma.Results Similar correspondence of the surface uplift history of Xizang,other global mountains,and the declining CO_(2) concentration could support the theory Tibetan Plateau weathering inf luences CO_(2) concentration.Starting from 24 Ma,the most important character was the uplift and erosion of Xizang and Himalaya,collaborating with Ocean Iron Fertilization(OIF)together as an entity to control the atmospheric CO_(2) concentration because the great Asian rivers,Asian monsoons,and westerlies connected Xizang and surrounded seas together through materials transportation.Discussion Paleogeographic reconstructions from 40 Ma to 20 Ma illustrate that the main topographic change occurred in the Andes,Cordillera orogenic belt,and Xizang.We comprise a comprehensive set of evidence from independent data,which correspond temporally with the tipping point(about 24 Ma)of the atmospheric CO_(2) and we noticed that modern-like Asia monsoon,inland aridity,Asian great rivers,and climate zone formed at about 24 Ma and also there are tectonic activities for the Andes and Rockies.We raised the possibility that the modern-like atmospheric CO_(2) concentration at about 24 Ma was caused by the above geological factors.Here the rivers,monsoon,and westerlies are termed as“connectors”.In addition,these Asian rivers originated from Xizang,the monsoon,and inner Asian aridification are strongly a function of the uplift and growth of Xizang,thus,Xizang here is named as“trigger”.The distinct character of“trigger-connectors”model is that this not only takes the monsoon,westerlies,and the global great rivers into consideration but also expands the range which inf luences atmospheric CO_(2) concentration,from local points to a vast area since about 24 Ma,such as from Tibetan Plateau to Asia,including surrounded seas,after about 24 Ma.However,because the opening of the Late Oligocene-Early Miocene Antarctic periphery straits is highly coincident with the onset of modern-like global atmospheric CO_(2) concentration,we are forced to consider that they also had a significant impact on the reduction of atmospheric CO_(2) concentrations at this time.Conclusions“Trigger-connectors”was put forward to explain the Cenozoic CO_(2) variation,especially modern-like global CO_(2) concentration since about 24 Ma.Recommendations and perspectives Here we use the“trigger-connectors”model to explain the formation of modern-like CO_(2) concentrations starting at about 24 Ma,but there are still some problems.The most important premise for the“trigger-connectors”model is the constructed Cenozoic CO_(2) concentration record is reliable,which is the foundation of our hypothesis.In the future,potential improvements should focus on topographic reconstructions of Xizang and the global mountains.Here we have concentrated on Xizang in the considered timeslices but still,pay less attention to other global orogenic belts.Collaborations with geologist experts in those regions could provide valuable feedback to evaluate their potential role of them in CO_(2) evolution.What is more,considerable progress may be achieved with the addition and consideration of more and new geological data. 展开更多
关键词 Tibetan Plateau CO_(2) concentration WEATHERING trigger-connectors
下载PDF
Analysis of pressure response at an observation well against pressure build-up by early stage of CO_(2)geological storage project
7
作者 Qiang Sun Kyuro Sasaki +3 位作者 Qinxi Dong Zhenni Ye Hui Wang Huan Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期470-482,共13页
To ensure a safe and stable CO_(2)storage,pressure responses at an observation well are expected to be an important and useful field monitoring item to estimate the CO_(2)storage behaviors and the aquifer parameters d... To ensure a safe and stable CO_(2)storage,pressure responses at an observation well are expected to be an important and useful field monitoring item to estimate the CO_(2)storage behaviors and the aquifer parameters during and after injecting CO_(2),because it can detect whether the injected CO_(2)leaks to the ground surface or the bottom of the sea.In this study,pressure responses were simulated to present design factors such as well location and pressure transmitter of the observation well.Numerical simulations on the pressure response and the time-delay from pressure build-up after CO_(2)injection were conducted by considering aquifer parameters and distance from the CO_(2)injection well to an observation well.The measurement resolution of a pressure transmitter installed in the observation well was presented based on numerical simulation results of the pressure response against pressure build-up at the injection well and CO_(2)plume front propagations.Furthermore,the pressure response at an observation well was estimated by comparing the numerical simulation results with the curve of CO_(2)saturation and relative permeability.It was also suggested that the analytical solution can be used for the analysis of the pressure response tendency using pressure build-up and dimensionless parameters of hydraulic diffusivity.Thus,a criterion was established for selecting a pressure transducer installed at an observation well to monitor the pressure responses with sufficient accuracy and resolution,considering the distance from the injection well and the pressure build-up at the injection well,for future carbon capture and storage(CCS)projects. 展开更多
关键词 CO_(2)storage Saline aquifer Observation well Pressure response CO_(2)saturation
下载PDF
Microstructural, wettability, and corrosion behaviour of TiO_(2) thin film sputtered on aluminium
8
作者 Rajeev VERMA Vijay KUMAR +2 位作者 Saurabh KANGO Amindra KHILLA Rajeev GUPTA 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2210-2224,共15页
The study investigated the application of radiofrequency(RF)-sputtered TiO2 coatings at various temperatures to enhance the hydrophobicity and corrosion resistance of Al6061 alloy.The research aimed to establish a cor... The study investigated the application of radiofrequency(RF)-sputtered TiO2 coatings at various temperatures to enhance the hydrophobicity and corrosion resistance of Al6061 alloy.The research aimed to establish a correlation between the coating process and the resulting surface properties.Surface roughness and wettability were quantified with a surface profilometer and goniometer.Additionally,chemical boiling and salt spray corrosion tests were conducted to evaluate any topographical changes during these procedures.The analysis further involved the use of field-emission scanning electron microscopy(FESEM),energy-dispersive spectroscopy(EDS),and X-ray diffraction(XRD)techniques to characterize the deposited coatings.The findings indicated that the TiO2 coating applied at 500℃exhibited the highest water contact angle and superior corrosion resistance compared to other temperatures.Surface characterization confirmed that this specific TiO_(2) coating at 500℃ effectively delays corrosion due to its hydrophobic behavior,making it durable for industrial applications. 展开更多
关键词 aluminium TiO_(2) coating radiofrequency-sputtering HYDROPHOBIC corrosion
下载PDF
The Capture and Catalytic Conversion of CO_(2) by Dendritic Mesoporous Silica-Based Nanoparticles
9
作者 Yabin Wang Liangzhu Huang +2 位作者 Songwei Li Chuntai Liu Hua He 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期126-151,共26页
Dendritic mesoporous silica nanoparticles own three-dimensional center-radial channels and hierarchical pores,which endows themselves with super-high specific surface area,extremely large pore volumes,especially acces... Dendritic mesoporous silica nanoparticles own three-dimensional center-radial channels and hierarchical pores,which endows themselves with super-high specific surface area,extremely large pore volumes,especially accessible internal spaces,and so forth.Dissimilar guest species(such as organic groups or metal nanoparticles)could be readily decorated onto the interfaces of the channels and pores,realizing the functionalization of dendritic mesoporous silica nanoparticles for targeted applications.As adsorbents and catalysts,dendritic mesoporous silica nanoparticles-based materials have experienced nonignorable development in CO_(2)capture and catalytic conversion.This comprehensive review provides a critical survey on this pregnant subject,summarizing the designed construction of novel dendritic mesoporous silica nanoparticles-based materials,the involved chemical reactions(such as CO_(2)methanation,dry reforming of CH_(4)),the value-added chemicals from CO_(2)(such as cyclic carbonates,2-oxazolidinones,quinazoline-2,4(1H,3H)-diones),and so on.The adsorptive and catalytic performances have been compared with traditional silica mesoporous materials(such as SBA-15 or MCM-41),and the corresponding reaction mechanisms have been thoroughly revealed.It is sincerely expected that the in-depth discussion could give materials scientists certain inspiration to design brand-new dendritic mesoporous silica nanoparticles-based materials with superior capabilities towards CO_(2)capture,utilization,and storage. 展开更多
关键词 catalytic conversion CO_(2)adsorption CO_(2)capture dendritic mesoporous silica nanoparticles
下载PDF
CO_(2)methanation boosted by support-size-dependent strong metal-support interaction and B-O-Ti component
10
作者 Shaoyu Yuan Yushan Yang +5 位作者 Zhangyi Xiong Peijing Guo Sufang Sun Zejiang Li Jianlong Du Yongjun Gao 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期321-332,共12页
Strong metal-support interaction(SMSI)has a great impact on the activity and selectivity of heterogeneous catalysts,which was usually adjusted by changing reduction temperature or processing catalyst in different atmo... Strong metal-support interaction(SMSI)has a great impact on the activity and selectivity of heterogeneous catalysts,which was usually adjusted by changing reduction temperature or processing catalyst in different atmosphere.However,few researches concentrate on modulating SMSI through regulating the structure of the support.Herein,we show how changing the surface environment of the anatase TiO_(2)(B–TiO_(2))can be used to modulate the SMSI.The moderate TiOx overlayer makes the Ni metal highly dispersed on the high specific surface area of support,resulting in a substantially enhanced CO_(2)methanation rate.Besides,a novel phenomenon was observed that boron dopants promote the for-mation of the B–O–Ti interface site,enhancing the catalytic performance of CO_(2)hydrogenation.DFT calculations confirm that the B–O–Ti structure facilitates the activation of CO_(2)and further hydrogenation to methane. 展开更多
关键词 CO_(2)Methanation B-doped TiO_(2) SMSI SIZE-DEPENDENT
下载PDF
Regeneration of copper catalysts mediated by molybdenum-based oxides
11
作者 Changyu Ding Xiaoli Pan +7 位作者 Isla E.Gow Xia Wu Hongchen Cao Zhounan Yu Xiaoyan Liu Xiaofeng Yang Qinggang Liu Yanqiang Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期618-625,I0013,共9页
Cu catalysts,known for their unparalleled catalytic capabilities due to their unique electronic structure,have faced inherent challenges in maintaining long-term effectiveness under harsh hydrogenation conditions.Here... Cu catalysts,known for their unparalleled catalytic capabilities due to their unique electronic structure,have faced inherent challenges in maintaining long-term effectiveness under harsh hydrogenation conditions.Here,we demonstrate a molybdenum-mediated redispersion behavior of Cu under hightemperature oxidation conditions.The oxidized Cu nanoparticles with rich metal-support interfaces tend to dissolve into the MoO_(3)support upon heating to 600℃,which facilitates the subsequent regeneration in a reducing atmosphere.A similar redispersion phenomenon is observed for Cu nanoparticles supported on Zn O-modified MoO_(3).The modification of ZnO significantly improves the performance of the Cu catalyst for CO_(2)hydrogenation to methanol,with the high activity being well maintained after four repeated oxidation-reduction cycles.In situ spectroscopic and theoretical analyses suggest that the interaction involved in the formation of the copper molybdate-like compound is the driving force for the redispersion of Cu.This method is applicable to various Mo-based oxide supports,offering a practical strategy for the regeneration of sintered Cu particles in hydrogenation applications. 展开更多
关键词 Cu-based catalysts AGGREGATION REGENERATION OXIDATION CO_(2)hydrogenation
下载PDF
Electron-deficient ZnO induced by heterointerface engineering as the dominant active component to boost CO_(2)-to-formate conversion
12
作者 Qing Qin Zijian Li +8 位作者 Yingzheng Zhang Haeseong Jang Li Zhai Liqiang Hou Xiaoqian Wei Zhe Wang Min Gyu Kim Shangguo Liu Xien Liu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期127-136,共10页
Electrocatalytic CO_(2)-to-formate conversion is considered an economically viable process.In general,Zn-based nanomaterials are well-known to be highly efficient electrocatalysts for the conversion of CO_(2) to CO,bu... Electrocatalytic CO_(2)-to-formate conversion is considered an economically viable process.In general,Zn-based nanomaterials are well-known to be highly efficient electrocatalysts for the conversion of CO_(2) to CO,but seldom do they exhibit excellent selectivity toward formate.In this article,we demonstrate that a heterointerface catalyst ZnO/ZnSnO3 with nanosheet morphology shows enhanced selectivity with a maximum Faradaic efficiency(FE)of 86%at−0.9 V versus reversible hydrogen electrode and larger current density for the conversion of CO_(2) to formate than pristine ZnO and ZnSnO3.In particular,the FEs of the C1 products(CO+HCOO−)exceed 98%over the potential window.The experimental measurements combined with theoretical calculations revealed that the ZnO in ZnO/ZnSnO3 heterojunction delivers the valence electron depletion and accordingly optimizes Zn d-band center,which results in moderate Zn-O hybridization of HCOO*and weakened Zn-C hybridization of competing COOH*,thus greatly boosting the HCOOH generation.Our study highlights the importance of charge redistribution in catalysts on the selectivity of electrochemical CO_(2) reduction. 展开更多
关键词 charge redistribution CO_(2)reduction reaction ELECTROCATALYST heterointerfaces SELECTIVITY
下载PDF
Boosting CO_(2) photoreduction by synergistic optimization of multiple processes through metal vacancy engineering
13
作者 Jinlong Wang Dongni Liu +3 位作者 Mingyang Li Xiaoyi Gu Shiqun Wu Jinlong Zhang 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期202-212,共11页
The photoreduction of greenhouse gas CO_(2) using photocatalytic technologies not only benefits en-vironmental remediation but also facilitates the production of raw materials for chemicals.Howev-er,the efficiency of ... The photoreduction of greenhouse gas CO_(2) using photocatalytic technologies not only benefits en-vironmental remediation but also facilitates the production of raw materials for chemicals.Howev-er,the efficiency of CO_(2) photoreduction remains generally low due to the challenging activation of CO_(2) and the limited light absorption and separation of charge.Defect engineering of catalysts rep-resents a pivotal strategy to enhance the photocatalytic activity for CO_(2),with most research on met-al oxide catalysts focusing on the creation of anionic vacancies.The exploration of metal vacancies and their effects,however,is still underexplored.In this study,we prepared an In2O3 catalyst with indium vacancies(VIn)through defect engineering for CO_(2) photoreduction.Experimental and theo-retical calculations results demonstrate that VIn not only facilitate light absorption and charge sepa-ration in the catalyst but also enhance CO_(2) adsorption and reduce the energy barrier for the for-mation of the key intermediate*COOH during CO_(2) reduction.Through metal vacancy engineering,the activity of the catalyst was 7.4 times,reaching an outstanding rate of 841.32μmol g(-1)h^(-1).This work unveils the mechanism of metal vacancies in CO_(2) photoreduction and provides theoretical guidance for the development of novel CO_(2) photoreduction catalysts. 展开更多
关键词 PHOTOCATALYST CO_(2) photoreduction Indium oxide Metal vacancy Defect
下载PDF
Selective CO_(2)Electroreduction to Multi-Carbon Products on Organic-Functionalized CuO Nanoparticles by Local Micro-Environment Modulation
14
作者 Shan Ren Xi Cao +5 位作者 Qikui Fan Zhimao Yang Fei Wang Xin Wang Licheng Bai Jian Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期120-132,共13页
Surface functionalization of Cu-based catalysts has demonstrated promising potential for enhancing the electrochemical CO_(2)reduction reaction(CO_(2)RR)toward multi-carbon(C2+)products,primarily by suppressing the pa... Surface functionalization of Cu-based catalysts has demonstrated promising potential for enhancing the electrochemical CO_(2)reduction reaction(CO_(2)RR)toward multi-carbon(C2+)products,primarily by suppressing the parasitic hydrogen evolution reaction and facilitating a localized CO_(2)/CO concentration at the electrode.Building upon this approach,we developed surface-functionalized catalysts with exceptional activity and selectivity for electrocatalytic CO_(2)RR to C_(2+)in a neutral electrolyte.Employing CuO nanoparticles coated with hexaethynylbenzene organic molecules(HEB-CuO NPs),a remarkable C_(2+)Faradaic efficiency of nearly 90%was achieved at an unprecedented current density of 300 mA cm^(-2),and a high FE(>80%)was maintained at a wide range of current densities(100-600 mA cm^(-2))in neutral environments using a flow cell.Furthermore,in a membrane electrode assembly(MEA)electrolyzer,86.14%FEC2+was achieved at a partial current density of 387.6 mA cm^(-2)while maintaining continuous operation for over 50 h at a current density of 200 mA cm^(-2).In-situ spectroscopy studies and molecular dynamics simulations reveal that reducing the coverage of coordinated K⋅H2O water increased the probability of intermediate reactants(CO)interacting with the surface,thereby promoting efficient C-C coupling and enhancing the yield of C_(2+)products.This advancement offers significant potential for optimizing local micro-environments for sustainable and highly efficient C_(2+)production. 展开更多
关键词 CO_(2)electroreduction to C_(2+) Neutral electrolyte Organic-functionalized CuO nanoparticles Local micro-environment
下载PDF
Analysis of impact pressure,rock-breaking effect,and ground vibration induced by the disposable CO_(2)fracturing tube
15
作者 Chong Yu Yongan Ma +3 位作者 Haibo Li Shouchun Deng Yafei Hao Kuan Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3099-3121,共23页
The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing t... The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing the Cardox tube.However,there is a lack of impact pressure testing of disposable tubes under real working conditions,selection of gas explosion design parameters,and systematic analysis of blasting vibration.This limitation has constrained the widespread application of disposable fracturing tubes in engineering.A joint monitoring of the pressure-time curves in the disposable tubes and boreholes was conducted.The rock-breaking effect of varying hole spacing parameters in the EFLCO_(2)design was analyzed,and a systematic study was carried out on the vibration peak value,frequency,and energy characteristics.The results show that(1)the pressure distribution characteristics,stress peak value,and duration in the disposable tubes are different from those of Cardox tubes,which show multi-peak distribution,low-pressure peak value,and short duration.The correlation between the pressure in the disposable tube,filling pressure,and liquid CO_(2)weight is established,and a theoretical calculation method for the borehole wall pressure is proposed;(2)The hole spacing in rocks of different hardness is suggested;and(3)At the same scale distance,the peak particle velocity(PPV)caused by EFLCO_(2)(PPVCO_(2))is significantly smaller than that caused by blasting(PPVexplosive).The ratio of PPVexplosive to PPVCO_(2)is a power function related to scale distance,and a distance-related zonality exist in this relationship.The frequency composition of the vibration signal caused by EFLCO_(2)is relatively simple with a narrow frequency band.Its PPV and energy are mainly concentrated in the low-frequency band.This research contributes to the optimization of disposable fracturing tubes,gas explosion design,and vibration hazard control. 展开更多
关键词 Disposable tube Liquid CO_(2) Impact pressure Hole spacing Vibration effect Cardox tube
下载PDF
Self-adaptive gas flow and phase change behaviors during hydrate exploitation by alternate injection of N_(2) and CO_(2)
16
作者 Bo-Jian Cao Yi-Fei Sun +5 位作者 Hong-Nan Chen Jin-Rong Zhong Ming-Long Wang Ming Wang Chang-Yu Sun Guang-Jin Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期2120-2129,共10页
Since hydrate resources play a part of the stratigraphic framework structure in sediments,establishing a safe and economic method for hydrates exploitation remains the primary challenge to this day.Among the proposed ... Since hydrate resources play a part of the stratigraphic framework structure in sediments,establishing a safe and economic method for hydrates exploitation remains the primary challenge to this day.Among the proposed methods,the spontaneous displacement of CH_(4) from hydrate cages by CO_(2) seems to be a perfect mechanism to address gas production and CO_(2) storage,especially in today's strong demand for carbon reduction and replacing clean energy.After extensive lab researches,in the past decade,injecting a mixture of CO_(2) and small molecule gas has become a key means to enhance displacement efficiency and has great potential for application.However,there is a lack of in-depth research on gas flow in the reservoir,while the injected gas always passes through low-saturated hydrate areas with high permeability and then occurs gas channel in a short term,finally resulting in the decreases in gas production efficiency and produced gas quality.Therefore,we explored a new injection-production mode of alternate injection of N2 and CO_(2) in order to fully coordinate the advantages of N_(2) in enhanced hydrate decomposition and CO_(2) in solid storage and heat compensation.These alternate"taking"and"storing"processes perfectly repair the problem of the gas channel,achieving self-regulation effect of CH_(4) recovery and CO_(2) storage.The 3-D experimental results show that compared to the mixed gas injection,CH_(4) recovery is increased by>50%and CO_(2) storage is increased by>70%.Additionally,this alternate injection mode presented a better performance in CH_(4) concentration of produced gas and showed outstanding N_(2) utilization efficiency.Further,we analyzed its self-adaptive gas flow mechanism and proposed an application model of"one injection and multiple production".We look forward to this study accelerating the application of CO_(2)-CH_(4) replacement technology. 展开更多
关键词 HYDRATE Replacement CH_(4)recovery CO_(2)storage Reservoir remediation
下载PDF
Preparation of palladium-based catalyst by plasma-assisted atomic layer deposition and its applications in CO_(2) hydrogenation reduction
17
作者 唐守贤 田地 +4 位作者 李筝 王正铎 刘博文 程久珊 刘忠伟 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期31-39,共9页
Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is report... Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is reported to fabricate Pd nanoparticle catalyst over γ-Al_(2)O_(3)or Fe_(2)O_(3)/γ-Al_(2)O_(3)support,using palladium hexafluoroacetylacetonate as the Pd precursor and H_(2)plasma as counter-reactant.Scanning transmission electron microscopy exhibits that highdensity Pd nanoparticles are uniformly dispersed over Fe_(2)O_(3)/γ-Al_(2)O_(3)support with an average diameter of 4.4 nm.The deposited Pd-Fe_(2)O_(3)/γ-Al_(2)O_(3)shows excellent catalytic performance for CO_(2)hydrogenation in a dielectric barrier discharge reactor.Under a typical condition of H_(2)to CO_(2)ratio of 4 in the feed gas,the discharge power of 19.6 W,and gas hourly space velocity of10000 h^(-1),the conversion of CO_(2)is as high as 16.3% with CH_(3)OH and CH4selectivities of 26.5%and 3.9%,respectively. 展开更多
关键词 atomic layer deposition CO_(2)hydrogenation palladium based catalyst
下载PDF
Tackling the proton limit under industrial electrochemical CO_(2)reduction by a local proton shuttle
18
作者 Tianye Shao Kang Yang +4 位作者 Sheng Chen Min Zheng Ying Zhang Qiang Li Jingjing Duan 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期233-243,共11页
Industrial CO_(2)electroreduction has received tremendous attentions for resolution of the current energy and environmental crisis,but its performance is greatly limited by mass transport at high current density.In th... Industrial CO_(2)electroreduction has received tremendous attentions for resolution of the current energy and environmental crisis,but its performance is greatly limited by mass transport at high current density.In this work,an ion‐polymer‐modified gas‐diffusion electrode is used to tackle this proton limit.It is found that gas diffusion electrode‐Nafion shows an impressive performance of 75.2%Faradaic efficiency in multicarbon products at an industrial current density of 1.16 A/cm^(2).Significantly,in‐depth electrochemical characterizations combined with in situ Raman have been used to determine the full workflow of protons,and it is found that HCO_(3)^(−)acts as a proton pool near the reaction environment,and HCO_(3)^(−)and H_(3)O^(+)are local proton donors that interact with the proton shuttle−SO_(3)^(−)from Nafion.With rich proton hopping sites that decrease the activation energy,a“Grotthuss”mechanism for proton transport in the above system has been identified rather than the“Vehicle”mechanism with a higher energy barrier.Therefore,this work could be very useful in terms of the achievement of industrial CO_(2)reduction fundamentally and practically. 展开更多
关键词 industrial CO_(2)electroreduction proton donor proton pool proton shuttle proton transport mechanism
下载PDF
Phosphorus limitation on CO_(2)fertilization effect in tropical forests informed by a coupled biogeochemical model
19
作者 Zhuonan Wang Hanqin Tian +5 位作者 Shufen Pan Hao Shi Jia Yang Naishen Liang Latif Kalin Christopher Anderson 《Forest Ecosystems》 SCIE CSCD 2024年第4期502-515,共14页
Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivi... Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivity in tropical forests throughout the 21st century due to CO_(2)fertilization.However,phosphorus(P)liaitations on vegetation photosynthesis and productivity could significantly reduce the CO_(2)fertilization effect.Here,we used a carbon-nitrogen-phosphorus coupled model(Dynamic Land Ecosystem Model;DLEM-CNP)with heterogeneous maximum carboxylation rates to examine how P limitation has affected C fluxes in tropical forests during1860-2018.Our model results showed that the inclusion of the P processes enhanced model performance in simulating ecosystem productivity.We further compared the simulations from DLEM-CNP,DLEM-CN,and DLEMC and the results showed that the inclusion of P processes reduced the CO_(2)fertilization effect on gross primary production(GPP)by 25%and 45%,and net ecosystem production(NEP)by 28%and 41%,respectively,relative to CN-only and C-on ly models.From the 1860s to the 2010s,the DLEM-CNP estimated that in tropical forests GPP increased by 17%,plant respiration(Ra)increased by 18%,ecosystem respiration(Rh)increased by 13%,NEP increased by 121%per unit area,respectively.Additionally,factorial experiments with DLEM-CNP showed that the enhanced NPP benefiting from the CO_(2) fertilization effect had been offset by 135%due to deforestation from the 1860s to the 2010s.Our study highlights the importance of P limitation on the C cycle and the weakened CO_(2)fertilization effect resulting from P limitation in tropical forests. 展开更多
关键词 Tropical forests Carbon-nitrogen-phosphorus model Phosphorus limitation CO_(2)fertilization effect Terrestfial ecosy stem model
下载PDF
LPCS Ni-Zn-Al_(2)O_(3) Intermediate Layer Enhanced SPS NiCr-Cr_(3)C_(2) Coating with Higher Corrosion and Wear Resistances
20
作者 白杨 LI Yan +2 位作者 XING Lukuo LI Xiangbo WANG Zhenhua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期188-195,共8页
The double-layer NiCr-Cr_(3)C_(2)/Ni-Zn-Al_(2)O_(3) coatings with sufficient corrosion and wear resistance were prepared on low carbon steel substrates.The intermediate layers Ni-Zn-Al_(2)O_(3) were fabricated by usin... The double-layer NiCr-Cr_(3)C_(2)/Ni-Zn-Al_(2)O_(3) coatings with sufficient corrosion and wear resistance were prepared on low carbon steel substrates.The intermediate layers Ni-Zn-Al_(2)O_(3) were fabricated by using low-pressure cold spray (LPCS) method to improve the salt fog corrosion resistance properties of the supersonic plasma spray (SPS) NiCr-Cr_(3)C_(2) coatings.The friction and wear performance for the double-layer and single-layer NiCr-Cr_(3)C_(2) coatings were carried out by line-contact reciprocating sliding,respectively.Combined with the coating surface analysis techniques,the effect of the salt fog corrosion on the tribological properties of the double-layer coatings was studied.The results showed that the double-layer coatings exhibited better wear resistance than that of the single-layer coatings,due to the better corrosion resistance of the intermediate layer;the wear mass losses of the double-layer coatings was reduced by 70%than that of the single layer coatings and the wear mechanism of coatings after salt fog corrosion conditions is mainly corrosion wear. 展开更多
关键词 low-pressure cold spray NiCr-Cr_(3)C_(2)coating wear behavior salt fog corrosion
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部